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Reduction of a wave packet in quantum Brownian motion

W. G. Unruh
Canadian Institute for Advanced Research, Cosmology Program, Department ofPhysics, University of British Columbia,

Vancouver, British Columbia, Canada V6T 18'5

W. H. Zurek
Theoretical Astrophysics, Los Alamos 1Vational Laboratory, Los Alamos, Rem Mexico 87545

(Received 9 December 1988)

The effect of the environment on a quantum system is studied on an exactly solvable model: a
harmonic oscillator interacting with a one-dimensional massless scalar field. We show that in an
open quantum system, dissipation can cause decorrelation on a time scale significantly shorter than
the relaxation time which characterizes the approach of the system to thermodynamic equilibrium.
In particular, we demonstrate that the density matrix decays rapidly toward a mixture of "approxi-
mate eigenstates" of the "pointer observable, " which commutes with the system-environment in-
teraction Hamiltonian. This observable can be regarded as continuously, if inaccurately, monitored
by the scalar field environment. Both because in a harmonic oscillator the state of the system ro-
tates in the phase space and because the effective environment "measurement" is weak, the system,
on the short "collision" time scale (1/I"), maintains a coherence in this pointer observable on time
scales of order [y/Bin(1 /0)]'~ and on longer time scales settles into a mixture of coherent states
with a dispersion approximately consistent with the vacuum state. The master equation satisfied by
the exact solution differs from the other master equations derived both for the high-temperature
limit and for T =0. We discuss these differences and study the transition region between the high-
and low-temperature regimes. We also consider the behavior of the system in the short-time "tran-
sient" regime. For T =0, we find that, in the long-time limit, the system behaves as if it were sub-

ject to "1!fnoise. " The generality of our model is considered and its predictions are compared
with previous treatments of related problems. Some of the possible applications of the results to ex-
perimentally realizable situations are outlined. The significance of the environment-induced reduc-
tion of the wave packet for cosmological models is also briefiy considered.

I. INTRODUCTION

The purpose of this paper is to discuss one of the few
exactly solvable problems in the quantum theory of open
systems. We shall consider a linear system —a harmonic
oscillator, a free particle, and an "upside-down" harmon-
ic oscillator interacting with a simple model of a quan-
tum thermal reservoir. As is the case with all such "clas-
sic" problems, this one had been treated quite a few years
ago through a variety of approaches. ' Reviews of
these early discussions are also available.

The recent resurgence of interest in this as well as oth-
er related issues was motivated in part by the realization
that many of the experimentally accessible systems fall in
the category of "open" quantum systems. " ' More-
over, recent experimental observations of "macroscopic"
quantum systems give urgency to a better understanding
of such open quantum systems.

The other motivation has to do with the revival of in-
terest in the problem of quantum measurement. Calcula-
tions of simple quantum systems have already demon-
strated that their interaction with the environment may
"bring out" classical features at the expense of quantum
correlations. ' We shall investigate the extent to
which the "openness" of macroscopic objects may serve
as an explanation of their classical behavior.

The plan of this paper is as follows. In the next section
we describe our model —a quantum harmonic oscillator
interacting with a scalar field —and give the exact solu-
tion for time evolution of its density matrix. In addition
we introduce a new representation of the density func-
tion, the "(k,b, )" representation (actually double Fourier
transform of the usual Wigner-function representation).
In this representation the master equation has a very sim-
ple first-order form and the Green's function is a simple
algebraic expression, unlike in other representations of
the density matrix. After a brief discussion of its proper-
ties we proceed, in Sec. III, to obtain a nonstationary
master equation (ME) satisfied by the density matrix of
Sec. II, which in the Wigner representation has a
Fokker-Planck form. This ME differs from the usual
high- and low-temperature limits. Additional terms
make it more accurate both in the short-time transient re-
gime and in the transition range where neither a high-
nor very-low-temperature approximation can be justified.

Section IV is devoted to the discussion of this master
equation. In particular, we obtain the closed-form ex-
pression for its coefficients in the high-temperature as
well as in the T=O case. Section V illustrates behavior of
the "open" harmonic oscillator under a variety of as-
sumptions. In particular, we use there entropy of the sys-
tem to quantify the extent of decoherence in the course of
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the system-environment interaction. Section VI consid-
ers the significance of our results for the issues of quan-
tum theory of measurement and for the transition be-
tween quantum and classical behaviors. We also com-
ment brieAy there on the quantum-classical transition in
the cosmological context.

The second part of the following section as well as
much of Sec. III are somewhat more technical, and, con-
sequently, more difficult to follow than the remainder of
the paper. Some readers may find it easier to scan
through on this part of the paper on the first reading, and
return to it after going through Secs. IV, V, and VI.

II. THE MODEL

There are two largely equivalent ways to model a quan-
tum "heat bath. " The first one is to consider a reservoir
composed of a large ensemble of noninteracting quantum
systems such as harmonic oscillators. ' ' The second is
to use a free field y (Refs. 21 and 22). In our treatment
we shall take advantage of this latter possibility. The
complete system under consideration consists therefore of
a single "particle" described by its coordinate q and a
heat bath modeled by the field y.

The Lagrangian action for the system will be taken to

while the field y obeys

ij B—„rp=eq5(x) . (2.2b)

Above, Qo is the frequency of the undamped harmonic
oscillator.

The scalar field y interacts with the harmonic oscilla-
tor at x =0 in the space in which the scalar field travels.
It is important to note that by writing 5(x) rather than
5(x —q) in Eq. (2.1), we distinguish between the space q
of the harmonic-oscillator coordinate and the space x in
which the field y propagates. Coordinate q (or, alterna-
tively, coordinate x) may be regarded as characterizing a
distinct "internal" space. For instance, one could regard
Eqs. (2.1) and (2.2) as modeling the internal degree of
freedom q of a particle permanently located at x =0 in
physical space.

The constant e characterizes the strength of coupling
between the field and the system. The mass m can be in-
corporated into the definition of e and q through the
change 'of variables e'=e/&m, q'=qV m. We shall as-
sume below that this simplifying substitution was
introduced —e.g., we shall set m =1—but we shall not
carry cumbersome primes to indicate this in our notation.

Equation (2.2b) is solved by

be
2

y=yo+(e/2)[q (t —x)e(x)+q (r +x)B(—x)] . (2.3)

1
c 2

2
Bg
x

+5(x)(q Qoq eqp) —dt dx —. . (2.1)

is a positive-definite quantity.
In the Heisenberg picture, the evolution of the har-

monic oscillator is generated by

The time derivative coupling between the field and the os-
cillator is taken in order to ensure simple damping behav-
ior for the oscillator in the coupled system. In addition
this form of the coupling ensures that "runaway" solu-
tions do not exist since the energy

E=I . —j + .dx+(q +Qoq )
1 . 2 Bcp

2 ax

Here yo is the "unperturbed" solution of Eq. (2.2b). The
term in square brackets shows that the effect of the per-
turbation is restricted to the "light cone, " t ~ ~x~. This
solution can now be substituted to Eq. (2.2a). One ob-
tains

q+(e /2)q+Qoq = —ejro . (2.4)

It is the assumption of retarded interaction in Eq. (2.3)
which leads to the damping term e /2 rather than to the
"antidamping" with the opposite sign. Equation (2.4) can
be regarded as a generalized Langevin equation for the
coordinate q. In the usual Langevi. n equation the Auc-
tuating force on the right-hand side would have the time
dependence of the white noise: (yo(t)y~(0))-5(t). In
the case considered here this will be true only in the
high-temperature limit, when

( j)0(&)yo(0) ) =(kT/2)5(&),

m(q+Qoq)= —ey (2.2a)
where terms independent of T have been neglected.

Equation (2.4) is solved by

q=[qocosQt+(po+yqo)sinter/O]e r' —(e/fl) I [sinfl(t —t')e ~" ' 'j&0(t')]dr',
0

(2.5)

where the damping coefficient y equals

(2.6)

and the angular frequency of the damped harmonic oscil-
lator is

p =q = IpocosQt —[(y/fl)(po+yqo)+Qqo]sinAt ) e

I [sinQ(t —r')e r" ' ' j&0(t')]dt' .
Qdt o

(2.8)

n=Qn,' y' . — (2.7)

The momentum of the oscillator particle (m = 1) is then

The harmonic oscillator is underdamped when 0, , defined
in Eq. (2.7), is real. The case of imaginary Q corresponds
to the overdamped harmonic oscillator as long as Qo is
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real. For a free particle we have 0=i y or 00=0. Imagi-
nary Q0, or equivalently 0 & —y, corresponds to the
particle moving in an "upside down" unstable harmonic-
oscillator potential. Equations (2.5) and (2.8) can be
readily adopted to all the cases when 0 is imaginary
through the substitution iQ~Q and the usual formulas
relating trigonometric and hyperbolic functions (sinhQ

i—sini Q, coshQ =cosi Q ).
Note that for this linear system the above set of equa-

tions applies equally well to classical and quantum sys-
tems. From now on we shall often have to regard q, p,
and y as operators. This will be indicated by the use of
capital Q and P in equations where the operator nature of
position and momentum is essential. The state of the
complete system, oscillator plus Geld, is in general de-
scribed by a density matrix poF. Our attention will, how-
ever, focus on the harmonic oscillator. Therefore, we
shall be interested only in the evolution of the reduced os-
cillator density matrix p:

p(q —-'~, q+ ' ~)=Tra(Q q)e'—""pe'"'" (2.1 1)

by means of the shift operator e' . Using Eqs. (2.10)
and (2.11), as well as the commutation relation [P,Q]= —i, one obtains

sition representation, p(q, q'), but, rather, in a new
"(k, b, )" representation:

p(k, A)= f e'"~ p(q' —6/2, q'+b, /2)dq' . (2.10)

Here, 6 measures the distance from the diagonal in the
position representation while k is the wave number in the
direction parallel to the diagonal. Note that this is just
the double Fourier transform of the usual Wigner func-
tion:

W(p, q)=(2m) ' fp(q b/2—, q+6/2)e'~ db, .

The density matrix operator in Eq. (2.10) can now be ex-
pressed as

P =Po FPoF (2-9) (k g) —Trei(kg+6P} (2.12)

where the trace is taken over the degrees of freedom of
the field.

%'e have discovered that the calculations become more
tractable when the density matrix p is given not in the po-

I

%'e are working in the Heisenberg representation. There-
fore, p remains constant while P, Q are functions of time
given by Eqs. (2.5) and (2.8). We can therefore write a
more explicit form of Eq. (2.12):

y+0 Po+yQo .
p(k, b, ) =Tr p expi b, PocosQt —' ~PosinQt — QosinQt e r'+ k QocosQt + sinQt e

T T

XTrF pFexp i 6 —+k —f sin[Q(t t')]e —r" "jpo(t')dt' (2.13)

Here p =po and pF are initial density matrices of the system and of the field. %'e have assumed that they are not
correlated at t =0, that is, initially we have

0 0 0
PoF PPF .

Indeed, if this assumption is satisfied one can write, at any time,

p(k, 6)=p'(k (t), b(t))E(k, b, ;t),
where

(2.14a)

E(k, b, ;t)=TrF pFexp i b, +k ——f sin[Q(t t')]e r" '—'jpo(t')dt' (2.14b)

and

h(t) = [6[cosQt —(y/Q)sinQt ]+k Q 'sinQt ]exp( yt ), —

k(t)=[k[cosQt+(y/Q)sinQt] —b(y +Q )Q 'sinQt]exp( yt) . —

It is the great simplicity of this result for the time development of the reduced density matrix in this (k, b, ) representa-
tion which makes it convenient. The Green's function for the density matrix is just

G (k', b, ', k, b„t ) =5(k' —k (t) )5(b, ' —b (t) )E (k', b, ', t ) .

In other representations the Careen's function is a very complicated and singular function.
The first term in Eq. (2.14a) is evaluated already in Eq. (2.13). Obtaining the second term in a more explicit form is

cumbersome. Here we provide only the resulting formula:
2

E(k, b, ;t)=exp ——— f ~kz (t)+bz (t)~ coth dred .1 e CO

Q 0 2
(2.15)
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calculated under the assumption that the field is in ther-
modynamic equilibrium at the temperature T=p '. The
time- and frequency-dependent function z (t) in Eq.
(2.15) is given by

e —e
—i ut i(Q —y )/t

z (t)=
y —EA Lco

e —e
—isn't —i(O+y)t

y+l0 Ico
(2.16)

The cutoff' I" in Eq. (2.15) is introduced to regularize cer-
tain logarithmic divergences. It is somewhat easier to ex-
press the results of the calculations in terms of elementa-
ry functions when the cutoff 1 is "abrupt, " as in Eq.
(2.15). However, a sharp cutoff' introduces oscillations
with characteristic frequency 1" into the solutions. To get

I
rid of this unphysical feature we shall replace den with

oo ~ 0
an exponential cutoft' e "dao in the calculations il-

0
lustrating the behavior of the system in Secs. IV and V.
Explicit evaluation of the integrals in Eq. (2.15) is
straightforward, but cumbersome. Here we consider only
the case of T=O, and only for times t))I '. The loga-
rithmic dependences on the cutoff, which we shall some-

Equation (2.15) can now be written as

E(t)=TrF I

2

=exp ——— (Ak +2Bkh+Cb, )
1

Q
(2.18)

This Gaussian form will simplify transformation to repre-
sentations other than (k, b, ).

In the limit of p~ ~ (cothpco/2~1) and for real II we
get

times refer to as the logarithmic divergence, that appear
in this situation are symptomatic of the generic behavior.

To simplify notation we introduce
r

A (t) =I iz„(t) cath(pc@/2)de, (2.17a)
0

B(t)= I iz (t)z„(t)~coth(pcs/2)co de= A, (2.17b)
rC(t)= J iz (t)~ coth(pro/2)codco . (2.17c)

0

A (r) 4 e
—2ytsin2IIr(II2+ 2)2 2IIe

—yt
2sinQt co singlet m cosset

0 ~4+ 2(7, 2 Q2)~2+ (+2+ F2)2

+[(ysinIIt+Qcosflt) e ~'+0 ]I z z zdco
co +2(y —0 )co +(0 +y )

(2.19)

In the limit of very short times, t (I",the first two integrals are both logarithmically divergent. We shall leave closer
inspection of this "transient" regime for Sec. IV. In the regime of intermediate times t ))I ' the dominant term in the
expression for A (t) is

A (t) =4e ~ sin Qt —In + arctan +—
2 ~2+ y2 4Ay 2Ay 2

For very long times the last term of Eq. (2.19) becomes dominant:

(2.20)

A ( ~ ) =—arctan
0 —y

20y 2
(2.21)

Similar discussion of the "mixed term" 8 gives for the intermediate times

1 I 0 —y Q2 2
B (r) =4e ~'(0 cosset sinter —

y sin Qt ) —ln + arctan +—
2 02+ y2 4ny 20y 2

For very long times

B(oo)=0 .

(2.22)

(2.23)

The last term becomes

C (t) =4[0 + (y sinAt —0 cosset ) e ~ ] —ln + arctan — +—2 1 I 0 —y Q —y
2 ~2+ y2 40y 2Qy 2

(2.24)

in the intermediate times, and tends to

j p2
C( oo ) =40 —ln

2 @2+y2

+ — arctan
40y 2Qy 2

(2.25)

when t~ ~.
It is interesting to note the difference between the be-

havior of the diagonal and off-diagonal (e.g. , governed by
—k2 and —b, terms) elements of the density matrix in
the position representation. Logarithmically divergent
terms are present in all of the coefFicients 3, B, and C in
the intermediate times. However, they enter into 3 and
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8 multiplied by either sinQt or sin Qt. Hence, the effect
of the logarithmic divergence sets in on a dynamical time
scale 0 '. By contrast, logarithmic divergence enters
into C(t) almost instantly, on a very much shorter "col-
lision" time scale of I '. By the similar token, the
spread of the wave packet in the spatial direction is given
by Eq. (2.21), and contains no logarithmic divergences
while the spread of the wave packet in 6 is small for
t ~~, as it is inversely proportional to the logarithmical-
ly divergent quantity &C( ~ ).

These preliminary results contain trends which will be
confirmed by more detailed case-by-case discussion in
Secs. IV and V. They show that off-diagonal elements of
the density matrix expressed in the preferred "pointer
basis" are damped much faster than the elements on the
diagonal.

III. DERIVATION OF THE MASTER EQUATION

The equation which generates time evolution of the
density matrix,

(3.1)

is known as a master equation. Above, L is an evolution
operator which takes into account both the self-
Hamiltonian of the system and its interaction with the
environment. Consequently, L is typically non-
Hermitian. The goal of this section is to derive and dis-
cuss the master equation which governs the evolution of
a harmonic oscillator, a free particle, or an "upside
down" harmonic oscillator in the heat bath, Eqs. (2.1)
and (2.2). This may appear to be an unnecessary exercise.
After all, we have already obtained in the preceding sec-
tion a general solution of this problem.

In spite of that, the master equation is, in a sense,
worth more than a solution. To begin with, it can be
written more compactly than the solution. This com-
pactness often allows one to notice physically interesting
features which would remain hidden in the intricacies of
the solution. More importantly, it is easier to compare
results of our approach with the other discussions of the
same problem as the usual goal in the treatment of open
systems is the derivation of the appropriate master equa-
tion. Finally, in this case it is easier to numerically in-
tegrate the master equation than to evaluate the solution.

To obtain the expression for the operator L we must
calculate the time derivative of the time-dependent densi-
ty matrix p(k, b, ), Eq. (2.13):

p(k, b, )

p(k, b, )
(3.2)

The density matrix p(k, b, ) has the form
p =Trp e ' ~ '. To evaluate its time derivative, we
need the formula

3 (t)
ekA

(t) ge(1 —A. ) A (t)dg
dt 0

(3.3)

Moreover, using Q =P and employing Eq. (2.4) to evalu-
ate P =Q we arrive at

Above 3 is an operator which depends on a parameter t.
We leave the proof of Eq. (3.3) to the reader.

The time derivative of the density matrix is then given
by

~ —T 0f ik(kg+i)P)[ ~

(kg +gP )] i (1—k)(kg+AP)dg
0

(3.4)

0f eik(kg+AP)& [kp +iI) ( II2Q &2P/2 ~ )]el(1—k)(kg+EP)dg

We can now employ Eq. (3.3) again (this time in the 'reverse" direction) to obtain

(3.5)

(k g)

)ate

Tr 0 eik(kg+hP) ~ ei(1 —k)(kg+i)P)dg (3.6)

We still have to obtain a more explicit form of the second part of the second part of the above expression:

D(r) g T ik(kg+aP) ~ i(1 —k)(kg+i)P)dgrpo e
0

0'o~

before we will have a useful master equation. To this end we calculate

kQ +bP =k [QocosOt+ (P() + ygo)sinQt]e r'+ Et PocosQt
—[(y/Q)(PO+yQO)+ Ago]sinQt j e

(Ad/dt+k) (e/0) f—sinA(t —t')e ~" ' 'ipodt'

(3.7)

(3.8)

Let us denote the first, y-independent part of the above expression by S(k, h, po, go). Then D(t) can be written as a
product:

iS(, k, b, 'Po'Qo) 0D(t)= ib, e(Trp e ' ' ' ' )T—rpp f d&
0

X exp —iA(k+i(d/dt) (e/II) f sinQ(t —t')e ~" "(po(t')dt'
0

X exp —i (1—A. )(k +Ad/dt) (e/II) f si A(nt —t')e r" "yo(t')dt'
0

(3.9)
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Now the density matrix p(k, b, ) is given by Eq. (2.13):

0 tS(k, a, ~, , g, )
p(k, b. )=Trp e

' ' ' ' Tr. pFexp i—(k+bdldt) (e/Q) f sinQ(t t—')e r" ' 'yo(t')dt' (3.10)

Above, as in Sec. II, we have again assumed that the density matrices p:—p& and p+ are initially uncorrelated.
Now it follows that D (t), Eq. (3.9), can be written as

D(t)= i b—ep(k, b. ) i l—n TrpFexp i (k+bdldt) (—elQ) f sinQ(t —t')e r" ' 'yo(t')dt']+ago(t)

To proceed further we use the formula

TrpFexp(tOyo) ex—p[ 2Trp—F(—Opp) ]

valid for an arbitrary linear operator 0 and Gaussian density matrix p~. In our case

a=0

(3.1 1)

(3.12)

Oyo= —(k+bd ldt) (e/Q) f sinQ(t t')e—r" "yo(t')dt' +ago(t) (3.13)

and we will always take the field to be in either a thermal or vacuum state, either of which have Gaussian pz.
We can now evaluate the derivative 8/Ba in Eq. (3.11) and arrive, after a few additional manipulations, at the ex-

pression

D(t)=( be l2)p(k—, b, ) (k —yb, )f (sinQr/Q)e r'( j& (ot)y (0t')+jr (0t')p (0t))dt'

+b.f cosQre "(jo (t)jv (t')+y (t')y (t))dt'
0

(3.14)

where ~= t —t'. Moreover, the correlation function of the quantum noise is given by
r

( j&0(t)jpo(t')+go(t')yo(t)) =2m. f cocoth(pro/2)cos(toe)de . (3.15)
0

In the above, we have assumed that the incoming field, yo is in a thermal state at a temperature given by T=p
Therefore, D (t) can now be explicitly evaluated:

T

k —yQ rD(t)=( be )p(k, b, )
— f f coscorsinQre r'dr cocoth(pro/2)dto

Qm o o

r+—f f coster cosQre ~'dr co coth(pro/2)dao
0 0

(3.16)

We can now finally write down the master equation in the (k, b, ) representation:

—Q,'g —2) b, +4) b, 'h(t, l-,p) 4yb, kf(r, l,p—) p .
Bk

(3.17)

Above we have used the notation

If (t, I,p) = f f coscor sinQre r'dr cocoth(pto/2)dao,
Am o . o

r
g (t, l,p) =—f f cosset cosQre ~ dr co coth(pc@/2)dao,

0 . 0

h(t, I,P)=g yf . —

(3.18a)

(3.18b)

(3.18c)

These time-dependent functions determine the evolution
of the density matrix and will be discussed below. How-
ever, in order to appreciate their physical signi6cance it is
useful to rewrite the master equation in the more familiar
position representation, and in the Wigner representa-
tion.

To transform Eq. (3.17) into the position representa-

tion we employ the identities

h=q —q',

k=i +8
Bq Bq'

(3.19a)

(3.19b)
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ak
l(q+q )

a
Bq

a
Bq

8p= l
Bq

B2 —Qo(q —q' )
Bq'

This results in the equation

(3.19c)

(3.19d)

temperature master equation (see, e.g. , Ref. 12 and refer-
ences therein). To understand the physical origin of these
terms, let us look at the time dependence of the expecta-
tion values of P, Q, and PQ+QP. One can evaluate
these using the equations of motion for the P and Q
operators obtained from Eqs. (2.4) and (2.8), or one can
obtain these from Eq. (3.17) for the density matrix in the
(k, b, ) representation, using the relations

—2y(q —q') a
Bq

—4y(q —q') h p

&P2) — P

k=~=O
(4. la)

+4iy(q —q') +, fp .
8

Bq Bq
(3.20)

& g+g &=—,„
,
k =6,=o

& g2) — P8

(4.1b)

(4.1c)

4yf —W.
Bq Bp

(3.21)

The unusual features of this Fokker-P'lanck equation
are that the di6'usion coefficients are time dependent and
that the di6'usion coefficient matrix is not positive
definite.

Equations very similar to (3.20) and (3.21) were ob-
tained by Dekker" from a purely phenomenological
point of view, in which he quantized the damped har-
monic oscillator and introduced ad hoc quantum white-
noise terms to preserve the commutation relations of his
oscillator phase-space variables. These extra terms were
for him a manifestation of the fluctuation dissipation re-
lations. It is interesting to note that our exact model pro-
duces such a quantum noise source, which, however, is
not white. Furthermore, the diffusion coefficients [terms
multiplying the second derivatives in (3.21)] are not con-
stants.

IV. MASTER EQUATION AND
THE EVOLUTION OF THE DENSITY MATRIX

Again, the unusual feature of Eqs. (3.17), (3.20), and
(3.21) is both the time dependence of the source
(diffusion) terms, and the presence of the term propor-
tional to khp in (3.17), which is absent in the usual high-

Our master equation consists of the von Neumann
equation [the term in the first line of (3.20)], the damping
term (with y =e /4), and the "quantum diffusion" term
[both in the second line of (3.20)]. All of these appear in
other master equations. ' ' However, in our case the
diffusion coefficient h =g yf is still—time dependent.
Therefore, the term in large square brackets is nonsta-
tionary. Moreover, Eq. (3.20) contains a correction term
proportional to f. This is the last term in Eq. (3.20). It
arises from the last term in the (k, b, ) version of the mas-
ter equation, Eq. (3.17). We shall discuss their behavior
and significance in the following two sections.

In the Wigner representation of the density matrix, the
equation takes the Fokker-Planck form

2
a2

p+Qo q+2y p+4yh
Bq Bp Bp Bp

by taking derivatives with respect to k, b, at k =0, b, =0,
and assuming p(k, h) = 1+0(k,kb„b ). We thus obtain

8yh = —
& [P,ej&o]+), (4.2a)

4yf=&[Q eqo]+& . (4.2b)

Here [, ]+ is defined as the anticommutator of the en-
closed operators. We thus see that the f term arises from
the correlations between Q and the heat-bath forcing
term yo, while the h =g yf comes fro—m the correla-
tions between P and jo. If the heat bath were pure white
noise, that is, if the correlation function of the heat-bath
forcing term had the form

& [j»(t), yo(t')]+ ) -&(t —t'), (4.3a)

there would be no correlation with Q and the correlation
with P would be a constant due to the dependence of P
and Q on yo. Thus it is the nonwhite nature of the noise
from the heat bath which leads both to the time depen-
dence of the coefficients and to the unusual term kAp in
the master equation.

In particular, the correlation function of the noise in-
duced by a field in its vacuum state is given by

& [y,(t),j,(t')]+ ) —li(t —t') (4.3b)

g(t)=(I /~)I t/(I't'+1) . (4 4)

To illustrate the universality of this initial transient, we
have plotted h for a wide variety of values for y, Qo, and

and we encounter the divergence at t = t' which forces us
to introduce a cutoff I . (In the plots we will use an ex-
ponential cutoff. )

To get a feeling for these two unusual terms as well as
for the diffusion term h we have plotted f and h as a
function of time for various values of y and T (with
Qo= 1) in Fig. l.

The temporal behavior can be divided into three re-
gimes. Initially, over the cutofT'time scales of the order of
1/I the diffusion term h becomes very large (of order
I"/2~) and then falls of as t '. This transient can be ap-
proximated by a function
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FIG. 2. Universality of the transient behavior of the diffusion
coeScient; h (t), Eq. (4.3), is plotted as a function of t for all the
cases listed in Fig. 1. Note the difference in scale from Fig. 1.
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T in Fig. 2, corresponding to the range of these values in
the remainder of the figures. Notice that the difference
between the various cases is barely observable on this
graph. The magnitude of this initial transient drops to a
value smaller than the magnitude of the other terms con-
tributing to h on a time scale of the order of the
minimum of (y1nl /Ao) ', I/O, or 1/T. From the point
of view of dynamical time scales 1/Q, the initial transient
is so short that its effect can be almost always approxi-
mated by a 5 function of amplitude —m. 'ln(I t, ) where
t, is the above transition time. This unusual behavior is
missed in these derivations of the master equation which

FICr. 1. Time dependence of f and h coefficients appearing in

Eqs. (3.17) and (3.20) for a variety of cases, all with cutoff
I =1000: (a) harmonic oscillator (0=1, y=0. 3) at T=O; (b)

the same harmonic oscillator as in (a), but at T = 10; (c) critical-

ly damped harmonic oscillator (A=O, y =1.0) at T =0; (d) the
same critically damped harmonic oscillator at T=10; (e) free
particle (y=1.0) at T=O ("1/f noise" diffusion); (I) free parti-
cle (y=1.01 at t =10. Coefficient f arises from the correlation
between the position and the heat-bath-forcing term jo0, and
tends to disappear (f—T/F) for harmonic oscillator in the clas-
sical (high-temperature) limit. CoefBcient h is responsible for
the diffusion term in the master equation. It arises from the
correlation between j0 and the momentum of the particle. It
tends to a constant (h —T) for a harmonic oscillator in the clas-
sical limit. In the vacuum (T =0) both terms are important.

1 r+n r —n
h = arctan +arctan

ir13 y
1'f=T—

(4.5a)

The corrective term becomes negligible in the same limit.
For a damped harmonic oscillator and a discrete cutoff
we get

from the outset assume the high-temperature limit.
The initial evolution caused by this transient is nearly

instantaneous and has an enormous impact on the coher-
ence of the quantum state of the system. It practically
"wipes out" off-diagonal part of the density matrix in the
position representation. Because it is so rapid, and be-
cause it affects quantum coherence rather than expecta-
tion values, it has not been treated in the literature with
the care it deserves in the context of the discussion of
quantum theory of measurement. We shall explore it in
further detail in the next section.

In contrast with the first regime of the evolution, the
stage following the rapid transient has been thoroughly
studied. ' ' It occurs on the dynamical and dissipative
time scales, and, especially in the high-temperature limit,
where it has a well-defined classical analog —damped
Brownian motion —it offers few surprises. The only as-
pect of the evolution which has not been appreciated un-
til recently, and which is present already in the high-
temperature limit of the master equation, is the eSciency
with which the quantum correlations are damped
0 t 13-20

The third and last stage of the evolution of the system
is the asymptotic (tabac) regime. Coefficients of the
diffusive (h) and correction (f) terms behave differently in
the high temperature and vacuum (T=0) environments.
At finite temperatures, as r becomes large in comparison
with the other characteristic frequencies of the problem
(defined by 0 and y), the diffusive term approaches the
familiar constant value of T. For instance, for an under-
damped oscillator,
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f ( 2 p~ ) 1
( I +0 ) + y T
(I —II) +y

(4.6a)
The correction term is no longer small compared to h.
Now

The coefficient depends on the exact cutoff assumed.
Note that f is negligible when T((I . Similar exact re-
sults and identical high-temperature limits can be ob-
tained for all other cases of the harmonic oscillator (in-
cluding the unstable one) as well as for the free particle.

The situation is somewhat different in vacuum. For all
the stable cases of the harmonic oscillator the diffusion
coefficient approaches the limiting constant value given

—1 I ~ 1 arg(A+iy)
IIO fI 2

(4.6b)

h= exp( —2yt)
2++ 2

The case of the free particle is still different. At times
of the order of the relaxation time y

' the coefficient h
with exponential cutoff'is given by

2y I 0 y
~ "no

1 arg(A +i y)

2 7T

+y [Ei( 2i y /1 ) +Ei( —2i y /I ) ]

(4.5c)

(4.5b) while the coefficient f equals

1

2~@
—exp( —2y t) 2++ 2 +y[Ei(2iy/I )+Ei( —2iy/I )] (4.6c)

h = —1 —~ [—e' r"+(0—y)Ei((Q —y)t)],0

while the corrective term is

(4.5d)

Above Ei(u)= —f (e '/s)ds is the usual exponential
integral. At times long compared to the relaxation time,
f still has a non-negligible effect on the behavior of the
free particle, as it decreases only with the inverse of time:

1 1

2~@ t

This time dependence results in an effective "1/f" noise,
as it increases the spread of the wave packet in the posi-
tion with the logarithm of time. '

Both h and f diverge for the unstable case. In the
long-time limit the leading term of the diffusion
coefficient is

violated. In particular, T is at best comparable, and often
much less than I in many of the applications of Eq. (4.7)
in quantum optics and to the 'original" Brownian
motion of a free particle. Yet Eq. (4.7) yielded no obvi-
ous contradictions with the experiments performed so
far.

The reason for this somewhat surprising agreement be-
tween the approximate high-temperature equation (4.7)
and the more exact equation (3.20) in the experimentally
explored regime can be traced back to the manner in
which the discrepancies between them are manifested.
On the dynamical time scales and at a finite temperature
the corrective term is negligible in comparison with the
diffusive one whenever I ))max(y, Q), as is shown in
Fig. 3. This inequality is quite hard to violate. More-
over, the size of the vacuum contribution to the diffusive
term is only -y lnI /Qo for a damped harmonic oscilla-
tor, which is again typically less than T. In other words,
on the dynamical or relaxation time scale Eq. (4.7) is a
fair approximation of Eq. (3.20) whenever

f = [—e'" r"+(n —y)Ei((n —y)t)2~0 (4.6d) I /Ao((e p(xT/y) . (4.9)

The high-temperature master equation

p= l
a2

Bq

a2 —Q(q —q' )
Bq

2y(q —q—') c)

Bq Bq' 4y T(q —q')—
can be rigorously justified only in the high-temperature
limit:

T»l »max(y, A) . (4.8)

It has nevertheless been successfully applied in a variety
of situations on which the inequality T))I was clearly

This inequality and the corresponding inequalities for the
free particle and the unstable case are clearly much less
restrictive than the rigorous high-temperature limit, Eq.
(4.8). We are thus still left with the question: So what is
the price paid for allowing T ~ I?

The hint of the answer has already appeared in our
comments concerning the transient regime. The enor-
mous discrepancy between Eq. (3.20) and Eq. (4.7) occurs
on the cutoff time scales, when the transient form of the
diffusion coefficient, Eq. (4.4) is valid. Its dramatic effect
is, however, limited to the off-diagonal part of the density
matrix in the position representation on these short-time
scales. Moreover, the impact of the transient is most pro-
nounced when the system starts from the pure state un-
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of the heat bath. If, during the preparation time, the sys-
tem remains in contact with the bath, and if that prepara-
tion time is of the order of the dynamical time scale of
the system, the transient regime will not be present.

Finally, when the initial state is a Gaussian "coherent"
or vacuum state the impact of the transient is not as
dramatic as for states which are coherent superpositions
of more distant positions. Thus we are led to conclude
that the most interesting tests of the nonclassical nonsta-
tionary aspects of Eq. (3.17) require low temperatures,
fast system preparation, and "nonstandard" (widely
correlated) quantum states. We shall show in the next
sections that the "squeezed states" may offer such an op-
portunity.

&. I.OSS QF euHKRKXCE
IN QUANTUM BROWNIAN MOTION

—2
0 200 400 600 800

Temp erat, ure
1000

correlated with the environment degrees of freedom. It is
not clear to what extent this condition can be enforced in
the experiments. The system must thus be prepared on a
very-short-time scale, and in a way which is independent

FIG. 3. Temperature dependence of h and f for a damped
harmonic oscillator (0=1,y =0.3, I =1000) near the long-time
limit t =40. Dotted lines indicate the high-temperature limit.
The agreement between the exact and the asymptotic values sets
in for temperatures much smaller than I for large times.

In this section we will gain some familiarity with the
effects of the heat bath on the oscillator by looking at the
reduced density matrix for the oscillator in various repre-
sentations. Although the (k, b, ) representation is by far
the easiest in which to derive the equations of motion, it
is a sufficiently unfamiliar representation to make the in-
terpretation difficult. We will therefore look at the densi-
ty matrix in the Wigner (p, q) representation, in the posi-
tion space (q, q') representation, and in the momentum
(p,p') representation.

In all cases we will use Gaussian density matrices for
the initial states, primarily because of the simplicity of
representation. Note that this means that they remain
Gaussian at all times [see, e.g., Eqs. (2.14) and (2.18) for
the reason]. Gaussian density matrices also have the ad-
vantage that their values everywhere can be represented
by the 1o contour. The changes in the 1o. contour there-
fore immediately show the changes caused by the com-
bination of damping plus heat-bath fluctuations on the
oscillator. Furthermore, we can easily calculate the en-
tropy of a Gaussian density matrix. Such a density ma-
trix can always be brought into the form

p=& '
pI —[ ((Q —&Q &)')+13((P—&P &)(Q —(Q &)+(Q —(Q &)(P —&P) ))+&(P—&P&)']I,

where ( P ) and ( Q ) are the expectation values for P and

Q in the state, P and Q are the momentum and position
operators and X is a normalization factor. The entropy

0 „, Q —&Q&

P P —(P)
&= —Trp lnp

can be calculated by writing

gT —1 —2+aA. —p X(P +0 )/2

(5.2) and

(5.3)
+(aA, —P ) .

where Note that
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[P,Q ]=&detA[P, Q] =i,
and —,'(P +Q ) is an effective harmonic-oscillator Ham-
iltonian with frequency unity. The entropy is therefore
given by the usual thermal oscillator expression

In order to investigate this effect we set up states which
are coherent over a wide range of q values and of p
values. To do this we use "squeezed" states, with a
squeezing factor of r, i.e.,

gf'= —ln( 1 —e ) +y Y
e~—1

' (5.4)

where

I'=2&az —P' . (5.5)

When the density matrix in (k, b. ) representation is

p(k, b, ) ~ exp[ —
( W k'+ 2@k~+ Cb, ')], (5.6)

we can relate the coefficients 3, 8, and C to the values n,
P, yby

2A=—0 p

k, a=o

jn Tre
—l&Q'+~[~&+ Q~~]+ ~~'1

Ba
(5.7a)

= &PQ+QP &

a
ln Tre

a
(5.7b)

2C=—
~~' k, ~=o

ln Tre [&Q 0[ ~ + Qp]

BA,

We Anally find that

4i AC —8 =coth+aA, —p

(5.7c)

(5.8a)

or that

4& aC —a'+1
4&aC —a' —1

(5.8b)

where Y is the inverse of the "equivalent temperature"
defined as in Eq. (5.5).

One of the most interesting features of the behavior of
such an oscillator coupled to a heat bath is the loss of
quantum coherence caused by the heat bath. This loss of
coherence can be regarded as the result of the measure-
ment performed by the external environment on the sys-
tem. If one begins with the system in some pure state,
the transfer of information into the system-environment
correlations will convert that pure state into a mixture of
states and result in an increase of entropy.

In our case, the external field is coupled to the oscilla-
tor via the position variable q. As a result we would ex-
pect the system to lose its quantum coherence in the q
representation more rapidly than in the p representation.

where we display the results for r = 1, r =8, and r =
—,
'

We examine in some detail the case in which the fre-
quency Q of the oscillator is unity, and the damping
coefficient y is .3. We will examine this for various initial
states, and for various temperatures in Figs. 4, 5, 6, and
8. On the rest of Figs. 4—11 we chose other values of 0
and y to study. In each of the figures, graph (a) is a plot
of the 1 —o contour of the Wigner function [the density
matrix in (q/p) representation] at a selected set of times.
(The 1 —o contour are the values of the arguments where
the density matrix falls to e ' of its peak value. ) In this
graph we have put the oscillator into an initial state
which includes a nonzero value for the expectation value
for the momentum P, (P) =10. In addition we have
plotted the path that the expectation values (P) and
(Q ) follow. The 1cr contours for the Wigner function at
the selected times are plotted around that point on that
path that the particle has reached at that selected time.
The center of the ellipse is thus the expectation value of
Q, P at that time. The ellipses are labeled from 1 to 5 or
6 so that one can follow the structure of the density ma-
trix at those selected times in the various representations.

Graph (b) in each figure is a plot of the density matrix
in the position representation q

—q'. Again we plot the
1 —0. contour of the modulus of the density matrix at the
same selected times as in graph (a). Here the value of the
density matrix along the diagonal (q =q') represent the
probability of finding the particle with that position,
whi1e the off-diagonal values represent the correlation in
the density matrix between the points q and q'. Note that
the phase, which is not plotted, is in general nontrivial.
We have used exactly the same initial conditions as in
graph (a) except that the "center-of-mass" motion has
been removed so as to center all of the ellipses at
q =q'=0.

Graph (c) in each set is a similar plot of the 1 —o con-
tours of density matrix in the momentum p —p' represen-
tation. Again the plots are for the same selected times as
in (a) and (b). Again the "center-of-mass" motion has
been removed.

Finally, graph (d) is a plot of the entropy of the density
matrix as a function of time (up to r =20) with an insert
showing the time dependence of the entropy over the
time from 0 to 0.2. (Remember that the scale is set by the
values of the dynamic quantities such as A, o and y. For
the oscillator examples, Qo is taken to be unity, while for
the free particle, y is 1.) Along the time axis the num-
bered crosses mark the times at which the 1 —o. contours
are plotted in graphs (a) —(d). In all cases, the crosses for
the first two times completely overlap with the origin on
the main diagram. Time 1 is the initial time, while time 2
is only about 0.01, and represents a time slightly larger
than the cutoff time 1/I =0.001. Thus this point
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FIG. 4. Evolution of (a) 1-o. contour of the Wigner distribution; (b) density matrix in q
—

q representation; {c)density matrix in

p —p' representation; (d) entropy A'= —Trp 1np for a damped harmonic oscillator (0= 1, y =0.3, I = 1000) at T =0. Initial state is a
Gaussian coherent state {Aq =4p).

represents a time which is about 10 of the period of the
oscillator.

In Fig. 4, the first of the series of pictures, the initial
state is for the oscillator in its ground state (r = I) with

y =0.3. Even here, the density matrix has changed
slightly but significantly by the second time, and in par-
ticular, the oft:diagonal strength in the q

—q' representa-
tion [Fig. 4(a)] has already decreased slightly.

Note that the entropy first increases dramatically (over
at ime scale of order I/I ) and then settles down to a
nonzero value (-0.8) even though the temperature of the
heat bath is zero. This is an indication of the fact that
the usual statement —that the temperature of the oscilla-
tor comes to an equilibrium value at the temperature of

the heat bath —applies only in the limit in which the cou-
pling between the bath and the oscillator goes to zero
(weak coupling). At all nonzero values of e, there will ex-
ist significant correlations between the oscillator and the
heat bath which result in a nonzero entropy for the re-
duced density matrix of the oscillator. The equilibrium
value for the entropy can be derived via Eqs. (5.4) and
(5.8). At equilibrium, p =0, and we use Eq. (5.6) with

3, =QIIg ( t = ~,I,Itl ),
8, =0,
C, =f ( t = ~,I,13),
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where the subscript e refers to the equilibrium value. In
the high-temperature limit Y=Qo/T, and we find that
the entropy is given by the familiar

&, =In(T/Qo),

but at lower temperatures (T ~ 0) this is not true. Note
also that the equilibrium entropy depends on the asymp-
totic values of both f and g. Also, at equilibrium, (P )
and ( Q ) are not equal to each other as can be seen in (a)
graphs. The diA'erence between them is directly propor-
tional to the equilibrium value of f.

The behavior of the entropy can be understood qualita-
tively as follows. Initially the entropy increases rapidly
because of the "measurement" of the position Q which
the field P performs. Notice that the off-diagonal terms
in the position representation decrease much more rapid-

ly than in the p representation. In all of the graphs, the
spread of position (length of the 1-o. contour) along the
diagonal remains constant between times 1 and 2 while
the off-diagonal strength decreases. In the momentum
representation, the on-diagonal spread increases (because
of the effective measurement of q) while the off-diagonal
coherence remains unchanged. Then, as the system
comes to equilibrium the high initial entropy produced
by the initial "measurement" decays away into the heat
bath.

In this first Fig. 4 with r =1, the eAects described
above are not very dramatic. In Figs. 5 and 6 we look at
the same oscillator, but with the initial state squeezed in
the p and q directions (r =8 and —,', respectively). In Fig.
5 we have set up an initial pure, squeezed state which is
very broad in the position representation. As expected

10—
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FIG. 5. Same as Fig. 4, but for an initial state squeezed in momentum (Aq = Shp). Note the rapid initial decoherence, manifested
in the change of shape of the Wigner distribution (a) and by the decay of the off-diagonal elements of the density matrix in the posi-
tion representation (b). See text for further discussion.
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cle, the position variable is the "pointer" variable. The
environment (heat bath of the field) rapidly reduces the
density matrix to approximately diagonal form in this
pointer basis representation, but not in the conjugate
momentum representation. Note that it does not reduce
to position eigenstates —the "measurement" by the heat
bath is not an ideal exact measurement. Rather the
reduction, takes place with an accuracy approximately
given by the uncertainty of the vacuum state. As we will
see in Fig. 7, this reduction also depends on the strength
of the coupling with the heat bath.

This creation of an incoherent density matrix is
refiected in the plot of the entropy in Fig. 5(d). The en-
tropy shoots up to the high value of 2.0 on the cutoff time

scale (see the insert), and then decays to the final equilib-
rium value.

These effects are highlighted by an examination of
Figs. 6(a) —6(d). Here we have initiated the system in a
pure state with a large spread in momenta, but a small

spread in position. Recall that the original oscillator
Hamiltonian was completely symmetric with respect to P
and Q. Only the interaction selects out the Q coordinate.
As expected, the change between times 1 and 2 is no
longer dramatic at all. The momentum spread has in-
creased slightly, but the off-diagonal coherence com-
ponents of the density matrix in neither position nor
momentum representation have changed dramatically.
Furthermore, the entropy between these two times has
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FIG. 7. Same as Fig. 5—the initial state is again squeezed in momentum and extended in position, Aq =8'—but now the damp-

ing coefticient is smaller (y=0. 1) than in the previous cases. This slows down the rate of "spiraling down, " but does little to slow

down the process of decoherence. Both the Wigner distribution function and the density matrices quickly evolve under the "measur-

ing interaction" with the environment into the form corresponding to the mixture of wave packets with definite positions and limited

extent. As in Fig. 5, entropy increases on a rapid (I ) time scale as a consequence of such decoherence.
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changed little (it is only 0.16 by time 2 rather than the
value of about 1.6 it had in the previous case at time 2).
The entropy does finally increase to a value of about 1.6
in this case, but now over a quarter of an oscillation
period rather than "instantly. " This is the time period
over which the large initial spread in momentum creates
a large spread in position because of the dynamics of the
oscillator. The field then "measures" the position of the
oscillator again producing an incoherent density matrix
with a large entropy.

Figure 7 illustrates behavior of an oscillator initiated in
a state identical with the one shown in Fig. 4, but with a
weaker coupling to the heat bath (y =0.1). This
difference in damping is most apparent in Fig. 7(a), where
the trajectory takes many more revolutions on its way to

the equilibrium state. This difference is also reAected in
the appearance of the density matrix in the position as
well as in the momentum representation. Coherence loss
is now less rapid, and the entropy of the oscillator state
does not reach as high an intermediate value as for the
damped case shown in Fig. 5. Moreover, in accord with
expectations, a less strongly coupled oscillator ap-
proaches a ground state which is less "mixed, " i.e., has
smaller entropy, at T=0. While the envelope of the os-
cillations is still decaying at the last instant illustrated in
Fig. 7, there can be no question that the final value of en-
tropy will be, in this case, significantly less than for the
one of Figs. 4—6.

We can also see what difference a nonzero temperature
makes. In Fig. 8 we look at the same oscillator as in Figs.
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FIG. 8. As in Fig. 5, y =0.3 and the initial state is squeezed in the direction of momentum and spread in the position, but the envi-
ronment is at a finite temperature (T = 10). Temperature has little influence on the rapid initial coherence [T« I, so that we are far
from the usual high-temperature limit, Eq. (4.8) but it does alter the long-time behavior in the expected manner.
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4—6 (Qo = 1, y =0.3, I"= 1000) at a temperature of
10(AQo/kz) and with r =8. It thus has the same initial
condition as in Fig. 5. Over the very-short-time scale be-
tween times 1 and 2, there is essentially no difference in
the behavior of the oscillator. By time 3 however, which
is of the order of a few "thermal" times (t&-Alk~ T) the
effect of the nonzero temperature has begun to be felt.
We still have the sudden increase in entropy in Fig. 7(d)
due to the initial "measurement" of the position, but now
the equilibrium entropy is much higher (of order 2.0) and
is just what one would expect for the given temperature.
Over short times of the order of a few oscillation time
scales, the entropy again has gone to values significantly
higher than equilibrium, and then settled down to the
equilibrium value.

Figure 9 shows the behavior of a squeezed state for a
critically damped case, y=Ao= l. On short time scales

the behavior is clearly dominated by the same effects as
those illustrated in previous figures. As expected, the
long-time limit is approached without any oscillations be-
cause of critical damping. Decoherence occurs now even
more rapidly than for the case of Fig. 5, as can be clearly
seen in the plots of density matrix in the position repre-
sentation [Fig. 9(b)]. Consequently, the intermediate as
well as equilibrium values of entropy are also in excess of
those seen in Fig. 5(d).

The next case considered in this section, Fig. 10, illus-
trates a free particle interacting with the heat bath. The
short-term behavior is again similar to the one illustrated
in Figs. 4—9. Apart from the obvious differences caused
by different dynamics, the only difference we would like
to point out occurs at late times, when the spread of the
wave packet increases logarithmically with time

( Aq ) = (2y lvr )ln( v'I y t ) .
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FICx. 9. Critically damped harmonic oscillator A=O, y=1.0) initiated in a squeezed state (Ax =8'). Initial coherence is again
very rapid. Entropy evolves on a collision time scale I to a large value.
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This slow spreading is a manifestation of the "I/f"' noise,
and can be traced back to the form of the autocorrelation
function of the quantum noise. It is not clear what, if
any, relation this noise has with the experimentally ob-
served manifestations of the logarithmic drift of mea-
sured quantities.

The behavior of an unstable damped oscillator is
shown in Fig. 11, where we have chosen Qo=i, y=0. 8.
As in Fig. 4, the initial ground state is rapidly decohered
in the position pointer observable. This is clearly seen in
the plot of the Wigner distribution function (decoherence
in position results in the increase of the uncertainty in
momentum). An even better illustration of this effect is

again provided by the plot of the density matrix in the
position representation, Fig. 11(b).

The competition of damping with the destabilizing
force I -q is clearly visible in the evolution of the
Wigner distribution, Fig. 11(a). The particle starts at
q =0 with a positive momentum. Large damping and ini-
tially small force cause it to slow down (momentum de-
creases), until it reaches q -6, at which state it begins to
accelerate "down the hill" (see the insert). Moreover, as
the force increases for large q, the wave packet is being
exponentially stretched in the q direction [Fig. 11(b)],and
in the p direction [Fig. 11(c)]. This increase in the on-
diagonal extent is not accompanied by either an increase

i I I I
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i i I I
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I
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I I i i l I I i i I [ i
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FIG. 11. Unstable damped oscillator (A=i, y=0. 8) in a vacuum (T =0), initiated in a minimum uncertain Gaussian (hx =Ap},
but with finite momentum. After a period of slowing down [the plot of Wigner distribution (a)] the evolution is accelerated by a force
increasing with distance from the origin [inset in (a)]. The same force "stretches" the wave packet along the direction of motion in

phase space [5 and 6 in the inset of (a)]. However, interaction with the environment does not allow it to maintain coherence. There-
fore the wave packet has a 6nite extent in the ofF-diagonal direction. Since the number of individual, locally coherent contributions
increases exponentially with time (JV- ( hq ) ' ), entropy &-lnJV grown linearly.
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or a decrease of its off'-diagonal width: Interaction with
the environment controls the off-diagonal terms. Thus,
at late times the system is in an approximate mixture of
Gaussian coherent states, each of which has spatial ex-
tent Aq controlled by the interaction with the environ-
ment and corresponding spread in momentum Ap =-A/Aq
resulting from the principle of indeterminacy. The entro-
py [Fig. 11(d)] should be regarded as the natural loga-
rithm of the number of such coherent pieces of the wave
packet. Since the spatial extent of the wave packet in-
creases exponentially at latetime, entropy grows linearly
with time.

It is tempting to apply this model to understand the
origins of the transition from quantum to classical in the
inAationary phase of the early Universe, where the
effective potential of the inAation field is thought to have
the qualitative features of either an "upside down" or the
usual harmonic oscillator ("new" or "chaotic" inflation).
%'e shall comment on this issue in more detail in the next
section.

VI. DISCUSSION

The transition between quantum and classical is the
principal motivation of the study of open quantum sys-
tems we have carried out in this paper. The key idea—
environment-induced superselection' —relates
quantum or classical nature of a system to its ability to
retain quantum coherence. To be effectively quantum,
the system must be able to remain pure for the time inter-
vals over which experiments are carried out. Quantum
systems interacting with other systems, which constitute
their "environments, " lose quantum coherence as a
consequence of such interaction.

A. Quantum, classical, anil the measurement

It is important to understand the nature of the
decoherence mechanism and the extent to which it is
modeled by various approximate methods. The interac-
tion between the system and the environment is dynami-
cally perfectly reversible. In a transparent notation and
under an artificial (and unnecessary, but very convenient)
assumption of the purity of initial state

l
cr ) of the system

and le. ) of the environment, the chain of events proceeds
as

(6.1)

The final state of the combined system l4) is still pure.
Hence the total entropy of the whole system has not in-
creased. Yet the information an observer has about any
of the subsystems will usually decrease as a result of the
correlation between the subsystems.

The system and the environment are described by the
reduced density matrices:

(6.2a)

(6.2b)

Both p,& and p& are, generally, mixed. The entropy of
each of the subsystems is now positive:

&g Tl pglnpg,

Trp glllp g

(6.3a)

(6.3b)

The "lost" information is still present in the correlation
between them. The mutual information measuring the
strength of this correlation

(6.4)

B. Master equations and pointer observables

The master equations employed in the discussion of the
measurement process and, more generally, in the discus-
sion of the transition between quantum and classical, are
usually Marko%an and stationary. ' ' ' This as-
sumption facilitates detailed calculation of the conse-
quences of the environment-induced superselection, and
allows one to demonstrate the effectiveness with which
the environment forces macroscopic systems to behave
classically. In particular, a number of interesting models
inspired by quantum optics have been constructed to
demonstrate the facility with which the coupling with the
environment destroys correlations between eigenstates of
the preferred pointer observable A which commutes with
the interaction Hamiltonian:

has increased in course of the interaction by the amount
given by the total increase of the entropy of subsystems,
so that the joint entropy of the system and the environ-
ment, &(@@), remains constant. This transfer of informa-
tion that previously resided in the two systems separately
into the correlation between them is responsible for the
loss of the quantum coherence in open quantum systems.
It is also responsible for the establishment of quantum
correlation between the apparatus and the observable of
the measured system in course of quantum measure-
ments. In a sense, mutual information enters the dis-
cussion of quantum measurements twice: first, in the
process of correlating the apparatus and the measured
system, and subsequently in the process assuring that the
outcome of the measurement is indelibly recorded in the
pointer observable of the apparatus which is effectively
classical.

It is important at this point to differentiate between the
model we have presented here, in which the field y ir-
reversibly carries off the information, and other interact-
ing systems in which the information remains in the
"measuring" system, to be undone by subsequent interac-
tion with the "measured" system of interest. For exam-
ple, the interactions of the electromagnetic waves with
dielectric medium do not result in an effective measure™
ment of the state of the electromagnetic wave. The
change in the dielectric medium does not persist, is not
"remembered, " and thus no effective measurement takes
place. On the other hand, in this case, the field y im-
mediately moves away from the interaction region, never
to return. It "remembers" the outcome of the interac-
tion. This distinction is an explanation for the possibility
of quantum interference in many solid-state systems
where there is often a sufticiently strong interaction with
other components of the system to apparently suffer
"measurement" and thus loss of coherence.
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[A,Hg@]=0 . (6.5)

This condition is also satisfied by "nondemolition observ-
ables" of quantum systems ' used as sensitive detectors of
weak forces (due, for instance, to gravity waves). One
can therefore say that in some cases the environment per-
forms a "nondemolition measurement" of the observable
which, as a result, becomes classical. '

The position of a particle satisfies the condition Eq.
(6.5) for many interaction Hamiltonians. (Whenever the
force is a function of distance H&@ =H&&(q), as is the
case for all the "potentials" [q,H&@]=0. ) As a result, for
the usual high-temperature Markoffian equation, one can
express decoherence time 0 in terms of the relaxation
time scale r (see also Ref. 13 for a different form of this
relation):

8= r( A,d~ /hq ) (6.6)

Here Aq is a separation between parts of the wave func-
tion and A.dz is the thermal de Broglie wavelength:

A, d~
=R /+4mk~ T . (6.7)

For a "canonical" classical system (mass m = 1 g at room
temperature T =300 K) and a macroscopic separation
bq= 1 cm, Eq. (6.6) predicts 8/&=10 . This enormous
disparity of the decoherence and relaxation time scales
demonstrates how effective the environment-induced su-
perselection can be in suppressing quantum behavior
even in systems which, from the point of view of their dy-
namics, evolve almost completely reversibly and are,
therefore, by the usual standards extremely well isolated
from the environment.

Joos and Zeh' have made a similar point in a careful
discussion of the reduction of the wave packet using the
master equation suggested by Wigner. ' They demon-
strate, in particular, that even scattering of photons at a
relatively low temperature (e.g. , of the cosmic-microwave
background) can extract enough information about the
location of the macroscopic object to induce classical be-
havior.

The possibility of an experimental study of
environment-induced superselection has been also
raised. ' ' ' " Partly in spite of and partly because of the
effectiveness of the environment-induced superselection,
finding the right subject of such an experiment is a
difficult task. Microscopic quantum systems, such as
photons, electrons, and atoms, turn out to be hard to
decohere, while macroscopic systems are already too
classical, presumably because they are very open, to
detect any quantum features. The recent development of
intermediate scale systems, such as Josephson junctions,
or the Weber bars gravity wave detectors, ' hold out
some hope of being able to see some of these effects.

An ideal subject for an experiment may also emerge
from the nonlinear quantum optics. As discused by Mil-
burn, an anharmonic oscillator with quartic correction
(Hamiltonian given by =HH+oA, Hwohere Ho is the
standard harmonic-oscillator Hamiltonian) evolves from
an initial Gaussian wave packet through a sequence of
"nonclassical" states to—eventually, after the Poincare
cycle is completed —reassemble as a Gaussian. These

nonclassical states include, for instance, two wave pack-
ets with Gaussian envelopes placed on the opposite sides
of the oscillator. Quantum coherence between them must
be maintained if the Poincare cycle is to be successfully
completed. In presence of the environment, as Milburn
and Holmes point out, coherence will be destroyed and
the evolution of the phase-space density distribution will
quickly begin to look like that of the classical system with
the analogous Hamiltonian. Hence, the degree to which
the destruction of coherence will occur in course of the
Poincare cycle appears to determine whether the system
will exhibit quantum or classical behavior. This general
criterion was originally suggested as the key factor distin-
guishing quantum and clasical regimes. ' Moreover, as
noted by Yurke and Stoler, systems which exhibit quar-
tic nonlinearity can be realized in practice and may allow
one to generate nonclassical wave packets ideal for the
experimental study of decoherence.

Our analysis here is based on a linear system. Yet,
most of the real life systems, and, especially, most of the
systems in which environment-induced reduction of the
wave packet could be studied experimentally are non-
linear. Calculations of even idealized nonlinear interac-
tions are prohibitively difficult. Calculations of more
realistic examples are unlikely to be tractable. How can
one be confident that general features of the
environment-induced superselection will extend beyond
the domain of the linear systems?

The first point is that the initial transient, which plays
such an important role in our analysis, is really indepen-
dent of the dynamics of the system. The forces of the os-
cillator have not had time to act by the time this initial
"jolt," delivered by the heat bath, is felt. This feature we
would expect to retain even in a strongly nonlinear sys-
tem. It is, however, problematic experimentally, as
pointed out earlier, as it depends on the initial decoher-
ence of heat bath and system on a very-short-time scale.

Another feature of the problem studied here is the rap-
id transition into an ordinary Mar koffian-Fokker-
Planck-type master equation. The effective noise source
for the vacuum fluctuations is not white. It has a non-
trivial non-Markoffian correlation function. It is unclear
to what extent this feature would be visible in the evolu-
tion of the density matrix for a nonlinear system. If the
system moves slowly compared with the damping time
scale, one would expect that the harmonic approximation
to the potential during the damping time period would be
a good approximation, and the analysis presented here
should be valid. On the other hand, for a system in-
teracting weakly with the bath, where the nonlinear dy-
namic time scale is shorter than the damping time scale,
one might expect to find significant non-Markoffian
effects due to the nonwhite correlations in the quantum
noise from the heat bath. It is, however, surprising in the
case of the oscillator how little of these effects are seen
(except in the case of the free particle).

C. Markoffian approximation

Most of the treatments mentioned above have been
carried out in the context of Markoffian master equa-
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tions, which are explicitly irreversible, and are derived on
the basis of assumptions the validity of which could be
questioned in many of the applications. The most notori-
ous of such assumptions is the condition which demands
that the temperature of the heat bath be greater than the
energy corresponding to the "collision frequency" 1", the
cutoff of the spectrum of the environment oscillators.
Recently, however, several more detailed treatments of
specific models have been published. "' ' ' ' They are
usually concerned with models even more specific than
the harmonic oscillator' ' and only rarely provide an

. adequate treatmerit of the transition from the reversible,
dynamical evolution to the irreversible master equation.

Some of these shortcomings have been avoided in the
present treatment. The master equation (3.20) is, as a re-
sult, more cumbersome, but its solutions are still relative-
ly easy to obtain, especially in the (k, A) representation.
Time and temperature dependence of the coefficients is
an inevitable consequence of the underlying dynamics.
For example, the diffusion term h can be approximated,
for short times by

This remark is especially important in view of the fact
that the exact treatment leads to a master equation
which, ostensibly, holds for all temperatures, that is, both
in the high-temperature regime and when T=0. Clearly,
conclusions regarding the heat bath at a finite tempera-
ture do imply a particular reference frame and are not
afFected by the caveat brought up in the previous para-
graph. By contrast, conclusions which refer to low tem-
peratures and short time scales should be reevaluated
with some care within the context of a specific physical
situation. The sharp onset of decoherence is a feature, in
particular, associated with the "vacuum. "

Availability of the master equation (3.17) applicable at
all temperatures (providing that the underlying dynami-
cal model is satisfied) offers one an opportunity to study
the range of validity of the high-temperature Markoffian
approximation. Io particular, for a harmoniic oscillator
coupled with the environment at a finite temperature T,
the time-dependent part of the diffusion coeffieient, Eq.
(6.8), becomes comparable with its long-time value h = T,
at a time given approximately by

(6 &) tp=m/T . (6.9)

which is an odd function of time. Thus for r &0 (the time
at which the initial state of the oscillator was coupled
with the heat bath), Eq. (3.20) would actually predict that
the state of the system becomes spontaneously "pure, "
uncorrelated with its environment. This observation can
be dismissed by insisting that the coupling with the envi-
ronment was established at t =0 and, hence, discussion of
the evolution for negative times makes no sense. This
would, however, miss the key point. Evolution of the
complete (oscillator+environment) system is reversible.
Initiating the oscillator in a pure state is, in effect,
equivalent to imposing a condition on the evolution of
the underlying dynamical system, which must be satisfied
by both the advanced and retarded solutions. In other
words, the system demonstrates that the rapid coherence
change is consistent with its dynamics in both time direc-
tions. "Initial condition" is the only reason for the pre-
valance of the irreversible diffusion with the "right" sign.

In spite of the underlying reversibility, solutions of the
exact master equation turn into mixtures on the fastest
time scales available. The initial "jolt" which takes away
most of the coherence happens on the collision time scale

Figures presented in the last section demonstrate
this quite conclusively. Such effectiveness of the
environment-induced superselection raises a perplexing
question: How can one understand, in view of the rapid
decoherence predicted even for the environments at
T =0, manifestations of quaritum physics on not only mi-
croscopic, but also much larger scales'7' ' Much of this
apparent problem can be understood as the consequence
of the idealized assumptions about the nature of the envi-
ronment and its coupling with the system. In particular,
the coupling used in Eqs. (2.1) and (2.2) does not respect
Lorentz invariance. Thus, it can be regarded as an ade-
quate model only for these kinds of a heat bath which do
have a preferred reference frame. For example, a gas at a
finite temperature does constitute such an environment,
while the electromagnetic vacuum at T=O does not.

For times appreciably in excess of t& behavior of the sys-
tem should be consistent with the prediction's of the
Markoffian versions of Eq. (3.17). This suggests a condi-
tion for the validity of the high-temperature approxima-
tion which is much less restrictive than was demanded:

T»I (6.10)

usually assumed in the derivations. For, it appears that
the high-temperature master equation will be obeyed
whenever the system has evolved for a time span

t ))tp (6.11)

and for T ~mxa(y, fl) regardless of the actual relation
between T and I . These observations explain the re-
markable success of the Markoffian master equation in
the variety of situations. It would be, however, in-
teresting to devise experiments to test the non-Markoffian
transient regime.

D. Cosmological applications
of environment-induced superselection

The model explored in this paper has, apart from the
issues of quantum theory of measurement, a variety of in-
teresting, practical applications. Master equations have
been extensively employed in physical chemistry, quan-
tum optics, and transport theory. We believe that quan-
tum cosmology should be added to this list. An isolated
unstable quantum oscillator was considered by Guth and
Pi in their discussion of the transition between quantum
and classical in the inflationary era of the Universe.
They have calculated the wave function g of the state
which obtains from the initially narrow Gaussian. After
a sufficiently long evolution position and momentum of
the unstable oscillator become correlated, so that
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QPP—=&oQ'0

PQQ—=QOQ f—ilia .

(6.12a)

(6.12b)

For a sufFiciently spread-out wave packet, the systematic
correlation of position and momentum is thus much in
excess of the uncertainty:

QoQ'»A' . (6.13)

Guth and Pi suggested that whenever condition (6.13) is
satisfied the pure state can be in effect regarded as a col-
lection of individual, narrow wave packets following ap-
proximately classical trajectories.

In our view, this interpretation fails to address the key
issue of the actual transition between the spatially extend-
ed but nevertheless still pure wave function and the
mixed state with the envelope proportional to ~g(x)~ .
Note in particular that if one were to examine such an
unstable oscillator with no damping, one would have an
exponential growth of width in both the q-q' and the p-p'
representations in both the on-diagonal and off-diagonal
terms. The system remains coherent over the whole of
the wave function in both q and p representations. In the
Wigner representation, the ellipse would exponentially
stretch in the direction of motion and exponentially
shrink in the direction perpendicular to the motion, but
the shrinkage is not indicative of any loss of coherence.
However, it is precisely this aspect of the evolution that
has been used to claim that the undamped oscillator is
approaching "classical" behavior. In our opinion this
claim cannot be justified. This can be seen by noticing
that in the q, q' representation both the diagonal and the
off-diagonal spread increases exponentially for the un-
damped oscillator. All points in the stretched-out density
matrix are still strongly, quantum-mechanically correlat-
ed even at very late times.

Moreover, the question of the transition from quantum
to classical in the context of inAation is not "academic"
as the value of the cosmological constant which deter-
mines the rate of the inAationary expansion depends on
the manner in which inAation field couples via the vacu-
um energy with the gravity. Thus, while the conclusions
of Guth and Pi with regard to the approximately classical
nature of the dynamical evolution of fragments of the
wave packet are (approximately) correct, they are of little
help in clarifying the transition from quantum to classical
in the new inAationary model. In particular, the follow-
ing problems need clarification.

(i) What value of the cosmological constant should ap-
pear on the right-hand side of Einstein s equations?

(ii) Moreover, all the coherent wave packets sliding
down the side of the unstable part of the potential will
eventually come together with the new vacuum. What is
the guarantee that quantum correlations will remain
unimportant at this time in the course of the reheating
process?

Perhaps even more important than these criticisms,
applicable specifically to the new inAationary scenario, is
the simple observation that the mechanism suggested by
Guth and Pi cannot be implemented in the chaotic
inAationary model of Linde. There the effective poten-

tial is either a regular (that is, not "upside down" ) har-
monic oscillator or a quartic oscillator. The inAation
occurs while the inAation field slides down from a large
(~M ) initial fluctuation. Hence, the wave packet does
not spread, and the correlation between q and p does not
follow the pattern of Eqs. (6.12). Consequently, inequali-
ty (6.13) is not valid and one cannot appeal to it in search
of a justification of a transition from quantum to classi-
cal.

Of course, some may take the above paragraph as an
argument for new and against chaotic inAationary
scenario. We believe, however, that a very different con-
clusion is in order. The scenario for a transition from
quantum to classical cannot be based on Eq. (6.13) for
neither new nor chaotic variant of inAation. Moreover,
there are several additional reasons, including the ability
to initiate inflationary phase and the size of the perturba-
tions, which appear to favor chaotic inAation.

The issue is then to find how one can induce the transi-
tion from quantum to clasical without relying on the
features specific to the new inAation. The answer we
would like to suggest calls on the environment, i.e., all of
the fields which couple to the inAation, to force the
environment-induced collapse of the wave packet. It is
only the'introduction of damping, of the heat bath, which
leads to the loss of the off-diagonal coherence. Notice in
Fig. 11 that the off-diagonal "width" approaches a con-
stant at late times, even as the on-diagonal spread is in-
creasing exponentially. Moreover, both Q and P are al-
most equally good "classical" observables with negligible
off-diagonal coherence in presence of damping. This
mechanism is clearly applicable to the simple one-
dimensional analogs of the model, as previous sections
amply demonstrate: the coherent quantum wave packet
"falls apart" into a mixture of distinct states, each of
which evolves independently of the others. It is not hard
to see how this mechanism solves difficulties (i) and (ii).
Moreover, it applies equally well to the "upside down" as
well as to the "regular" oscillator. Hence, it can be in-
voked in both the new and chaotic scenarios.

The same simple model of the new inAationary epoch
was recently investigated by Cornwall and Bruinsma, '

who have calculated Feynman-Vernon inAuence func-
tional for an "upside down" oscillator in a thermal heat
bath. The two approaches lead to the same qualitative
results, although Ref. 41 adopts the high-temperature
limit early on which leads to very different decoherence
rates.

The "wave function of the Universe" approach
pioneered by Hawking, Hartle, and Vilenkin poses an
even greater challenge in terms of delineating the transi-
tion between quantum and classical. It has been sug-
gested that the general approach based on the
environment-induced superselection' may be applic-
able also in this context. For, while the Universe has no
environment "outside" it, certain degrees of freedom in it
will be able to serve as the environment for the other de-
grees of freedom, and may force them to behave in an
effectively classical manner. We shall pursue cosmologi-
cal applications of environment-induced superselection
elsewhere.
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