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A numerical simulation algorithm that is exact for any time stepDt.0 is derived for the Ornstein-
Uhlenbeck processX(t) and its time integralY(t). The algorithm allows one to make efficient, unapproxi-
mated simulations of, for instance, the velocity and position components of a particle undergoing Brownian
motion, and the electric current and transported charge in a simpleR-L circuit, provided appropriate values are
assigned to the Ornstein-Uhlenbeck relaxation timet and diffusion constantc. A simple Taylor expansion in
Dt of the exact simulation formulas shows how the first-order simulation formulas, which are implicit in the
Langevin equation forX(t) and the defining equation forY(t), are modified in second order. The exact
simulation algorithm is used here to illustrate the zero-t limit theorem.@S1063-651X~96!10908-9#

PACS number~s!: 02.70.Lq, 02.50.Ga, 02.60.Cb, 05.40.1j

I. INTRODUCTION

The Ornstein-Uhlenbeck~OU! process has a long history
in physics. Introduced in essence by Langevin@1# in his fa-
mous 1908 paper on Brownian motion, the process received
a more thorough mathematical examination several decades
later by Uhlenbeck and Ornstein@2#, Chandrasekhar@3#, and
Wang and Uhlenbeck@4#, and it is nowadays offered as a
fairly standard textbook topic@5–9#. Using the notation and
nomenclature of Ref.@9#, the OU process is understood here
to be the univariate continuous Markov processX that
evolves with timet ~a real variable! according to any one of
the following equivalent versions of the OU Langevin equa-
tion:

X~ t1dt!5X~ t !2
1

t
X~ t !dt1c1/2N~ t !~dt!1/2, ~1.1!

X~ t1dt!5X~ t !2
1

t
X~ t !dt1c1/2dW~ t !, ~1.2!

dX~ t !

dt
52

1

t
X~ t !1c1/2G~ t !. ~1.3!

In these equations,t and c are positive constants called,
respectively, therelaxation timeand thediffusion constant;
dt is a ‘‘positive infinitesimal,’’ i.e., a real variable that is
restricted to the interval@0,e# wheree is arbitrarily close to
zero;N(t) is a temporally uncorrelated normal random vari-
able with mean 0 and variance 1;dW(t) is a temporally
uncorrelated normal random variable with mean 0 and vari-
ancedt; andG(t) is ‘‘Gaussian white noise,’’ which may be
defined as thedt→0 limit of the temporally uncorrelated
normal random variable with mean 0 and variance 1/dt. The
equivalence of Eqs.~1.1!–~1.3! is a straightforward conse-
quence of the fact thatN(m,s2), the normal random variable
with meanm and variances2, satisfies

a1bN~m,s2!5N~a1bm,b2s2!. ~1.4!

The density functionP of the OU processX obeys the
partial differential equation

]P~x,t !

]t
5
1

t

]@xP~x,t !#

]x
1
c

2

]2P~x,t !

]x2
, ~1.5!

which is the forward Fokker-Planck equation for the OU
process. The four equations~1.1!, ~1.2!, ~1.3!, and ~1.5! are
logically equivalent to each other; each provides a statisti-
cally complete description of the time evolution of the OU
process.

The importance of the OU process in physics is owed to
several facts. First, it plays a central role in the mathematical
descriptions of Brownian motion and Johnson noise: Refer-
ence@9# gives a tutorial review of the arguments that lead
one to conclude that any rectilinear velocity component of a
Brownian particle of massm and diffusion coefficientD at
absolute temperatureT can be regarded as an OU process
with relaxation time and diffusion constant

t5
Dm

kT
, c5

2

D S kTm D 2, ~1.6!

k being Boltzmann’s constant, and also that the electrical
current in a simple wire loop of resistanceR and self-
inductanceL at absolute temperatureT can be regarded as an
OU process with relaxation time and diffusion constant

t5
L

R
, c5

2kTR

L2
. ~1.7!

Secondly, the OU process has lately been used by many
investigators as a model of ‘‘colored noise’’@10#; its station-
ary autocovariance function, in contrast to that of the
d-correlated Gaussian white noise processG(t), decays ex-
ponentially with characteristic time constantt. Finally, the
fluctuations in many continuous Markov processes about a
‘‘stable state,’’ at least those fluctuations sufficiently small
that a locally linear approximation to the drift function will
be justified, can approximately be described as an OU pro-
cess centered on the stable state.

The time integral of the OU processX ~or indeed of any
processX! is defined to be the processY that satisfies

Y~ t1dt!5Y~ t !1X~ t !dt. ~1.8!
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Y is not itself a Markov process; however,X andY together
comprise a bivariate continuous Markov process@11#. In the
Brownian motion problem of Eqs.~1.6! Y(t) would be the
corresponding position component of the Brownian particle
at time t, and in the Johnson noise problem of Eqs.~1.7!
Y(t) would be the net charge transported past some fixed
point on the wire loop by timet.

Construction of an algorithm for numerically simulating
the OU processX and its integralY ultimately comes down
to finding valid ‘‘updating’’ formulas that allow one to cal-
culate, from any given values ofX andY at any timet, theX
andY values at some later timet1Dt. Approximateupdat-
ing formulas can be constructed simply by replacing the
positive infinitesimaldt in Eqs.~1.1! and ~1.8! with a posi-
tive finite variableDt:

X~ t1Dt !'X~ t !2
1

t
X~ t !Dt1c1/2n~Dt !1/2, ~1.9a!

Y~ t1Dt !'Y~ t !1X~ t !Dt. ~1.9b!

In Eq. ~1.9a!, n represents a sample value of the unit normal
random variableN(t)5N(0,1); such ‘‘unit normal random
numbers’’ can easily be generated on a computer@12,13#.

The shortcoming of the updating formulas~1.9! for X and
Y is that they will be accurateonly if Dt is ‘‘suitably small.’’
However, the fact that the coupled time-evolution equations
~1.1! and~1.8! for X andY are analytically solvable makes it
possible to derive updating formulas that areexact for any
positive value ofDt. Although it might be argued that such
exact updating formulas are implicit in the analytical solu-
tion of the OU process, to the best of this writer’s knowledge
those formulas have never been published. In view of the
prominent role that the OU process plays in physics applica-
tions of stochastic process theory, as recounted above, this
omission deserves redressing. Not only should the exact up-
dating formulas forX and Y afford interesting and useful
insights into the OU process and its integral, but they may
also suggest clues as to how we might improve simulation
algorithms for stochastic processes that are not analytically
solvable.

Actually, an exact updating formula forX by itself has
been published; it reads@14#

X~ t1Dt !5X~ t !e2~1/t!Dt1Fct

2
~12e2~2/t!Dt!G1/2n.

~1.10!

It is easy to show that this formula reduces to the approxi-
mate formula~1.9a! wheneverDt!t, and that Eq.~1.9a! is in
fact a first-order-in-Dt approximation to Eq.~1.10!. In Secs.
II and III we shall derive the companion exact updating for-
mula for Y, which replaces the approximate updating for-
mula ~1.9b!. In Sec. IV we shall expand the exactX andY
updating formulas in powers ofDt, and thereby infer the
second-order-in-Dt updating formulas, the ‘‘next step be-
yond’’ Eqs.~1.9!. We shall conclude in Sec. V by presenting
the results of some numerical simulations that not only test
the accuracies of the first- and second-order updating formu-
las as a function ofDt, but also verify thatX andY behave,
in the problematic limitt→0 andc→` with tc1/251, in the
manner predicted by the zero-t limit theorem@15#.

II. SOLVING FOR X„t… AND Y„t…

We wish to find the solutionsX(t) and Y(t) to the
coupled time-evolution equations~1.1! and~1.8! for the sure
initial conditions

X~ t0!5x0 , Y~ t0!5y0 . ~2.1!

For the sake of brevity, we first take note of the well-known
result, which can be derived from either the Langevin equa-
tion ~1.1! or the Fokker-Planck equation~1.5! @4,6–9#, that
for any t.t0 the OU processX(t) will be thenormalrandom
variable with mean and variance

^X~ t !&5x0e
2~ t2t0!/t, ~2.2!

var$X~ t !%5
ct

2
~12e22~ t2t0!/t!. ~2.3!

Next we recall the well known result in random variable
theory that, if the two normal random variablesN(m1 ,s 1

2)
andN(m2 ,s 2

2) arestatistically independent, then

N~m1 ,s1
2!1N~m2 ,s2

2!5N~m11m2 ,s1
21s2

2!; ~2.4!

indeed, thenormalityof the OU processX(t) is most easily
established by repeatedly applying rules~2.4! and~1.4! to the
Langevin equation~1.1! at the successive timest, t1dt,
t12dt, etc. A result somewhat less well known than~2.4! is
that the sum of any two statisticallydependentnormal ran-
dom variables is normal, although the means and variances
then do not combine so simply as in the statistically indepen-
dent case of Eq.~2.4! @16#. Using this more general rule in
conjunction with Eq.~1.4!, we can prove from Eq.~1.8! that
Y(t) too is normal for allt.t0. The argument goes as fol-
lows: Using Eqs.~1.8! and~2.1!, we see thatY(t01dt) is the
sure numbery01x0dt5N(y01x0dt,0). Then Eq. ~1.8!
gives

Y~ t012dt!5~y01x0dt!1X~ t01dt!dt.

SinceX(t01dt) is normal, it follows from Eq.~1.4! that
Y(t012dt) also must be normal. Then we have from Eq.
~1.8!,

Y~ t013dt!5Y~ t012dt!1X~ t012dt!dt.

The two terms on the right are both normal random vari-
ables, although wecannot claim that they are statistically
independent; nevertheless, by the general result just men-
tioned, we can infer that their sumY(t013dt) must be nor-
mal. Repeating this last argument fort in Eq. ~1.8! replaced
successively byt013dt, t014dt, etc., and remembering that
dt can be arbitrarily close to zero, we conclude thatY(t)
must be normal forany t.t0.

Two normalrandom variables are completely specified by
their means, variances, and covariance. For the normal ran-
dom variablesX(t) andY(t) being considered here, we al-
ready know the mean and variance ofX(t) from Eqs.~2.2!
and ~2.3!; so, it remains only to find the mean and variance
of Y(t), and the covariance ofX(t) with Y(t). We can cal-
culate those three averages directly from Eqs.~1.1! and~1.8!
by proceeding as follows.
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To compute the mean ofY(t), we first take the average of
Eq. ~1.8!. Then, subtractinĝY(t)& from both sides, dividing
through bydt, and lettingdt→0, we get

d^Y~ t !&
dt

5^X~ t !&5x0e
2~ t2t0!/t,

where the second equality has invoked Eq.~2.2!. As can
easily be verified, the solution to this simple differential
equation for the required initial condition̂Y(t0)&5y0 is

^Y~ t !&5y01x0t~12e2~ t2t0!/t!. ~2.5!

To compute the covariance ofX(t) andY(t), we begin by
multiplying Eqs.~1.1! and ~1.8! together. That gives

X~ t1dt!Y~ t1dt!5X~ t !Y~ t !2
1

t
X~ t !Y~ t !dt

1c1/2N~ t !Y~ t !~dt!1/21X2~ t !dt

1o~dt!,

whereo(dt) denotes terms of order.1 in dt. We next av-
erage this equation, taking note of the fact that since the
zero-mean random variableN(t) is statistically independent
of Y(t) then^N(t)Y(t)&5^N(t)&^Y(t)&50. Then, transpos-
ing the first term on the right side, dividing through bydt,
and taking the limitdt→0, we get

d^X~ t !Y~ t !&
dt

52
1

t
^X~ t !Y~ t !&1^X2~ t !&.

Since^X2(t)&5var$X(t)%1^X(t)&2 is known explicitly from
Eqs. ~2.2! and ~2.3!, then this simple differential equation
can be straightforwardly solved for^X(t)Y(t)& subject to the
required initial condition̂ X(t0)Y(t0)&5x0y0 . The result is
found to be

^X~ t !Y~ t !&5
ct2

2
1~x0y01x0

2t2ct2!e2~ t2t0!/t

1S ct2

2
2x0

2t De22~ t2t0!/t. ~2.6!

From this result and Eqs.~2.2! and~2.5!, we readily compute
cov$X(t),Y(t)%[^X(t)Y(t)&2^X(t)&^Y(t)& to be

cov$X~ t !,Y~ t !%5
ct2

2
~122e2~ t2t0!/t1e22~ t2t0!/t!.

~2.7!

Finally, to compute the variance ofY(t), we first square
Eq. ~1.8! and then average:

^Y2~ t1dt!&5^Y2~ t !&12^X~ t !Y~ t !&dt1o~dt!.

This implies thatd^Y2(t)&/dt52^X(t)Y(t)&, and hence that

^Y2~ t !&5y0
212E

t0

t

^X~ t8!Y~ t8!&dt8.

So, ^Y2(t)& can be computed simply by substituting into the
above integral the expression in Eq.~2.6! and then carrying

out the integration. Upon doing that and then using Eq.~2.5!,
we find var$Y2(t)%5^Y2(t)&2^Y(t)&2 to be

var$Y~ t !%5ct3F t2t0
t

22~12e2~ t2t0!/t!

1
1

2
~12e22~ t2t0!/t!G . ~2.8!

Having shown that the OU processX(t) and its time in-
tegralY(t) arenormal random variables with means given
by Eqs. ~2.2! and ~2.5!, variances given by Eqs.~2.3! and
~2.8!, and covariance given by Eq.~2.7!, we now have a
complete and exact solution to the problem of the time evo-
lution of X(t) andY(t). In the next section we shall use this
information to construct a practicable set of exactDt updat-
ing formulas forX(t) andY(t).

III. EXACT UPDATING FORMULAS

For the updating formulas forX andY, we regardX(t)
andY(t) asgiven values, and we seek the consequent values
of the random variablesX(t1Dt) andY(t1Dt) for anyDt
.0. By simply replacing in the arguments and formulas of
the preceding section,

~ t0 ,t !→~ t,t1Dt !,

we may infer that that the ‘‘updates’’X(t1Dt) and
Y(t1Dt) to the valuesX(t) andY(t) will be normalrandom
variables whose means, variances, and covariance are given
by

mean$X~ t1Dt !%5X~ t !e2Dt/t, ~3.1a!

mean$Y~ t1Dt !%5Y~ t !1X~ t !t~12e2Dt/t!, ~3.1b!

var$X~ t1Dt !%[sX
25~ct/2!~12e22Dt/t!, ~3.1c!

var$Y~ t1Dt !%[sY
25ct3FDtt 22~12e2Dt/t!

1
1

2
~12e22Dt/t!G , ~3.1d!

cov$X~ t1Dt !,Y~ t1Dt !%[kXY

5~ct2/2!~122e2Dt/t1e22Dt/t!.

~3.1e!

Next we turn to the following result in random variable
theory: IfN1 andN2 are statistically independent unit normal
random variables, then the two random variablesX1 andX2
defined by

X15m11s1N1 , ~3.2a!

X25m21S s2
22

k12
2

s1
2 D 1/2N21

k12

s1
N1 , ~3.2b!

will be normalwith respective meansm1 andm2, respective
variancess1

2 and s2
2, and covariancek12. ~This incidently
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implies, as mentioned earlier, that any twonormal random
variables are completely defined by their means, variances,
and covariance.!

Since this result is not so widely known, we prove it here:
We first use the definition~3.2a! and Eq.~1.4! to write

X15m11s1N~0,1!5N~m1 ,s1
2!;

this proves thatX1 is indeed normal with the claimed mean
and variance. Next, we use the definition~3.2b! and Eqs.
~1.4! and ~2.4! to write

X25m21S s2
22

k12
2

s1
2 D 1/2N~0,1!1

k12

s1
N~0,1!

5NXm2 ,S s2
22

k12
2

s1
2 D C1NS 0, k12

2

s1
2 D

5NSm210, s2
22

k12
2

s1
2 1

k12
2

s1
2 D 5N~m2 ,s2

2!;

this proves thatX2 is also normal with the claimed mean and
variance. Finally, for the covariance ofX1 andX2, we have

cov$X1 ,X2%[Š~X12^X1&!~X22^X2&!‹

5^~X12m1!~X22m2!&

5K @s1N1#F S s2
22

k12
2

s1
2 D 1/2N21

k12

s1
N1G L

5s1S s2
22

k12
2

s1
2 D 1/2^N1N2&1k12̂ N1

2&.

SinceN1 andN2 are statistically independent, zero-mean ran-
dom variables, then̂N1N2&5^N1&^N2&50. And sinceN1 is
a unit normal, then̂N1

2&51. The last line therefore reduces to
simply k12, and the covariance relation is established.

The result~3.2! allows us to express the two statistically
dependentnormalsX(t1Dt) andY(t1Dt) as linear combi-
nations of two statisticallyindependentunit normals. Taking
account of the moment formulas~3.1!, and defining

m[e2Dt/t, ~3.3!

so that the last three of those moment formulas can be writ-
ten as

sX
25~ct/2!~12m2!, ~3.4a!

sY
25ct3@Dt/t22~12m!1~1/2!~12m2!#, ~3.4b!

kXY5~ct2/2!~12m!2, ~3.4c!

the foregoing theorem evidently allows us to writeX(t1Dt)
andY(t1Dt) as follows:

X~ t1Dt !5X~ t !m1sXn1 , ~3.5a!

Y~ t1Dt !5Y~ t !1X~ t !t~12m!1S sY
22

kXY
2

sX
2 D 1/2n2

1
kXY

sX
n1 . ~3.5b!

Equations~3.5! are theexact updating formulasfor the
OU processX and its time integralY. In these formulas,n1
andn2 are statistically independent unit normal random num-
bers@12#, andm, sX , sY , andkXY are defined in terms of the
time stepDt and the OU relaxation timet and diffusion
constantc according to Eqs.~3.3! and~3.4!. Notice that Eq.
~3.5a! is identical to the earlier mentioned formula~1.10!, as
expected.

For a succession of updates with afixed time stepDt, as
would occur in a typical simulation run, the values ofm, sX ,
sY , andkXY on the right-hand sides of formulas~3.5! will all
remainconstant; the only variables there whose values will
change at each time step areX(t), Y(t), n1, andn2. As a
consequence, a numerical simulation ofX andY performed
on a computer using the exact updating formulas~3.5!
should proceed quite rapidly, and only slightly slower than a
simulation performed using the approximate updating formu-
las ~1.9! with the same time step sizeDt.

IV. SECOND-ORDER UPDATING FORMULAS

We expect formulas~3.5! to reduce to the approximate
formulas ~1.9! whenDt is ‘‘suitably small.’’ To show that
this indeed happens, and to see what a second-order-in-Dt
improvement on formulas~1.9! would look like, we let

Dt/t[a. ~4.1!

Then if Dt is small compared tot, we will havea!1, and
we can approximate

m[e2a'12a1
a2

2
2

a3

6
~Dt!t!. ~4.2!

It is then a simple matter of algebra to show from Eqs.~3.4!
that, tothird order ina,

sX
2'cta~12a12a2/3!,

sY
2'ct3a3/3,

kXY'ct2a2~12a!/2.

Upon substituting these approximations into the exact updat-
ing formulas~3.5!, we find that those formulas become, to
secondorder inDt,

X~ t1Dt !'X~ t !1F2
1

t
X~ t !Dt1c1/2n1~Dt !1/2G S 12

Dt

2t D ,
~4.3a!

Y~ t1Dt !'Y~ t !1X~ t !DtS 12
Dt

2t D
1c1/2

1

2
~n11321/2n2!~Dt !3/2. ~4.3b!
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Equations~4.3! are the second-order-in-Dt updating for-
mulas for the Ornstein-Uhlenbeck processX and its integral
Y. If all terms of order.1 in Dt are dropped, Eqs.~4.3!
become identical to the first-order formulas~1.9!. Formulas
~4.3! evidently providedeterministiccorrections to formulas
~1.9! of order (Dt)2, and stochasticcorrections of order
(Dt)3/2.

The stochastic correction term in the second-order
Y-updating formula~4.3b! is particularly intriguing, involv-
ing as it does an admixture of thesameunit normal random
numbern1 that appears in theX-updating formula~4.3a! and
a statistically independentunit normal random numbern2.
Notice that, by appealing to rules~1.4! and ~2.4!, we could
have written the linear combination ofn1 and n2 in Eq.
~4.3b! as

1

2
~n11321/2n2!5

1

31/2 S 31/22 n11
1

2
n2D5

1

31/2
n8,

~4.4!

where n8 is also a unit normal random number. But of
course,n8 as thus definedcannotbe considered to be statis-
tically independent of the unit normal random numbern1 in
Eq. ~4.3a!.

V. ILLUSTRATIVE SIMULATIONS AND CONCLUSIONS

Whether one uses the first-order updating formulas~1.9!,
the second-order updating formulas~4.3!, or the exact updat-
ing formulas~3.5!, the procedure for numerically simulating
the OU processX and its integralY is basically the same.
One first specifies values for the OU relaxation timet and
diffusion constantc, the initial process valuesX(0)5x0 and
Y(0)5y0 , the time stepDt, a stopping timetstop, and a
starting seed for the unit-interval uniform random number
generator. One next setsX5x0 , Y5y0 , andt50, and for the
sake of efficiency precomputes the values of those combina-
tions oft, c, andDt appearing in the updating formulas that
will not change throughout the simulation. One then repeat-
edly applies the chosen set of updating formulas to compute,
from the values ofX andY at time t, their values at time
t1Dt, updating all variables and recording their values for
later use, and finally stopping when the variablet reaches
tstop. Each application of the updating procedure requires
two unit normal random numbers~or just one in the case of
the first-order formulas!, and these are computed as needed
from a set of unituniform random numbers in a straightfor-
ward way@12#.

Figure 1 shows the results of a simulation run using the
exactupdating formulas~3.5! with t5c51, x05y050, and
Dt50.01. The dotted lines in each plot show the appropriate
one-standard-deviation envelope, namely, ^X(t)&
6sdev$X(t)% in the upper plot as computed from Eqs.~2.2!
and~2.3!, and^Y(t)&6sdev$Y(t)% in the lower plot as com-
puted from Eqs.~2.5! and~2.8!. The jagged curves are com-
posed of unconnected dots that give the values of the pro-
cesses at each time step; each trajectory here is thus
composed of 6000 dots. SinceX(t) andY(t) are both nor-
mal, then we expect that, in the limitt→`, their trajectories
should be inside the one-standard-deviation envelopes about
68% of the time.

Since for this simulationDt/t50.01, which is ‘‘small’’

compared to one, then both the first-and second-order updat-
ing formulas ought to work reasonably well here. To test that
expectation, the foregoing exact simulation was runin par-
allel with a first-order simulation and a second-order simu-
lation, with the second-order updating formulas~4.3! using
the same n1 and n2 values as used by the exact updating
formulas, and the first-order updating formulas~1.9! using
n5n1. The resultant first-order and second-order trajectories
were found to track the exact trajectories very closely; in-
deed, on the scale of the plots in Fig. 1, the first-order and
second-orderX and Y trajectories were virtually indistin-
guishable from the exact trajectories. Figure 2~a! shows the
differencebetween the first-order and the exactX value at
each time step, and Fig. 2~b! shows the difference between
the second-order and the exactX value at each time step. The
average absolute discrepancywas found to be 2.131023 in
the first-orderX data, and 8.731026 in the second-orderX
data. Figures 2~c! and 2~d! show the analogous discrepancies
in the first-order and second-orderY trajectories, for which
the respective average absolute discrepancies were computed
to be 8.431023 and 1.131025. So, even though both ap-
proximate trajectories are quite accurate in this case, the er-
rors in the first-order trajectories are over 2 orders of mag-
nitude larger than the errors in the second-order trajectories.

A simulation run withDt/t50.001 showed, as expected,
even smaller errors: the average absolute first- and second-
orderX discrepancies for 6000 time steps were found to be
1.631024 and 6.731028, respectively, and the average ab-
solute first- and second-orderY discrepancies were found to
be 3.431024 and 8.231028. But of course, things get worse
for larger values ofDt/t. As Dt/t is increased from 0.1 to 1,
the average absolute first-orderX discrepancy rises from
0.022 to 0.35, while the average absolute second-orderX
discrepancy rises from 0.000 93 to 0.13; and the average
absolute first-orderY discrepancy rises from 0.26 to 7.9,
while the average absolute second-orderY discrepancy rises
from 0.002 to 0.67. AsDt/t is increased above 1, both of the
approximate updating formulas rapidly become very inaccu-
rate; e.g., forDt/t52, the average absolute first-orderY dis-

FIG. 1. Results of a numerical simulation of the Ornstein-
Uhlenbeck processX and its time integralY made with the exact
updating formulas~3.5!, with t5c51, x05y050, andDt50.01.
The dotted lines show the theoretically predicted one-standard-
deviation envelopes.
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crepancy over 6000 time steps was found to be 91.
Although the second-order updating formula is clearly

more accurate than the first-order updating formula, there
is little reason to use it instead of theexactupdating formula,
because the second-order updating formula requires essen-
tially the same number of computations to be done at
each time step as the exact updating formula. The reason
the second-order OU updating formula is of interest is
that it shows us, by comparison, where the major shortcom-
ings of the simple first-order OU updating formula are. The
second-order OU updating formula thus serves as an instruc-
tive example to keep in mind when faced with the task
of simulating a continuous Markov process for which an
exact updating formula cannot be devised, but an improve-
ment on the first-order updating formula is nonetheless de-
sired.

One circumstance in which the restrictionDt!t required
by any finite-order approximate updating formula would
pose a problem arises in connection with the so-called zero-
t limit theorem @15#. That theorem asserts that ift→0 and

c→` in such a way thattc1/2[e stays constant, thenX will
approache3~Gaussian white noise!, andY will approach the
driftless Wiener process with diffusion constante2. The latter
process is denoted byWe , and it can be defined by the
Langevin equation

We~ t1dt!5We~ t !1e~dt!1/2N~ t !, ~5.1!

whereN(t) is as usual a temporally uncorrelated, statistically
independent, unit normal random variable. The first-order
updating formula for this process, namely,

We~ t1Dt !5We~ t !1e~Dt !1/2n, ~5.2!

is exactfor anyDt.0 @17#.
Figures 3–6 show the results of four simulations of the

OU processX and its integralY, which were made using the

FIG. 2. Errors that would have occurred in the trajectories of
Fig. 1 if the first-order updating formulas~1.9! or the second-order
updating formulas~4.3! had been used instead of the exact updating
formulas~3.5!. ~a! The error in the first-orderX simulation;~b! the
error in the second-orderX simulation; ~c! the error in the first-
orderY simulation; and~d! the error in the second-orderY simula-
tion. In each case, a simple average of the absolute values of the
errors is indicated.

FIG. 3. Results of a numerical simulation of the OU processX
and its time integralY made with the exact updating formulas~3.5!,
with t5c51, x05y050, andDt50.001. The dotted lines show the
theoretically predicted one-standard-deviation envelopes.

FIG. 4. As in Fig. 3, and constructed using the same random
number sequence, except thatt50.1 and c5100. Note that
tc1/251, as in Fig. 3.
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exactupdating formulas~3.5!, and which differ only in the
values assigned to the relaxation timet and the diffusion
constantc. As shown in the figures, each successive simula-
tion has a smaller value oft and a larger value ofc, but in
such a way thattc1/2 is always equal to 1. Each simulation
has the same initial conditionsx05y050 and the same time
stepDt50.001; furthermore, each simulation uses the same
set of unit normal random numbersni for the 6000 time steps
from t50 to t56. The dotted curves show, as before, the
theoretically predicted one-standard-deviation envelopes.

The X plots in Figs. 3–6 show how, in accordance with
the predictions of the zero-t limit theorem, the OU process
gradually evolves, ast→0, into the Gaussian white noise
processG(t), the temporally uncorrelated normal random
variable with mean 0 and variancè. And the companionY
plots show how, again in accordance with the predictions of
the zero-t limit theorem, the integral of the OU process
gradually evolves, ast→0, into the driftless Wiener process

with the diffusion constant 1. A simulation of the latter pro-
cess, made using the exact updating formula~5.2! with e51,
is shown in Fig. 7, along with its theoretically predicted
one-standard-deviation envelope. The point to be noticed
here is that theY trajectory in Fig. 6 and theW1 trajectory in
Fig. 7 are, for all practical purposes,statistically indistin-
guishable. Also noteworthy of course is the fact thatDt in
Fig. 6 is 100 times larger thant, a circumstance that poses
no problems for the exact updating formulas used in these
simulations.

Our main goal in this paper has been to derive and illus-
trate the exact numerical simulation formulas~3.5! for
the OU processX and its integralY, and that goal has
now been accomplished. But the last sequence of figures
has an interesting historical connection, and we would be
derelict if we did not pay some brief attention to that con-
nection.

In Einstein’s pioneering papers of 1905 and 1906 on
Brownian motion @18#, he used a ‘‘coarse-grained time’’
argument to infer that the position of a Brownian particle
should be, to a good approximation, a random variable
whose density function satisfies the elementary diffusion
equation. But the elementary diffusion equation is precisely
the forward Fokker-Planck equation for the driftless Wiener
processWe , which can also be defined through the Langevin
equation~5.1!. So what Einstein proved was that, in some
‘‘temporally coarse-grained’’ sense, the position of a Brown-
ian particle is a driftless Wiener process. A few years
after Einstein’s work, Langevin@1# presented another analy-
sis of Brownian motion, which was based somewhat more
cleanly on Newton’s second law. In modern terminology@9#,
Langevin’s analysis showed that thevelocityof a Brownian
particle should be an OU process, and hence that theposition
of a Brownian particle should be the time integral of an
OU process. The relationship between the two different
approaches to Brownian motion of Einstein and Langevin
can therefore be appreciatedgraphically by comparing
Figs. 6 and 7: Taking Einstein’s ‘‘coarse graining in time’’
to mean simply the condition that observations of the Brown-
ian particle are to be separated in time by an intervalDt that
is large compared to the relaxation timet of Langevin’s
analysis, we can see from theY trajectory in Fig. 6 and
theW1 trajectory in Fig. 7 that such course graining causes
the position of the Brownian particle in Langevin’s

FIG. 5. As in Fig. 4, except thatt51022 andc5104.

FIG. 6. As in Fig. 5, except thatt51025 and c51010. TheX
trajectory has now begun to resemble Gaussian white noise, in ac-
cordance with the predictions of the zero-t limit theorem.

FIG. 7. Results of an exact numerical simulation of the driftless
Wiener processW1, which is defined by the Langevin equation
~5.1! with e51, along with its theoretically predicted one-standard-
deviation envelope. The trajectory here is statistically indistinguish-
able from theY trajectory in Fig. 6, in accordance with the predic-
tions of the zero-t limit theorem.

2090 54DANIEL T. GILLESPIE



analysis to look just like the position of the Brownian
particle in Einstein’s analysis. It would certainly appear,
though, that themost generalmathematical representation of
the position of a Brownian particle is provided by the time
integral of an OU process, rather than by a driftless Wiener
process.
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