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High-pressure metallic phases of boron
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First-principles total-energy calculations for solid boron predict a transition from the insulat-
ing o.-rhombohedral phase first to a metallic body-centered-tetragonal structure at 210 GPa and
subsequently to a face-centered-cubic structure at 360 GPa. %'hile the possibility of intervening
phases not considered here cannot be ruled out, it is argued that 210 GPa is an upper bound
for the onset of a sequence of structural transitions by which boron evolves from a covalent
insulator to a trivalent metal more like its neighbor Al.

I. INTRODUCTION

There is ample experimental 4 and theoretical5 8 ev-
idence that the application of pressure is inimical to the
covalent bond. In a general argument, localization of
charge in the covalent bond minimizes the potential en-

ergy at the expense of the kinetic energy. Given the
respective V ~ and V ~ scaling of the potential and
kinetic energy contributions with volume V, the latter
must eventually dominate as V decreases, favoring more
uniform electron density and more close-packed struc-
tures. The covalent, diamond-phase, group-IV semicon-
ductors Si and Ge, for example, transform to metal-
lic P-tin phases, and then after several further interme-
diate steps, culminate under 40 and 102 GPa, respec-
tively, in close-packed metallic forms. The covalent,
threefold-coordinated, group-V solids P and As undergo
analogous transitions reaching sixfold coordination un-

der the largest pressures to which they have so far been
investigated. '

We are concerned in this paper with similar evo-
lution for the group-III element boron. The many
observed allotropes of solid boron may be viewed as
different packing arrangements of 12-atom icosahedral
clusters. We consider here only the simplest of these
observed allotropes at atmospheric pressure, namely the
o.-rhombohedral phase in which there is one 12-atom
icosahedron per primitive rhombohedral cell. Although
not the thermodynamically stable phase, aq2-boron
(niq-B) is metastable at ambient conditions, and is cer-
tainly representative of the class of icosahedral-based
structures. It is an insulator with a measured gap of 2
eU. Electronic-structure calculations by Bullett and
Switendick yield indirect gaps of 1.7 and 0.23 eV, re-

spectively, with direct gaps more than 1 eV larger. These
calculations indicate the presence of covalent bonds in
o.~2-B and related structures, although the simplest two-
electron-bond picture is no longer applicable.

The purpose of this paper is to report first-principles
total-energy calculations which predict that insulating
o, ~2-B will transform first to a metallic body-centered-

tetragonal phase at 210 GPa (2.1 Mbar) and then sub-

sequently to a face-centered cubic structure at 360 GPa
(3.6 Mbar). It is significant that neighboring group-III
element Al is observed in the fcc structure at atmospheric
pressure, as there is a general tendency for heavier mem-
bers of a given group to represent high-pressure forms of
lighter members. This behavior follows from an increase
in the size of the ion core radius relative to the atomic or
Wigner-Seitz radius as one moves to heavier group mem-

bers, thus effectively compressing the valence electrons
between the two radii. While such a correlation is cer-
tainly valid to a first approximation, differences such as
the absence of p electrons in the cores of second-period el-
ements refine this perspective. The so-called BC-8 struc-
ture, for example, is predicted to be high pressure stable
in C but not in Si.is Nevertheless, on the overall scale
of the coordination-number dependence of the structural
energies, the correspondence among C, Si, and Ge does
exist; and we expect a similar correspondence among the
group-III elements. Specifically, we suggest that 210 GPa
is an upper bound for the onset of a sequence of structural
transitions by which 8 evolves from a covalent insulator
to a trivalent metal more like Al.

The paper is organized as follows. The total-energy
calculations are described and results are presented in

Sec. II. A discussion of the predicted phase transitions
is given in Sec. III along with considerations of stability.
We conclude with a summary in Sec. IV.

II. COMPUTATIONAL METHODS

The present total-energy calculations have been carried
out using both ab initio plane-wave pseudopotential and
linear muffin-tin-orbitals (LMTO) methods for the ni2-
B, diamond, simple cubic (sc), face-centered-cubic (fcc),
hexagonal-close-packed (hcp), and body-centered-cubic
(bcc) structures, as described in the following two sub-
sections. Only the lattice constant was varied for the ny2-
B structure, with the rhombohedral angle and positional
parameters kept fixed. Similarly, only the ideal axial
ratio, e/a = +8/3, was considered for the hcp structure.
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Investigation of the structural stability of the fcc phase
led us also to consider the body-centered-tetragonal (bct)
structure~ for a range of c/a values as well as monoclinic
distortions of the fcc structure. The monoclinic and
bct calculations were performed only with the ab initio
pseudopotential method.
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A. Pseudopotential calculations

The pseudopotential calculations are performed within
the framework of local-density-functional theory ap-
plied in the momentum-space formalism. zo We use
nonlocal, norm-conserving, ab initio ionic pseudopo-
tentials as tabulated by Bachelet ef al. 2 The Ceperley-
Alder24 model is used for the exchange-correlation poten-
tial. In addition to the total energy F, the stress tensor,
the pressure p, the enthalpy H = E+pV, and the forces
are calculated analytically from the stress theorem. 25 De-
tails of the computational procedure have been docu-
mented in the literature.

Boron is an element for which a pseudopotential de-

scription should be adequate because the core 182 states
do not overlap significantly with the valence states. How-

ever, since the core of boron consists only of 1s states,
there is no cancellation for the p and d states in the core
region and, consequently, the resulting pseudopotentials
are deep for these angular-momentum channels. As a re-
sult, a correct description of the boron pseudofunction
requires a large number of plane waves.

Pseudopotential calculations were performed on a large
number of structures: sc, bcc, fcc, diamond, ideal hcp,
bct with various values of c/a, monoclinic distortions~s
of fcc for various angles, and o.q~-B in which, as noted
above, only the lattice constant was varied. In the
results presented below, the wave function is expanded
in a set of plane waves. A kinetic energy cutoK of 70 Ry
was used for all the simple metallic phases: sc, bcc, fcc,
diamond, bct, monoclinic, and hcp structures. A kinetic
energy cutoR' of 50 Ry was used for the description of the
nyz-B structure. Special k points were generated using
the Monkhorst-Pack algorithm.

Simultaneous evaluation of the total energy E and of
the pressure p as a function of atomic volume V allows
a systematic monitoring of the level of convergence re-
alized. For a fully converged calculation, the equilib-
rium atomic volume Vo extracted from the minimum of
the calculated E(V) relation and from the p(Vo) = 0
zero-pressure condition should be identical. We have
assured adequate convergence of our calculated ground-
state properties by explicitly verifying that the calculated

p(V) and E(V) curves yielded essentially the same value
of the equilibrium atomic volume Vo and values of the
bulk modulus Bo to within 5%. This condition provides
a test for the internal consistency and accuracy of the
calculations.

The results of our ab initio plane-wave pseudopotential
calculations are indicated in Fig. 1 where the calculated
total energy is plotted as a function of the atomic volume
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for the metallic sc, fcc, bct, diamond, hcp, and insulating
O. ~p-B structures. The bct structure is characterized by
c/a = 0.65. The choice of this value is based on stability
considerations for the fcc structure and is discussed in
Sec. III. Similarly, results for the monoclinic distortions
are discussed in Sec. III and are not shown in Fig. 1
since our calculations indicate that these are never high
pressure stable. The total energy for the bcc structure is

higher than the fcc structure at all atomic volumes and
is not shown in Fig. 1 for purposes of clarity.

The corresponding values of the equilibrium atomic
volume Vo, bulk modulus Bo, and cohesive energy Eo are
listed in Table I for all the structures studied. The values
indicated in Table I are obtained by fitting the calculated
total energies to Murnaghan's equation of stateso

(BoV) (Vo/V)+o
total — 0 + ( B, B, 1

+
o ) o—

For each crystal structure, the fits to Murnaghan's
equation of state were performed using at least six values
of the total energy calculated for lattice constants near
the equilibrium volume. For all the 6ts, the rms errors
were typically smaller than 10 eV/atom.

Inspection of Fig. 1 reveals the occurrence of two phase
transformations o, yg-B —+ bct ~ fcc leading to a covalent-
metallic transition. Calculation of the enthalpy for the
fcc, bct, and o.~2-B phases indicates that the transition

FIG. 1. Results of ab initio plane-wave pseudopotential
calculations of the total energy of boron as a function of
atomic volume for the n&q-B, body-centered-tetragonal (bct)
with an axial ratio c/a = 0.65, diamond (dia), simple cu-
bic (sc), face-centered-cubic (fcc), and ideal hexagonal-close-
packed (hcp) structures. All calculations were performed with

a kinetic energy of 70 Ry except in the case of 0.&2-B, where a
cutoff of 50 Ry was used for atomic volumes V & 5 A. aud an

extrapolation from 35 to 50 Ry was used for illustration pur-
poses at atomic volumes 5 & V & 8 A . The zero of energy
coincides with the minimum energy of the fcc structure.
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TABLE I. Equilibrium atomic volume Vo, bulk modulus Bo, and energy Eo extracted from
a fit of the E(V) curves shown in Figs. 1 and 2 for seven crystal structures of boron. The first
number for each category was calculated using the ab initio plane-wave pseudopotential method;
the second, the LMTO method. Experimental results for B are in parentheses: The value for Vo

(Ref. 16) is for ass-B, while that for Bo (Ref. 42) is for an unspecified phase.

structure

bcc

hcp

c/a = V/8/3
fcc

sc

diamond

bct
c/a = 0.65

eg2-B

experiment

atomic volume

V. (A')

5.88
6.12
5.72

5.99
5.65
5.91
6.43
6.65
7.93
8.23
5.85
6.27
7.05
6.93

(7.28)

bulk modulus
Bp (Mbar)

2.37
2.32
2.68
2.55
2.69
2.66
2.41
2.43
1.86
1.86
2.82
2.63
2.49
2, 66
(2.0)

energy
E 0(eV/atom)

0.38
0.29
0.19
0.18
0.00
0.00
-0.24
-0.35
-0.32
-0.42
-0.35
-0.24
-1.43
-1.83

pressures are pt,„», ——210 GPa for the nq2-B ~ bct tran-
sition and pt«» ——360 GPa for the bct ~ fcc transi-
tion. The initial (final) volumes are 4.65 (4.02) A for
the a12-B ~ bct transition, and 3.48 (3.37) A for the
bct -+ fcc transition. In the absence of the bct structure,
these results would predict an o, rq-B -+ fcc transition at
230 GPa with an initial (final) volume of 4.52 (3.77) A. .

Due to computer core memory limitations it is not pos-
sible to carry out calculations for the aqua-B structure to
atomic volumes greater than 5 As at a kinetic en-

ergy cutoff of 50 Ry. However, the utilization of a 35
Ry cutoff is possible up to an atomic volume of 8 ks.
Consequently, we have performed convergence tests for
the nqq-B structure at small atomic volumes in order to
extrapolate total energies at large volumes. These tests
reveal that the utilization of kinetic energy cutoffs larger
than 25 Ry simply leads to a rigid downward shift of the

E(V) curve without appreciably modifying the equilib-
rium atomic volume or the bulk modulus. For the pur-
pose of illustrating the complete E(V) curve for nq2-B,
we have extrapolated our calculations from 35 to 50 Ry
for atomic volumes 5 & V & 8 A to obtain the nq2-B
curve shown in Fig. 1. We emphasize that this extrapola-
tion has no eHect on the numerical determination of the
transition pressures since these pressures are extracted
form enthalpy calculations at small atomic volumes for
which a 50-Ry cutoft' was used.

B. LMTD calculations

The present I MTO (Refs. 32 and 33) calculations for
the high-symmetry diamond, sc, fcc, hcp, and bcc struc-
tures were carried out as described in detail elsewhere.
The calculations were non-relativistic, employed the von

Barth —Hedin exchange-correlation potential, 3 retained
s-d basis functions, and included Andersen's combined
correction. 3 Empty spheres were used for the dia-
mond and sc structures, and the Ewald or mufFin-tin
correction was added to the total energy in all cases. s4

All five electrons were treated in band mode, with one
panel for the 1s and another panel for the combined 2s,
2p states. The upper panel was sampled with 89 (dia-

mond), 165 (sc), 240 (fcc), 80 (hcp), and 140 (bcc) points
per irreducible wedge of the respective Brillouin zones.

The aqua-B and bct structures require more compli-
cated dispositions of atomic and empty spheres, but were
otherwise treated in a similar manner. Sixteen spheres of
five inequivalent types were used for the primitive rhom-
bohedral cell of o;q2-B: six B(l) and six B(2) atom-based
spheres, rs one E(1) empty sphere at (0, 0, 0), two E(2)
spheres at +(0.25, 0.25, 0.25), and one E(3) sphere at
(0.5, 0.5, 0.5). The relative radii were 1, 1.040, 0.944,
1.053, and 1.457, respectively. Five spheres of two in-

equivalent types were used for the primitive bct cell: one
atom-based sphere at (0, 0, 0), and four empty spheres
at (kz, 0.5, 0) and (0.5, kz, 0) where z = 0.25/(1+ c/a).
The relative radii were c/2a and z, respectively. The
Brillouin zones were sampled with 13 (nq2-B) and 169
(bct) points per irreducible wedge, with the small nq2-B
sampling permitted by its insulating nature. Standard
expressions for the Ewald correction were generalized
to the case of unequal sphere radii for the o, q~-B and bct
structures, and in both cases the minimum electron den-

sity p, used in this correction was found at the center of
empty spheres.

Our I MTO total-energy curves for the six structures
are presented in Fig. 2; the equilibrium properties are
presented on the second line for each structure in Table
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FIG. 2. Results of LMTO calculations of the total energy
of boron as a function of atomic volume for the eq2-B, body-
centered-tetragonal (bct) with an axial ration c/a = 0.65,
diamond (dia), simple cubic (sc), face-centered-cubic (fcc),
and ideal hexagonal-close-packed (hcp) structures. The zero
of energy coincides with the minimum energy of the fcc struc-
ture.

I. The effect of the combined correction has been to in-

crease the LMTO equilibrium volumes Vo (energies Eo)
in Table I by 22%%uo ('2.3 eV), 8.3% (0.42 eV), and 6.8%%uo

(0.45 eV) for the more important aiq-B, bct, and fcc
structures, respectively. The Ewald correction has con-
tributed additional increases of 3% ( 0.3 eV) for the
bct, fcc, hcp, and bcc phases, while leaving the more
open-packed viz-B, diamond, and sc results largely un-

changed.
Comparison between Figs. 1 and 2, and inspection

of Table I, reveal good agreement between ab initio
pseudopotential and LMTO results for the five high-

symmetry structures, as has previously been documented
for the case of C and Si.s4 We expected and found ev-
idence of inaccuracies in the LMTO total energies for
the low-symmetry o.~~-B and bct structures, due to the
shape approximation used in the present implementation
of this method.

One indication of the shape-approximation inaccura-
cies is disagreement between dE/dV and the—virial-
theorem-derived pressure for low-symmetry structures
when the combined correction is used. This correction
uses a pseudo-wave-function to correct the one-electron
matrix elements from the atomic spheres to the proper
nonoverlapping polyhedra. The pseudo-wave-function is

fit to the self-consistent wave function only at the sphere
boundaries, yet it must be used far away from this region
in low-symmetry cases, which interferes with the self-

consistency required for satisfaction of the virial theo-
rem. Thus while the minimum-energy and virial-theorem

3pV = 0 derived values of Vo agree to better than 2%

for the five high-symmetry structures, the former value
of Vo is 3.9% and 8% larger than the latter for the bct
(c/a = 0.65) and nt2-8 structures, respectively. We have
found the calculated total energy to be more accurate
than the virial-theorem-derived pressures for the lower-

syrrunetry structures, s7 and therefore have used the E(V)
curves exclusively for the LMTO results in this paper.

It is to be emphasized that the present LMTO cal-
culations do clearly predict an nt2-8 -+ fcc transition
in B in the same volume range as the ab initio pseu-
dopotential method. The absence of an intervening bct
phase in Fig. 2 is no surprise given the inaccuracies to be
expected for the low-symmetry bct, and especially the
n~~-B structures given the shape approximation made in
these LMTO calculations. s ' For this reason we defer
to the pseudopotential results indicated in Fig. 1 for a
quantitative determination of the transition pressures.

The electronic band structure of niq-8 appears to be
far less sensitive to the shape approximation than is the
total energy, as has been noted by Switendick. i The
present LMTO calculations yield an —1 eV, indirect,
insulating gap in o, y2-B at large volumes, which closes
at V = 3.6 As. Prior to closure, the state just above

(below) the gap lies 77%%uo (100%) within the 8 spheres,
which contain 67% of the cell volume. Thus in close
analogy to diamond-phase Si, gap closure in o.qq-B also
arises from itinerant, antibonding, conduction states be-
coming energetically more favorable than localized, bond-

ing, valence-band states. Loss of the hybridization gap
in o, ~~-B signals a deterioration of the covalent bond in
this phase, which is clearly related to its loss of stability
at high pressure.

III. PHASE TRANSITIONS
AND FCC STABILITY

The ab initio pseudopotential and LMTO total-energy
curves presented in Figs. 1 and 2 are in good overall qual-
itative agreement, and both predict that a fcc phase of
8 will become more stable than ntz-8 at high pressures.
As previously noted, we believe the primary quantita-
tive differences between the two methods as implemented
here arise from shape-approximation inaccuracies in the
LMTO-calculated nt2-8 and bct results. For this reason
we draw our quantitative predictions from the ab initio
pseudopotential calculations in Fig. 1, which indicate an
o, q2-B ~ bct transition at 210 GPa followed by a bct ~
fcc transition at 360 GPa.

We now describe the structural stability of the fcc
phase and how such an analysis led us to consider tetrag-
onal and monoclinic distortions of this phase. Stability of
the fcc structure was first investigated by means of pseu-
dopotential calculations of the elastic constants aqua, cq2,
and @44. The most striking result was a negative value of
c44 at the equilibrium atomic volume (Vr„= 5.65 A ),
indicating that the fcc structure is unstable against shear
of the unit cell at that atomic volume. Such a shear is

realized by a monoclinic distortion of the unit cell.
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Total-energy calculations for monoclinic distortions ~

of the fcc unit cell were then carried out as a function
of the angle p between the a and b axes of the unit cell,
where y = 90 corresponds to the fcc structure. Results
of these pseudopotential calculations are shown in Fig.
3(a) for atomic volumes V = 5.65 As (dashed curve) and
3.91 As (solid curve). The former is the fcc equilibrium
volume Vr„, the latter is the fcc volume at 200 GPa.
Our results indicate that the fcc structure is unstable
against a monoclinic distortion at the equilibrium atomic
volume but becomes stable against such distortions for
V ( 3.9 A.s. A similar situation has been documented
for rhombohedral distortions of the sc structure in the
case of P (Ref. 7) and As.s

The 7 65 minimum of the dashed curve in Fig. 3(a)
is a body-centered orthorhombic structure 8 whose first
and second neighbors closely approximate in number and
distance those of a bct structure with c/a = 0.58. Since
other group-III members Al (c/a = +2, i.e. , fcc), high-
pressure P or Ga-II (c/a = 1.59), and In (c/a = 1.52)
assume structures within the bct family, we have also
investigated tetragonal distortions of fcc over a wide

range of c/a values.
Our pseudopotential calculations for the total energy

of the bct structure as a function of c/a are shown in

Fig. 3(b). Results are presented for the same two vol-

umes as in Fig. 3(a), and in addition for V = 3.0 As

(dotted curve), which is well into the region of fcc stabil-
ity. The dashed curve at Vr„= 5.65 A is consistent with
local minima at c/a = ~2 and another at slighly smaller
c/a. More important, however, is the global minimum
at c/a 0.6, which is the lowest energy we have found
at Vf„ for structures other than a~~-B. As the atomic
volume is reduced, this minimum shifts to slighly larger
c/a values and becomes less deep, until at V 3.5 A.s

it rises above the fcc minimum which then becomes the
global bct minimum as a function of c/a. In the range
of the eq~-B ~ bct ~ fcc transitions, the bct minimum
occurs for c/a 0.65, which is the reason we have used
this value of c/a in Figs. 1 and 2.

It is interesting to note that most of the qualitative
features evident in Fig. 3(b) have been observed in bct
calculations for other polyvalent metals, for example, di-

valent Hg, s trivalent In, ~o and tetravalent Sn. ' Gener-
ally there is a local maximum at the bcc structure (c/a
= 1) and a local minimum in the range c/a = 0.6 —0.9.
The latter corresponds to the observed high-pressure P
and 7 phases of Hg (Ref. 39) and Sn, 4t respectively,
and our predicted high-pressure bct phase of B. On the
high c/a side of the bcc maximum, there is usually a fcc
(c/a = ~2) local minimum and possibly others close by
(c/a = y 2 + 0.2), as in b-Hg (Ref. 39) and the observed
Ga-II and In structures. 4o Our B results in Fig. 3(b)
suggest such an additional minimum for Vf„, however
not at the two smaller volumes.

Turning to the accuracy of our predictions, it is to be
noted that similar local-density-functional calculations
have been quite successful in accounting for high-pressure
structural phase transitions in other solids. 5 8 While the
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FIG. 3. Results of ab initio pseudopotential calculations
for the monoclinic and body-centered-tetragonal phases of
boron. All calculations were performed with a kinetic energy
of 70 Ry. (a) Calculated total energy of boron as a function
of the monoclinic angle p for a special case of the monoclinic
structure in which a = 6 = c for diR'erent atomic volumes.

(b) Calculated total energy of boron as a function of the c/a
ratio for the body-centered-tetragonal structure for difterent
atomic volumes. Atomic volumes are 5.65 A (dashed curves),
3.91 A (solid curves), and 3.00 A (dotted curve). The first
is the fcc equilibrium volume, the second corresponds to a fcc
pressure of 200 GPa, and the third is well into the fcc sta-
bility regime. The minimum energy of the fcc structure (at
the particular atomic volume shown) is chosen as the zero of
energy.
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czqz-B structure is numerically more challenging, agree-
ment with the measured bulk properties in Table I is con-
sistent with expectations based on this experience. The
ab initio pseudopotential equilibrium volume for nq~-B
is within 3% of experiment, s for example. The corre-
sponding bulk modulus is 27'%%uo larger than experiment;4z
however, the data are for an unspecified phase of B which
is quite likely not o.~2-B.

Based on an all-electron, spin-polarized atom calcula-
tion, we obtain a LMTO value for the nrz-B cohesive
energy of 7.4 eV/atom. Using the I"u values in Table I,
we can estimate an ab initio pseudopotential value for the
nrz-B cohesive energy of 7.0 eV/atom, which compares to
the measured 5.9 eV/atom value again for an unspecified
phase. 4 An overbinding of I eV/atom is not unusual
in local-density calculations for second-period elemental
solids, as for example diamond phase C.~ These er-
rors most likely arise from an inadequate treatment of
the atom, 44 which will not aA'ect calculations of phase
transtions within the solid.

Another source of uncertainty in our predictions is the
possibility of intervening phases not considered here. It
has not been the purpose of this exploratory work to
carry out an exhaustive study of potential high-pressure
phases of B. Rather, we assert that the 210-GPa pressure
of our predicted a~~-8 ~ bct transition sets the scale for
the pressure-induced loss of covalency in this material in
a regime accessible by modern diamond-anvil-cell tech-
nology.

IV. SUMMARY

Results of first-principles total-energy calculations sug-

gest that covalent, insulating o q~ boron will trans-
form first to a metallic body-centered-tetragonal struc-
ture at approximately 210 GPa and subsequently to a
face-centered-cubic structure at approximately 360 GPa.
These transitions accompany the deterioration of the co-
valent bond within the o, ~2 phase as indicated by loss
of its hybridization gap with increasing pressure. While
the possibility of intervening phases not considered here
cannot be ruled out, , we argue that 210 GPa is an upper
bound for the onset of a sequence of structural transi-
tions by which boron evolves from a covalent insulator to
a trivalent metal more like its neighbor Al. Such transi-
tions are experimentally accessible to modern diamond-
anvil-cell technology.
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