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Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral
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A numerical simulation algorithm that is exact for any time st&p>0 is derived for the Ornstein-
Uhlenbeck procesX(t) and its time integraly(t). The algorithm allows one to make efficient, unapproxi-
mated simulations of, for instance, the velocity and position components of a particle undergoing Brownian
motion, and the electric current and transported charge in a siRpleircuit, provided appropriate values are
assigned to the Ornstein-Uhlenbeck relaxation tinend diffusion constant. A simple Taylor expansion in
At of the exact simulation formulas shows how the first-order simulation formulas, which are implicit in the
Langevin equation fotX(t) and the defining equation for(t), are modified in second order. The exact
simulation algorithm is used here to illustrate the zedonit theorem.[S1063-651X96)10908-9

PACS numbgs): 02.70.Lg, 02.50.Ga, 02.60.Cb, 05.49.
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The Ornstein-UhlenbeclOU) process has a long history

in physics. Introduced in essence by Langeiihin his fa-  which is the forward Fokker-Planck equation for the OU
mous 1908 paper on Brownian motion, the process receivefrocess. The four equatiorts.1), (1.2), (1.3), and(1.5) are
a more thorough mathematical examination several decadgggically equivalent to each other; each provides a statisti-
later by Uhlenbeck and Ornstejig], ChandrasekhdB], and  cally complete description of the time evolution of the QU
Wang and Uhlenbeck4], and it is nowadays offered as a process.
fairly standard textbook topit5—9]. Using the notation and  The importance of the OU process in physics is owed to
nomenclature of Ref9], the OU process is understood here seyeral facts. First, it plays a central role in the mathematical
to be the univariate continuous Markov procedsthat  descriptions of Brownian motion and Johnson noise: Refer-
evolves with timet (a real variablgaccording to any one of ence[9] gives a tutorial review of the arguments that lead
the following equivalent versions of the OU Langevin equa-gne to conclude that any rectilinear velocity component of a
tion: Brownian particle of masm and diffusion coefficienD at

1 absolute temperatur€ can be regarded as an OU process

X(t+dt)=X(t)— = X(t)ydt+c¥2N(t)(dt)¥2 (1.1  With relaxation time and diffusion constant

2
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1
X(t+dt)=X(t)— — X(Ddt+ cdwt), (1.2
k being Boltzmann’'s constant, and also that the electrical
1 current in a simple wire loop of resistand® and self-
=X+ cr (). (1.3 inductancd. at absolute temperatufiecan be regarded as an
OU process with relaxation time and diffusion constant

dXx(t)
dt

In these equationss and ¢ are positive constants called,

respectively, theelaxation timeand thediffusion constant = E
dt is a “positive infinitesimal,” i.e., a real variable that is R’
restricted to the intervdl0,e] wheree is arbitrarily close to

zero;N(t) is a temporally uncorrelated normal random vari- Secondly, the OU process has lately been used by many
able with mean 0 and variance @\W(t) is a temporally ~investigators as a model of “colored noisgl0]; its station-
uncorrelated normal random variable with mean 0 and vari@'y autocovariance function, in contrast to that of the
ancedt; andI'(t) is “Gaussian white noise,” which may be &-correlated Gaussian white noise procégs), decays ex-
defined as thedt—0 limit of the temporally uncorrelated ponentially with characteristic time constantFinally, the
normal random variable with mean 0 and varianatt1The fluctuations in many continuous Markov processes about a
equivalence of Eqs(1.1)—(1.3) is a straightforward conse- “stable state,” at least those fluctuations sufficiently small

guence of the fact tha‘[(m,o-z)' the normal random variable that a |Oca||y linear apprOXimation to the drift function will
with meanm and variances?, satisfies be justified, can approximately be described as an OU pro-

cess centered on the stable state.
a+ BN(m,a?)=Ma+ Bm,B%c?). (1.9 The time integral of the OU process (or indeed of any
processX) is defined to be the procedsthat satisfies

2kTR
c= ?

1.7

The density functionP of the OU processX obeys the
partial differential equation Y(t+dt)=Y(t)+X(t)dt. (1.8
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Y is not itself a Markov process; howevet,andY together II. SOLVING FOR X(t) AND Y(t)

comprise a bivariate continuous Markov procgks|. In the We wish to find the solutions<(t) and Y(t) to the

Brownian motion problem of Eqg1.6) Y(t) would be the . ; :
corresponding position component of the Brownian particIeCOUpled time-evolution equatiors.1) and(1.8) for the sure

at timet, and in the Johnson noise problem of E{k.7) initial conditions
Y(t) would be the net charge transported past some fixed X(t) =X Y(ta)= 21
point on the wire loop by timé. (to) =X, ¥(to)=Yo. @

Construction of an algorithm for numerically simulating For the sake of brevity, we first take note of the well-known
the OU procesX and its integral¥ ultimately comes down  resylt, which can be derived from either the Langevin equa-
to finding valid “updating” formulas that allow one to cal- tjon (1.1) or the Fokker-Planck equatiofl.5) [4,6—9, that

culate, from any given values af andY at any timet, theX  for anyt>t, the OU procesX(t) will be the normalrandom
andY values at some later timet At. Approximateupdat-  yariable with mean and variance

ing formulas can be constructed simply by replacing the
positive infinitesimaldt in Egs.(1.1) and(1.8) with a posi- (X(t)y=xpe" "), 2.2
tive finite variableAt:

:C_T _ a2(t—tg)/r
X(t+At)~X(t)—%X(t)At+c1’2n(At)l’2, (1.93 vanX(v}= (1-e =em). 23

Next we recall the well known result in random variable
Y(t+AD~Y(t)+ X(D)At. (1.9 theory that, if the two normal random variablagm, ,o2)

2 . . .
In Eg.(1.99, n represents a sample value of the unit normalandN(mz’UZ) arestatistically independenthen

random variableN(t) =A/{0,1); such “unit normal random M o2)+ Mms . 02 = Mms+ M- o2+ o2): (2.4
numbers” can easily be generated on a comp[aar13. Mmy, o) FMmy, o) =N(my +mg, 01+ 03); (2.4
The shortcoming of the updating formulés9) for X and  ngeed, thenormality of the OU proces(t) is most easily
Y is that they will be accuratenlyif At is “suitably small.”  ggtaplished by repeatedly applying rui@sd) and(1.4) to the
However, the fact that the coupled time-evolution equationg gngevin equation(1.1) at the successive times t+dt
(1.1 _and(1.8) fqr X andY_are analytically solvable makes it t+2dt, etc. A result somewhat less well known th@) is
possible to derive updating formulas that @eactfor any  that the sum of any two statisticaltyependentiormal ran-
positive value ofAt. Although it might be argued that such gom variables is normal, although the means and variances
exact updating formulas are implicit in the analytical solu-then do not combine so simply as in the statistically indepen-
tion of the OU process, to the best of this writer's knowledgegent case of Eq(2.4) [16]. Using this more general rule in
those_ formulas have never been publish_ed. In yiew of _th%onjunction with Eq{(1.4), we can prove from Eq1.8) that
prominent role that the OU process plays in physics appllcaY(t) too is normal for allt>t,. The argument goes as fol-
tions of stochastic process theory, as recounted above, thjg,s: Using Eqs(1.8) and(2.1), we see tha¥ (t,+ dt) is the

omission deserves redressing. Not only should the exact URyre numbery,+x,dt=A{yo+X,dt,0). Then Eg. (1.9
dating formulas forX andY afford interesting and useful jyes

insights into the OU process and its integral, but they may

also suggest clues as to how we might improve simulation Y(to+2dt)=(yo+Xedt) + X(tpo+dt)dt.

algorithms for stochastic processes that are not analytically

solvable. Since X(tg+dt) is normal, it follows from Eq.(1.4) that
Actually, an exact updating formula fof by itself has  Y(ty+2dt) also must be normal. Then we have from Eq.

been published; it read44] (1.8,

1/2
C_T (l_ e*(Z/T)At) n.
2 (1.10 The two terms on the right are both normal random vari-

ables, although weannotclaim that they are statistically

It is easy to show that this formula reduces to the approxiindependent; nevertheless, by the general result just men-
mate formula1.99 wheneveAt<7, and that Eq(1.99 isin  tioned, we can infer that their suW(t,+ 3dt) must be nor-
fact a first-order-inAt approximation to Eq(1.10. In Secs. mal. Repeating this last argument foin Eqg. (1.8) replaced
Il 'and 11l we shall derive the companion exact updating for- successively by, + 3dt, t,+ 4dt, etc., and remembering that
mula for Y, which replaces the approximate updating for-dt can be arbitrarily close to zero, we conclude tidt)
mula (1.9b. In Sec. IV we shall expand the exa¥tandY must be normal foany t>t,.
updating formulas in powers akt, and thereby infer the Two normalrandom variables are completely specified by
second-order-inkt updating formulas, the “next step be- their means, variances, and covariance. For the normal ran-
yond” Egs.(1.9). We shall conclude in Sec. V by presenting dom variablesX(t) andY(t) being considered here, we al-
the results of some numerical simulations that not only testeady know the mean and varianceX(t) from Egs.(2.2)
the accuracies of the first- and second-order updating formwand (2.3); so, it remains only to find the mean and variance
las as a function oAt, but also verify thalX andY behave, of Y(t), and the covariance of(t) with Y(t). We can cal-
in the problematic limit—0 andc— with 7¢*?=1, in the  culate those three averages directly from Easl) and(1.8)
manner predicted by the zerdimit theorem[15]. by proceeding as follows.

Y(to+3dt)=Y(to+2dt) + X(to+ :
X(t4 AD = X(t)e- WAty (to+3dt)=Y(to+2dt) + X(to+2dt)dt
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To compute the mean &f(t), we first take the average of out the integration. Upon doing that and then using @),

Eq. (1.8). Then, subtractingY(t)) from both sides, dividing we find vafY?(t)}=(Y?(t))— (Y(t))? to be

through bydt, and lettingdt—0, we get

t
_~3
d(Y(t)) —(X()) = xge (0" vaf{Y(t)}=cr

to_ 2(1_ e—(t—to)/r)
T

dt
1 —2(t—tg)/7
where the second equality has invoked E2.2). As can +§(1—e - 28
easily be verified, the solution to this simple differential
equation for the required initial conditiofY (o))=Y, is Having shown that the OU proce&gt) and its time in-
o) tegral Y(t) are normal random variables with means given
(Y(1))=Yyo+Xor(1—e 10", (2.5 py Egs.(2.2 and (2.5), variances given by Eq€2.3) and

(2.9), and covariance given by E2.7), we now have a
complete and exact solution to the problem of the time evo-
lution of X(t) andY(t). In the next section we shall use this

To compute the covariance ¥{t) andY(t), we begin by
multiplying Egs.(1.1) and(1.8) together. That gives

1 information to construct a practicable set of exAttupdat-
X(t+dt)Y(t+dt)=X(t)Y(t)— = X()Y(t)dt ing formulas forX(t) andY(t).
+c2N() Y (1) (dt) Y2+ X2(t)dt lIl. EXACT UPDATING FORMULAS
+o(dt), For the updating formulas foX andY, we regardX(t)

andY(t) asgiven valuesand we seek the consequent values
whereo(dt) denotes terms of order1 in dt. We next av-  of the random variableX(t+ At) and Y(t+ At) for any At
erage this equation, taking note of the fact that since the-0. By simply replacingin the arguments and formulas of
zero-mean random variabM(t) is statistically independent the preceding section,
of Y(t) then{N(t)Y(t))=(N(t)}{Y(t))=0. Then, transpos-
ing the first term on the right side, dividing through by, (to,t)—(t,t+At),

and taking the limitdt—0, we get )
we may infer that that the “updates’X(t+At) and

d(X(t)Y(1)) 1 ) Y (t+ At) to the valuesX(t) andY(t) will be normalrandom
dt I (XOYD) +{X)). variables whose means, variances, and covariance are given
by
Since(X2(t))=var X(t)} +(X(t))? is known explicitly from -
Egs. (2.2 and (2.3), then this simple differential equation meaf X(t+At)}=X(t)e 2", (3.1a
can be straightforwardly solved foK(t)Y(t)) subject to the At
required initial condition(X(to) Y (to))=XoYo- The result is meadY(t+At)}=Y(t) +X(t)7(1—e =), (3.1b
found to be ) oAy
, vafX(t+At)}=ox=(cr/2)(1—e ), (3.10
c
(XY (D)= -+ (Xoyo+ Xr—cr?)e (707 At
vaY(t+At}=o¢=cr’ ——2(1-e %)
+ ?—xgr g 2t=to)l7, (2.6) 1
+5(1-e?, (3.1d
From this result and Eq$2.2) and(2.5), we readily compute
cov{ X (1), Y(t)}=(X(t) Y(t)) —(X(t)){Y(1)) to be COX(t+At),Y(t+At)}=kyy

=(cr?/2)(1—2e AT+ 2407),
(3.18

Next we turn to the following result in random variable
theory: If N; andN, are statistically independent unit normal
random variables, then the two random variabgsand X,

2
cT
co¥X(1),Y(t)}= - (1-2e (1074 g=2(t=to)/7),
(2.7

Finally, to compute the variance of(t), we first square
Eq. (1.8) and then average:

(Y2(t+dt)) =(Y2(1)) +2(X() Y(1))dt+o(dY). defined by
This implies thatd(Y?(t))/dt=2(X(t)Y(t)), and hence that Xy=my+o3Ny, (3.29
t K%Z 1/2 K1
<Y2(t)>:yg+2f (XA (E)dt’. Xo=mo+| 02— 2| Np+ 2N, (3.2
to o1 o,

So,(Y?(t)) can be computed simply by substituting into the will be normalwith respective means, andm,, respective
above integral the expression in Hg.6) and then carrying variancess? and o3, and covariancec;,. (This incidently
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implies, as mentioned earlier, that any twormal random

1/2
K
variables are completely defined by their means, variances, Y(t+At)=Y(t)+X(t)7(1—pu)+ 05— —X;—() N,

and covariancg. X
Since this result is not so widely known, we prove it here: Ky
We first use the definitio3.2g and Eq.(1.4) to write + o ny. (3.5b
X
X;=m;+ M0, =Mmy,0%); Equations(3.5) are theexact updating formulagor the

OU processX and its time integraV¥. In these formulasn,
this proves thak, is indeed normal with the claimed mean andn, are statistically independent unit normal random num-
and variance. Next, we use the definitié®2b) and Eqgs. bers[12], andu, oy, oy, andkyy are defined in terms of the

(1.4) and(2.4) to write time stepAt and the OU relaxation time and diffusion
constantc according to Egs(3.3) and(3.4). Notice that Eq.

, Kiz) 12 K1o (3.59 is identical to the earlier mentioned formuta 10, as

Xo=my+| 05— —| NO0,)+— N(0,D) expected.

71 71 For a succession of updates witigedtime stepAt, as

K2, K2, would occur in a typical simuIaFion run, the values,m_)fcrx,

=Mm,,| 03— —2-) +/\/( 0, —2-) oy, andkyy 0on the right-hand sides of formulé3.5) will all

01 01 remainconstant the only variables there whose values will

2o 2 change at each time step axét), Y(t), n,, andn,. As a
:% m,+0, gg_ _122+ _122) :N(mz,gg); consequence, a humerical simulationXofindY performed
o 03 on a computer using the exact updating formul8s5)
should proceed quite rapidly, and only slightly slower than a
this proves thak, is also normal with the claimed mean and simulation performed using the approximate updating formu-
variance. Finally, for the covariance &f; and X,, we have las(1.9) with the same time step sizkt.

COV X1, X} ={(X1— (X)) (Xa—(X5))) IV. SECOND-ORDER UPDATING FORMULAS
={(X;—my)(X,—m,)) We expect formulag3.5) to reduce to the approximate
o\ 1 formulas(1.9) when At is “suitably small.” To show that
_ N 2 Ku2 N K12 N this indeed happens, and to see what a second-ordgt-in-
=\ LoNa]} | o= g_i 2t N1 improvement on formulagl.9) would look like, we let

) K%z 12 ) At/ =a. 4.1
:Ul<02__2‘) (N1Ng)+ k1A NT). o .
o1 Then if At is small compared ta, we will have <1, and
we can approximate
SinceN, andN, are statistically independent, zero-mean ran- . s
dom variables, thefiN;N,)=(N;)(N,)=0. And sinceN, is w a® «
a unit normal, therq(l:l §>:1>. Té\e I;<st Iizle therefore reduces to p=e ‘~l-at+——-= (At<7). (4.2
simply «;,, and the covariance relation is established.
The result(3.2) allows us to express the two statistically It is then a simple matter of algebra to show from E@s4)
dependenhormalsX(t+ At) andY(t+ At) as linear combi- that, tothird order inq,
nations of two statisticalljndependentinit normals. Taking

account of the moment formuld8.1), and defining ok~cra(l—a+2a%/3),
,LLEe_At/T (33) U%”CTsa’g/\?),

~ 201 _
so that the last three of those moment formulas can be writ- xy cra’(1-a)l2.

ten as Upon substituting these approximations into the exact updat-
ing formulas(3.5), we find that those formulas become, to
o%=(c7/2)(1—u?), (3.48  secondorder inAt,

o= At r—2(1- )+ (U(1-pu?)], (B4  X(t+At)=X(t)+

- % X(t)At+c1’2nl(At)1’2K 1- %) :
Kxy=(cT?12) (1= p)?, (3.49 (4.39

At
the foregoing theorem evidently allows us to writét + At) Y(t+AD~Y(t) +X(t)At( 1- 2_T>
andY(t+At) as follows:

1
w2 = —12 312
X(t+At)=X(1) u+ oyy, (3.59 TCTZ (N +37TN)(AYTE (4.3
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Equations(4.3) are the second-order-iit updating for-
mulas for the Ornstein-Uhlenbeck proceésnd its integral
Y. If all terms of order>1 in At are dropped, Eq94.3
become identical to the first-order formulék9). Formulas
(4.3) evidently providedeterministiccorrections to formulas
(1.9 of order (At)? and stochasticcorrections of order
(At)3/2.

The stochastic correction term in the second-order
Y-updating formula4.3b) is particularly intriguing, involv-

ing as it does an admixture of ttsameunit normal random L _
numbern, that appears in th¥-updating formula4.33 and | T
a statistically independentinit normal random number,. 0 V

Notice that, by appealing to ruldg&.4) and (2.4), we could
have written the linear combination of;, and n, in Eg.
(4.3b as .10

0 10 20 30 40 50 60
31/2 1 1 time ¢
> (ny+37"n,) = 3" (7 ni+s n2) =zmn’,
(4.4) FIG. 1. Results of a numerical simulation of the Ornstein-
' Uhlenbeck procesX and its time integral¥ made with the exact

where n’ is also a unit normal random number. But of updating formulas(3.5), with 7=c=1, xo=y,=0, andAt=0.01.
course,n’ as thus definedannotbe considered to be statis- The dotted lines show the theoretically predicted one-standard-
tically independent of the unit normal random numhbgiin ~ deviation envelopes.

Eq. (4.39.

compared to one, then both the first-and second-order updat-
V. ILLUSTRATIVE SIMULATIONS AND CONCLUSIONS ing formulas ought to work reasonably well here. To test that
expectation, the foregoing exact simulation was iumpar-

. allel with a first-order simulation and a second-order simu-
the second-order updating formul@s3), or the exact updat- |54i0n " with the second-order updating formul@s3) using

ing formulas(3.5), the p_roc_edure for.nume_rlcally simulating he same n and n, values as used by the exact updating
the OU proces and its integralY is basically the same. formylas, and the first-order updating formulés9) using
One first specifies values for the OU relaxation timend  —p_ . The resultant first-order and second-order trajectories
diffusion constant, the initial process value¥(0)=x, and  \ere found to track the exact trajectories very closely; in-
Y(0)=yo, the time stepAt, a stopping timetg,,, and a deed, on the scale of the plots in Fig. 1, the first-order and
starting seed for the unit-interval uniform random numbersecond-ordefX and Y trajectories were virtually indistin-
generator. One next seXs=x,, Y=Y,, andt=0, and for the  guishable from the exact trajectories. Figuf@)Zhows the
sake of efficiency precomputes the values of those combinalifferencebetween the first-order and the exattvalue at
tions of 7, ¢, andAt appearing in the updating formulas that each time step, and Fig(l? shows the difference between
will not change throughout the simulation. One then repeatthe second-order and the exacvalue at each time steg. The
edly applies the chosen set of updating formulas to computegverage absolute discrepanayas found to be 2X107° in
from the values ofX and Y at timet, their values at time the first-orderX data, and 8.%107° in the second-ordeX

t+ At, updating all variables and recording their values fordata. Figures @) and 2d) show the analogous discrepancies
later use, and finally stopping when the variableeaches N the flrst—(_)rder and second—ord‘ezgrtrajectorlles, for which
tsop- Each application of the updating procedure require§he respectlvggaverage absgléjte discrepancies were computed
two unit normal random numbergor just one in the case of 0 bé 8.4<10 ~ and 1.X10 . So, even though both ap-

the first-order formulas and these are computed as neededProximate trajectories are quite accurate in this case, the er-
from a set of unituniform random numbers in a straightfor- '0rS in the first-order trajectories are over 2 orders of mag-
ward way[12] nitude larger than the errors in the second-order trajectories.

- . . . A simulation run withAt/7=0.001 showed, as expected,
ex;?tljpr)?jaltirfgc;gvrsmmg Jg?lﬁitﬁfiiw_ﬂf If;l(tlo_nyru_nousallrrlg theeven smaller errors: the average absolute first- and second-
' TET AT YO M i i i
At=0.01. The dotted lines in each plot show the appropriat order X discrepancies for 6000 time steps were found to be

Hard-deviat I I 8 .6x107* and 6.7 1078, respectively, and the average ab-
one-standard-deviation ~ envelope,  namely,(X(t))  gp|yte first- and second-ord¥rdiscrepancies were found to
+sdeyX(t)} in the upper plot as computed from E8.2)  pe 3.4¢1074 and 8.2<10°8. But of course, things get worse

and(2.3), and(Y(t)) *sdeyY(t)} in the lower plot as com-  for |arger values of\t/r. As At/ is increased from 0.1 to 1,
puted from Eqs(2.5) and(2.8). The jagged curves are com- the average absolute first-ordXr discrepancy rises from
posed of unconnected dots that give the values of the pr@.022 to 0.35, while the average absolute second-oxder
cesses at each time step; each trajectory here is thufiscrepancy rises from 0.000 93 to 0.13; and the average
composed of 6000 dots. Sinegt) andY(t) are both nor- absolute first-ordety discrepancy rises from 0.26 to 7.9,
mal, then we expect that, in the lintit>e, their trajectories while the average absolute second-ordetiscrepancy rises
should be inside the one-standard-deviation envelopes abofrbm 0.002 to 0.67. Ad\t/ris increased above 1, both of the
68% of the time. approximate updating formulas rapidly become very inaccu-
Since for this simulatiom\t/7=0.01, which is “small”  rate; e.g., forAt/7=2, the average absolute first-ordédis-

Whether one uses the first-order updating formufas),
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(b) ]
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ti t
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0.02-] L
S o011 o M A “,5 \,,«A M‘“ u; a FIG. 3. Results of a numerical simulation of the OU proc¥ss
PN O'OO_W% :"ﬁ' A %’Su,s: ¥ and its time integra¥’ made with the exact updating formulé5),
= -0.014 i "«/ L with 7=c=1, Xo=Y=0, andAt=0.001. The dotted lines show the
-0.02 avg. abs. error = 8.4x10° - theoretically predicted one-standard-deviation envelopes.
-0.03 T T . . .
0 10 20 30 40 50 60
time ¢ . P .
0.0002 . . . . ‘ c— in such a way thatc?=¢ stays constant, thex will

@ approachex (Gaussian white noigeandY will approach the
driftless Wiener process with diffusion constaftThe latter
process is denoted bW, and it can be defined by the
Langevin equation

avg. abs. error = 1.1x107
-0.0002 . : , . .

o 1 20 1 0 < A W, (t+dt)=W_(t)+ e(dt)Y°N(t), (5.1

time ¢

whereN(t) is as usual a temporally uncorrelated, statistically

FIG. 2. Errors that would have occurred in the trajectories ofindependent, unit normal random variable. The first-order
Fig. 1 if the first-order updating formuld4.9) or the second-order updating formula for this process, namely,
updating formulag4.3) had been used instead of the exact updating
formulas(3.5). (a) The error in the first-ordeX simulation;(b) the W, (t+At)=W.(t)+ 6(At)l/2n (5.2)
error in the second-ordeX simulation; (c) the error in the first- € € '
orderY simulation; andd) the error in the second-ord¥rsimula-
tion. In each case, a simple average of the absolute values of th
errors is indicated.

g exactfor any At>0 [17].
Figures 3—6 show the results of four simulations of the
OU proces and its integraly, which were made using the

crepancy over 6000 time steps was found to be 91. s

Although the second-order updating formula is clearly 1 ‘ =107, c=10°
more accurate than the first-order updating formula, there j ; ;
is little reason to use it instead of te&actupdating formula,
because the second-order updating formula requires essen-
tially the same number of computations to be done at
each time step as the exact updating formula. The reason
the second-order OU updating formula is of interest is
that it shows us, by comparison, where the major shortcom-
ings of the simple first-order OU updating formula are. The
second-order OU updating formula thus serves as an instruc-
tive example to keep in mind when faced with the task
of simulating a continuous Markov process for which an
exact updating formula cannot be devised, but an improve- 4] L
ment on the first-order updating formula is nonetheless de- - : x . -
sired. 0 time ¢

One circumstance in which the restrictidri<<r required
by any finite-order approximate updating formula would FIG. 4. As in Fig. 3, and constructed using the same random
pose a problem arises in connection with the so-called zerarumber sequence, except that0.1 and c=100. Note that
7 limit theorem[15]. That theorem asserts that4#-0 and  7c'?=1, as in Fig. 3.
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t=102, ¢=10*

Y(£)

FIG. 5. As in Fig. 4, except that=10"2 andc=10"

exactupdating formulag3.5), and which differ only in the
values assigned to the relaxation timeand the diffusion
constantc. As shown in the figures, each successive simula
tion has a smaller value af and a larger value aof, but in
such a way thatc'? is always equal to 1. Each simulation
has the same initial conditiong=y,=0 and the same time

ILLESPIE

m)

FIG. 7. Results of an exact numerical simulation of the driftless
Wiener procesdV,, which is defined by the Langevin equation
(5.2) with e=1, along with its theoretically predicted one-standard-
deviation envelope. The trajectory here is statistically indistinguish-
able from theY trajectory in Fig. 6, in accordance with the predic-
tions of the zeror limit theorem.

with the diffusion constant 1. A simulation of the latter pro-
cess, made using the exact updating forn{6la) with e=1,

is shown in Fig. 7, along with its theoretically predicted
one-standard-deviation envelope. The point to be noticed
here is that thé& trajectory in Fig. 6 and th&V, trajectory in
Fig. 7 are, for all practical purposestatistically indistin-
guishable Also noteworthy of course is the fact that in

Fig. 6 is 100 times larger than a circumstance that poses
no problems for the exact updating formulas used in these

stepAt=0.001; furthermore, each simulation uses the sam&imulations.

set of unit normal random numbenmsfor the 6000 time steps

Our main goal in this paper has been to derive and illus-

from t=0 to t=6. The dotted curves show, as before, thetrate the exact numerical simulation formul#8.5 for

theoretically predicted one-standard-deviation envelopes.
The X plots in Figs. 3—6 show how, in accordance with
the predictions of the zeredimit theorem, the OU process
gradually evolves, as—0, into the Gaussian white noise
processI'(t), the temporally uncorrelated normal random
variable with mean 0 and varianee And the companioty
plots show how, again in accordance with the predictions o
the zeros limit theorem, the integral of the OU process
gradually evolves, as—0, into the driftless Wiener process

3
time ¢

FIG. 6. As in Fig. 5, except that=10"> and c=10'". The X

the OU processX and its integralY, and that goal has
now been accomplished. But the last sequence of figures
has an interesting historical connection, and we would be
derelict if we did not pay some brief attention to that con-
nection.

In Einstein’s pioneering papers of 1905 and 1906 on
]Brownian motion[18], he used a “coarse-grained time”
argument to infer that the position of a Brownian particle
should be, to a good approximation, a random variable
whose density function satisfies the elementary diffusion
equation. But the elementary diffusion equation is precisely
the forward Fokker-Planck equation for the driftless Wiener
processV,, which can also be defined through the Langevin
equation(5.1). So what Einstein proved was that, in some
“temporally coarse-grained” sense, the position of a Brown-
ian particle is a driftless Wiener process. A few years
after Einstein’s work, LangevifiL] presented another analy-
sis of Brownian motion, which was based somewhat more
cleanly on Newton'’s second law. In modern terminol¢8y;
Langevin’s analysis showed that tkelocity of a Brownian
particle should be an OU process, and hence thgbdiséion
of a Brownian particle should be the time integral of an
OU process. The relationship between the two different
approaches to Brownian motion of Einstein and Langevin
can therefore be appreciategraphically by comparing
Figs. 6 and 7: Taking Einstein’s “coarse graining in time”
to mean simply the condition that observations of the Brown-
ian particle are to be separated in time by an inteAathat
is large compared to the relaxation time of Langevin’'s
analysis, we can see from thé trajectory in Fig. 6 and

trajectory has now begun to resemble Gaussian white noise, in athe W, trajectory in Fig. 7 that such course graining causes

cordance with the predictions of the zerdimit theorem.

the position of the Brownian particle in Langevin's
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analysis to look just like the position of the Brownian
particle in Einstein’s analysis. It would certainly appear,
though, that thenost generamathematical representation of
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