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Numerical Simulations of Stellar 
Convective Dynamos Ill. At the 
Base of the Convection Zone 
GARY A, GLATZMAIER 

ESS-5, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

(Received August 14, 1984) 

We describe numerical simulations of giant-cell solar convection and magnetic field 
generation. Nonlinear, three-dimensional, time-dependent solutions of the anelastic 
magnetohydrodynamic equations are presented for a stratified, rotating, spherical shell 
of ionized gas. The velocity, magnetic field, and thermodynamic variables are solved 
simultaneously and self-consistently with full nonlinear feedback. Convection, driven 
in the outer part of this shell by a superadiabatic gradient, penetrates into the inner, 
subadiabatic part. Previous dynamic dynamo sjmulations have demonstrated that, 
when the dynamo operates in the convection zone, the magnetic fields propagate away 
from the equator in the opposite direction inferred from the solar butterfly diagram. 
Our simulations suggest that the solar dynamo may be operating at the base of the 
convection zone in the transition region between the stable interior and the turbulent 
convective region. There our simulated angular velocity decreases with depth, as it 
does in the convection zone; but the simulated helicity has the opposite sign 
compared to its convection zone value. As a result, our simulated magnetic fields in 
this transition region initially propagated toward the equator. However, due to our 
limited numerical resolution of the small amplitude helical fluid motions in this dense, 
stable region, only the initial phase propagation could be simulated, not a complete 
magnetic cycle. 

1. INTRODUCTION 

Considerable effort has been made in recent years to understand 
how the interaction of rotation and convection drives a stellar 
dynamo. The physical explanation of the Sun's 22-year magnetic 
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138 G. A. GLATZMATER 

cycle (Hale 1924) has been the object of both kinematic and dynamic 
models. Kinematic dynamo models (Soward and Roberts 1977; 
Moffatt 1978; Parker 1979; Stix 1981; Krause and Radler 1981), 
which solve for the magnetic field after prescribing a parameterized 
velocity field, have been relatively successful in simulating the solar 
magnetic cycle. Dynamic dynamo models for a Boussinesq fluid 
(Gilman and Miller 1981; Gilman 1983) and for an anelastic gas 
(Glatzmaier 1984 (Paper I), 1985 (Paper II)), which simultaneously 
solve for the velocity, magnetic, and thermodynamic fields with full 
nonlinear feedback, have numerically simulated dynamos in rotating 
convection zones; however, the simulated magnetic fields propagate 
away from the equator (contrary to what is inferred from the solar 
butterfly diagram) with periods shorter than 22 years. According to 
stellar dynamo theory, originally proposed by Parker (1955), the 
direction of magnetic field propagation and the cycle period depend 
on helicity and differential rotation. In both types of models, the 
average helicity in the convection zone is negative in the northern 
hemisphere and positive in the southern hemisphere. To fit the solar 
butterfly diagram, the prescribed angular velocity in kinematic 
models increases with depth. However, the simulated angular velo- 
city in dynamic models decreases with depth whenever a surface 
equatorial acceleration, like that observed on the Sun, is obtained. 
Onc might argue that, since the simulated magnetic fields propagate 
i n  the wrong direction in the dynamic models, the simulated 
differential rotation is not correct. However, recent analysis of the 
frequency splitting of solar oscillations (Duvall and Harvey 1984; 
Duvall et al. 1984) suggests that angular velocity decreases with 
depth through most of the solar convection zone and through the 
stable region down to about 45% of the solar radius. 

If the solar convection zone is so turbulent that the vast majority 
of the magnetic flux is concentrated into small-scale intermittent 
tubes (Galloway and Weiss 1981) as observed on the solar surface 
(Stenflo 1976), dynamo models of large-scale continuous magnetic 
fields would be inappropriate for the convection zone. It has been 
siggested (Schussler 1980) that the solar cycle may be driven by a 
“flux tube dynamo”; however, the physical mechanisms for such a 
dynamo have not been established. In addition, the global character- 
istics of the solar butterfly diagram and Hale’s polarity law (Hale 
1924) suggest that the solar cycle is the product of global magnetic 
fields. If magnetic flux is shredded by turbulent convection and 
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STELLAR CONVECTIVE DYNAMOS 139 

magnetic instabilities and expelled from the convective region by 
magnetic buoyancy and topological pumping, the solar dynamo may 
be operating with global fields in the less turbulent transition region 
at the base of the convection zone (Drobyshevski and Yuferev 1974; 
Parker 1975; Spiegel and Weiss 1980; Golub et al. 1981; Galloway 
and Weiss 1981; Spruit and van Ballegooijen 1982; van Ballegooijen 
1982; Arter 1983) where differential rotation and helicity may have 
the right signs to produce magnetic fields that propagate toward the 
equator (Durney 1976; Schmidt and Stix 1983; Glatzmaier 1985). 

In this paper we study the feasibility of this latter hypothesis by 
numerically simulating a dynamo with the velocity and magnetic 
fields coupled (via the Lorentz force, Joule heating, and magnetic 
induction) at the base of the convection zone and in the stable 
region below. However, we numerically decouple them in the 
turbulent convective region since we can not resolve, with our global 
model, the small-scale flux tubes we assume exist in this part of the 
Sun. In reality, after the magnetic field is concentrated between cells 
it will not be affected by the full helicity of the convection and 
therefore will be decoupled to some extent from the motion (Gilman 
and Miller 1981, Galloway and Weiss 1981). We include the unstable 
convective region in our model in order to simulate convective 
overshooting which maintains the required differential rotation and 
helicity in the stable region below. The model, numerical method, 
and solutions are described in Papers I and 11. Modifications made 
to the model for this study are discussed in Section 2. We describe 
our simulated differential rotation and helicity in Section 3 and the 
generation and propagation of our simulated magnetic field in 
Section 4. 

2. THE MODEL 

As described in Paper I, we model a spherical shell of ionized gas 
constrained by the solar luminosity, gravity, composition, and 
average rotation rate. As in Paper 11, the top and bottom boundaries 
have been set at 93% and 46% of the solar radius, respectively. There 
are seven pressure scale-heights across this shell with the outer two- 
thirds (in radius) superadiabatic and the inner third subadiabatic. 
Although most one-dimensional solar models predict a rapid tran- 
sition from a slightly superadiabatic convection zone to a very 
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140 G. A. GLATZMAIER 

subadiabatic radiative interior, we have specified only a slightly 
subadiabatic stable region below our convection zone in order to 
avoid high numerical resolution requirements. As a result, our 
convective motions penetrate further into the stable region than they 
probably do on the Sun. (The solar abundances of lithium and 
beryllium place a constraint on the depth of convective motions in 
the Sun (Vauclair et al. 1978).) In this respect, our numerical 
solutions represent only the qualitative features of a dynamo seated 
at the base of the convection zone. 

We solve the anelastic magnetohydrodynamic equations for the 
velocity, magnetic, and thermodynamic fields in three dimensions 
and time. The anelastic approximation filters out short time-scale, 
small amplitude acoustic waves while retaining the effects of a large 
density stratification. The nonlinear effects of the unresolved scales 
are parameterized via viscous, thermal, and magnetic eddy diffusion 
using subgrid-scale eddy diffusivities (Paper 11). 

Our dependent variables are expanded in spherical harmonics, 
Yr(O,4),  and Chebyshev polynomials, ?(I-),  with 01 Irnl I 11 31 and 
0 I II I 32. A second-order semi-implicit time-integration scheme is 
employed; and at each time-step nonlinear terms are computed in 
physical space while spatial derivatives are computed analytically in 
spectral space. In order to conserve computer time, we have imposed 
symmetry with respect to the equator such that the latitudinal 
component of velocity and the radial and longitudinal components 
of the magnetic field vanish in the equatorial plane. This was the 
preferred symmetry manifested in our full spherical shell solutions. 

A modification we have made for this study is the decoupling of 
the velocity and magnetic fields in the turbulent convective region in 
order to simulate a dynamo seated at the base of the convection 
zone. We do this by forcing the magnetic field to match to a time- 
dependent, non-prescribed, potential field midway between the top 
and bottom boundaries of the shell. That is, instead of applying this 
boundary condition at the top of the shell as was done in Papers I 
and 11, we apply it in the middle of the shell and solve the magnetic 
induction equation only in the inner half of the shell. Therefore, 
since the potential field in the outer part of the shell is curl-free, 
there is no Lorentz force or Joule heating in this region. Note, 
however, that the velocity and thermodynamic variables are fully 
simulated throughout the entire shell. 
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STELLAR CONVECTIVE DYNAMOS 141 

The resulting potential magnetic field in the outer half of the shell 
certainly is not a realistic representation of the assumed small-scale 
flux-tube structure there; however, we wish to study the evolution of 
the magnetic field in the inner half of the shell, not in the turbulent 
convective region above. This drastic modification was required, with 
the present model and affordable numerical resolution, to simulate a 
dynamo seated at the base of the convection zone. 

3. DIFFERENTIAL ROTATION AND HELlClTY 

The two major ingredients for a cyclic dynamo model (Parker 1955) 
are differential rotation, i.e., the variation in radius and latitude of 
angular velocity <v+/rsinO>, and helicity, i.e., the dot product of 
velocity and vorticity ( v - V  x v). (The brackets represent averages in 
longitude and the variables have their usual meanings.) Differential 
rotation generates toroidal magnetic fields from poloidal magnetic 
fields; helicity generates poloidal fields from toroidal fields. We 
describe in Paper I1 how the effects of rotation, spherical geometry, 
and density stratification cause angular momentum to be trans- 
ported in latitude toward the equator and in radius toward the 
surface. Although the profile and time dependence of the differential 
rotation is also determined by the Coriolis forces resulting from the 
meridional circulation and the viscous and Lorentz forces which try 
to maintain solid body rotation, our simulated differential rotation is 
maintained primarily by the convergence of angular momentum flux, 
i.e., the nonlinear Reynolds stress of the explicitly resolved, large- 
scale motions which are strongly influenced by rotation, spherical 
geometry, and density stratification. 

A typical profile of our simulated differential rotation (Figure 2a 
of Paper 11) illustrates how angular velocity (relative to the rotating 
frame) peaks in the equatorial region at the surface and decreases 
with depth below the surface. The latitudinal variation of the surface 
rotation rate agrees, to within about lo%, with Doppler measure- 
ments of the solar surface differential rotation (Howard et d. 1983). 
The radial variation agrees with a recent analysis (Duvall et al. 1984) 
of the rotational frequency splitting of solar oscillations (Duvall and 
Harvey 1984) which suggests that angular velocity in the equatorial 
region decreases by about 15% from 93% to 45% of the solar radius. 
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142 G. A. GLATZMAIER 

Our simulated differential rotation is quite similar to that obtained 
from previous nonlinear Boussinesq simulations (Gilman 1983). 

The other important ingredient for a cyclic dynamo is helicity. We 
describe in Paper I1 how the effects of rotation, spherical geometry, 
and density stratification cause helicity in the turbulent convective 
region to be negative, left-handed, in the northern hemisphere and to 
be positive, right-handed, in southern hemisphere. One contribution 
to helicity is due to Coriolis forces resulting from the expansion of 
rising fluid and the contraction of sinking fluid. However, in the 
inner part of the shell the relative amount of expansion and 
contraction due to the density stratification is small because there 
the density scale-height is large. In addition, in this region rising 
fluid tends to converge horizontally as it begins its ascent and 
sinking fluid tends to diverge as it terminates its descent. Due to this 
latter effect, Coriolis forces in this region produce positive helicity in 
the northern hemisphere and negative helicity in the southern 
hemisphere. However, our simulated helicity in this region is typi- 
cally between two and three orders of magnitude smaller than what 
it is in the outer part of the shell because, in the inner part, 
convective velocities are small due to the large mass density and the 
stable entropy gradient. A typical profile of our longitudinally 
averaged helicity is illustrated in Figure 2b of Paper 11. 

A somewhat similar helicity configuration has been simulated by 
Yoshimura (1972) under quite different physical and numerical 
conditions. He solves a linear equation of motion with a single 
spherical harmonic for a thin shell representing the outer 10% of the 
solar radius with no density stratification and in the limit of slow 
rotation. His resulting helicity in the northern hemisphere is negative 
(positive) in the outer (inner) regions of his shell with approximately 
the same amplitude in both regions. 

4. MAGNETIC FIELD GENERATION AND PROPAGATION 

Previous simulations of a dynamic dynamo in the solar convection 
zone have produced magnetic fields that propagate too fast and in 
the wrong direction (Gilman 1983; Glatzmaier 1985). Here we 
describe the maintenance and evolution of the axisymmetric part of 
our simulated magnetic field at the base of the convection zone. The 
profile of the magnetic field, after several thousand time-steps, is 
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STELLAR CONVECTIVE DYNAMOS 143 

illustrated in Figure 1 where the toroidal part, i.e., the longitudinal 
component ( B + ) ,  is represented by contours and the poloidal part, i.e., 
the radial and colatitudinal components (B,f + Bee) ,  is represented 
by lines of force. Instead of beginning with a very small-scale, 
randomly structured seed magnetic field (Papers I and 11), for this 
study we have initialized the magnetic field with relatively smooth 
functions. 

According to stellar dynamo theory, differential rotation shears the 
poloidal field generating a new toroidal field and helical fluid motions 
twist the toroidal field generating a new poloidal field while eddy 
diffusion continually works to destroy both fields. Since our simulated 
angular velocity increases with distance from the rotation axis 
(Figure 2a of Paper 11), it shears the outward directed poloidal field at 
low latitude (Figure lb, in the northern hemisphere) producing a 
toroidal field contribution in the direction of rotation (into the paper). 
Likewise, the rotational shearing of the inward directed poloidal 
field at high latitude (Figure lb, in the northern hemisphere) 

"OROIDAL MAGNETIC FIELD POLOIDAL MAGNETIC FIELD 

FIGURE 1 (a) Solid (broken) contours in the meridian plane represent the toroidal 
magnetic field directed into (out of) the paper. (b) Lines of force represent the 
poloidal magnetic field. 
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144 G. A. GLATZMAIER 

produces a toroidal field contribution in the opposite direction of 
rotation (out of the paper). The opposite toroidal field contributions 
are generated in the southern hemisphere. Consequently, the toroidal 
fields (Figure la) are being destroyed on their poleward sides and 
enhanced on their equatorward sides, except near the equatorial 
plane. This is illustrated in Figure 2a where the contribution to the 
time derivative of the toroidal field due to rotational shearing of the 
poloidal field, 

N 

FIGURE 2 (a) Solid (broken) contours in the meridian plane represent the contri- 
bution directed into (out of) the paper to the toroidal magnetic field made by the 
rotational shearing of the poloidal magnetic field. (b) Solid (broken) contours 
represent the positive (negative) contribution to the poloidal magnetic field energy 
made by the shear and transport processes operating on the twisted toroidal magnetic 
field. 
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STELLAR CONVECTIVE DYNAMOS 145 

is plotted in a meridian plane for the same time step depicted in 
Figure 1. It predicts the toroidal field phase propagation toward the 
equator at the base of the convection zone. Note that twisting the 
nonaxisymmetric magnetic fields by the nonaxisymmetric motions 
also contributes to the axisymmetric toroidal magnetic field; how- 
ever, this contribution, which tends to oppose the above effect, is 
about five times smaller than the effect of the differential rotation 
illustrated in Figure 2a. 

The propagation of the axisymmetric part of our toroidal field in 
the inner part of the shell is illustrated in Figure 3. The five profiles 
span a simulated time of four years in approximately equal incre- 
ments. It is dificult to estimate what the period of the magnetic 
cycle would be when only a fraction has been simulated; however, if 
the fields would continue to propagate at the present rate, the period 
would be relatively close to the observed solar period. 

The poloidal magnetic field is maintained against diffusion by 
helical fluid motions that twist the toroidal field. In the northern 
hemisphere, right-handed helical fluid motions at the base of the 
convection zone (Figure 2b of Paper 11) twist toroidal field lines into 
left-handed lines of force; and vice versa in the southern hemisphere. 
(This is illustrated schematically in Paper I1 for the opposite helicity 

TOROIDAL MAGNETIC FIELD 

FIGURE 3 
in Fig. la) spanning four years of simulated time. 

A sequence (left to right) of toroidal magnetic field profiles (as described 
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I46 G. A. GLATZMAIER 

in the outer part of the shell.) One can envision the left-handed 
(right-handed) helical lines of force in the northern (southern) 
hemisphere by adding the axisymmetric toroidal and poloidal fields 
in Figure 1. The contribution made to the time derivative of the 
energy in the axisymmetric poloidal magnetic field by the shear and 
transport processes operating on the twisted toroidal magnetic field, 

is plotted in Figure 2b. This plot illustrates how at least the centers 
of the poloidal loops (Figure lb) are maintained (solid contours in 
Figure 2b) by twisting the toroidal field (Figure la). 

Since the poloidal field is generated by twisting the toroidal field 
and is destroyed by eddy diffusion, it should propagate toward the 
equator following the toroidal field (Figure 3). However, although 
our simulated poloidal field initially propagated a small amount 
toward the equator, it eventually stopped. This was probably due to 
our inadequate numerical resolution of the shear and transport 
processes in the inner part of the shell. The problem is that we need 
to simulate the convective motions in the outer part of the shell in 
order to simulate their penetration into the inner part where they 
maintain the desired differential rotation and helicity. However, it is 
difficult to maintain sufficient radial resolution of the small 
amplitude motions in the dense, subadiabatic, inner part of the shell 
while also resolving the large amplitude motions in the less dense, 
superadiabatic region above. 

5. SUMMARY 

We have simulated a dynamic dynamo at the base of the solar 
convection zone. However, since we are unable to numerically 
resolve, with our global model, the thin magnetic flux tubes that 
presumably thread the turbulent convective region, we make no 
attempt to do so. Instead, we match our simulated magnetic field to 
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STELLAR CONVECTIVE DYNAMOS 147 

a potential field in the convective region. That is, we solve for the 
giant-cell convection in the outer, superadiabatic part of the shell 
and the resulting convective overshooting into the inner, subadiaba- 
tic part of the shell; but the magnetic field is solved dynamically with 
full nonlinear feedback only in the inner part of the shell. 

In this region our simulated angular velocity decreases with depth 
due to the transport of angular momentum; and our simulated 
helicity is positive in the northern hemisphere and negative in the 
southern hemisphere due to the horizontal divergence (convergence) 
of sinking (rising) fluid near the bottom of the overshooting convec- 
tive cells. In addition, the amplitude of the helicity in this inner part 
of the shell is much smaller than in the outer part due to the large 
mass density and stable entropy gradient in the inner part. As a 
result, toroidal magnetic fields, which are generated by the rotational 
shear of poloidal fields, and poloidal magnetic fields, which are 
generated by the twisting of toroidal fields, initially propagated 
toward the equator with a phase velocity in fairly good agreement 
with that inferred from the solar butterfly diagram. 

Unfortunately, our simulated poloidal fields would not continue to 
propagate due to our inadequate numerical resolution of the shear 
and transport processes in the inner part of the shell that twist 
toroidal fields into new poloidal fields. Without this effect the 
toroidal field propagation would also soon terminate. As a result, we 
were unable to simulate a complete magnetic cycle. The problem is 
that we need to explicitly resolve the large amplitude, giant-cell 
convection in the outer part of the shell in order to simulate the 
small amplitude, convective overshooting into the stable region 
below. 

Better numerical resolution is needed in the inner half of the shell. 
Not only would this improve the dynamo simulations, it would 
allow a more realistic representation of convective penetration into a 
very subadiabatic region. Increasing the number of Chebyshev 
polynomials we use from 33 to 65 may give us enough resolution; 
but the corresponding increase in computer time by about a factor 
of eight for the same amount of simulated time would be prohibi- 
tively expensive. The work described in Paper I, Paper 11, and in this 
paper already represents several hundred hours of Cray computer 
time. A more practical approach would be to use a radial mapping 
that enhances the resolution in the inner part of the shell while 
reducing the resolution in the outer part. 
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148 G. A. GLATZMAIER 

Although our dynamic dynamo simulations have demonstrated 
only an initial tendency, they suggest that the solar dynamo could be 
operating at the base of the convection zone if the bulk of the 
convection zone is too turbulent to maintain a large-scale dynamo. 
(Note that our simulated differential rotation and helicity profiles are 
the opposite of that assumed in most kinematic dynamo models of 
the Sun.) On the other hand, although we feel that improving our 
numerical resolution would enable us to simulate magnetic cycles in 
this region, we can not be certain of this until improved simulations 
are made. 

The hypothesis that the solar dynamo is seated at the base of the 
convection zone also has some problems. One is that, when the 
longitudinal component of the longitudinally averaged magnetic field 
on the Sun (inferred from the polarity configuration of sunspot 
groups and bipolar magnetic regions) is in the direction of rotation, 
the radial component (obtained from Mt. Wilson magnetograms) is 
directed downward; and vice versa (Stix 1976). Although this con- 
straint is satisfied in Figure 1, it no longer is at the end of our 
simulation. On the other hand, it is difficult to estimate how the 
turbulent convection zone may distort the large-scale magnetic 
structure generated at the base of the convection zone. However, this 
leads to another problem. It is uncertain how Hale’s polarity law 
(Hale 1924) for sunspot groups observed on the solar surface could 
be maintained by flux tubes rising through the convection zone. 
Since the polarity law is so well maintained, one assumes the 
magnetic flux tubes are still connected to the main toroidal field 
below the surface. However, it is difficult to imagine how a pertur- 
bation loop in the toroidal field could extend up through the entire 
convection zone, maintaining a relatively small horizontal separation 
between the two polarities, without undergoing magnetic 
reconnection. 

Another possibility worth considering is that the solar dynamo 
may be operating in the outer 5% of the solar radius which has been 
excluded in our model because of the high numerical resolution 
requirements there. Angular velocity may be increasing with depth in 
the top layer as suggested by the rotational frequency spitting of 
solar oscillations (Duvall et al. 1984), by the difference between 
sunspot and Doppler rotation velocities (Snodgrass 1983; Howard et 
al. 1983), by thin shell Boussinesq simulations (Gilman and Foukal 
1979), and by linear anelastic simulations (Glatzmaier and Gilman 
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STELLAR CONVECTIVE DYNAMOS 149 

1982). Helicity in this region should be negative (positive) in the 
northern (southern) hemisphere; however, it is uncertain how effect- 
ive helicity is when convective motions and magnetic flux tubes are 
spatially separated. In addition, magnetic buoyancy considerations 
suggest that a magnetic cycle of 22 years would be difficult to 
achieve if the dynamo were operating just below the solar surface 
(Parker 1975). If the solar dynamo were operating in this thin top 
layer, the dynamics of the small-scale flux tubes certainly would be 
an important feature. 

Although progress is being made, better simulations and obser- 
vations are required before we can feel confident about our under- 
standing of the basic properties of the solar dynamo which may be 
much more complicated and possibly very different than what 
current dynamo theory would lead one to believe. 
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