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Quantum gates using linear optics and postselection

E. Knill*
MS B256, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 5 August 2002; published 14 November 2002!

Recently it was realized that linear optics and photodetectors with feedback can be used for theoretically
efficient quantum information processing. The first of three steps toward efficient linear optics quantum com-
putation is to design a simple postselected gate that implements a nonlinear phase shift on one mode. Here a
computational strategy is given for finding postselected gates for bosonic qubits with helper photons. A more
efficient conditional sign flip gate is obtained. What is the maximum efficiency for such gates? This question
is posed and it is shown that the probability of success cannot be 1.
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I. INTRODUCTION

Now that we know that linear optics and photodetect
are sufficient for quantum information processing@1,2#, it is
necessary to investigate how the required schemes ca
realized more efficiently. One promising direction is to u
superpositions of squeezed or coherent states for enco
qubits @2,3#. In this paper, it is shown how the postselect
gates at the foundation of the constructions in@1# can be
found and improved. Other relevant work in this directi
includes@4–7#, where networks suitable for experimental r
alization are given. The focus of this paper is on what can
done in principle. To that end, a systematic method is gi
for finding postselected gates based on a combination o
gebraic solution finding, exploitation of known symmetrie
and numerical optimization. By using the method, a con
tional sign flip for bosonic qubits that succeeds with pro
ability 1/13.5 using two helper photons is found. This im
proves the one in@1#, which succeeds with probability 1/16
To conclude this paper, the following question is consider
What is the optimum probability of success for any numb
of helper photons?~See the problem at the end of the pape!
A characterization of states that can be obtained from he
photons with passive linear optics and no postselection
given. This characterization implies that the probability ca
not be 1, a result related to known bounds on Bell meas
ments@8,9#.

II. PRELIMINARIES

The physical system of interest consists of optical mod
each of whose state space is spanned by the number s
u0&,u1&,u2&, . . . . If more than one mode is used, they a
distinguished by labels. For example,uk& r is the state withk
photons in the mode labeledr. The Hermitian transpose o
this state is denoted byr^ku. The vacuum state for a set o
modes has each mode in the stateu0& and is denoted byu0&.
The annihilation operator for moder is written asa(r) and the
creation operator asa†(r)5(a(r))†. Recall that a†(r)um&
5Am11um11&. Labels are omitted when no ambiguity r
sults. Hamiltonians that are at most quadratic in creation
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annihilation operators generate the group of linear op
transformations. Among these, the ones that preserve the
ticle number are called passive linear. Every passive lin
optics transformation can be achieved by a combination
beam splitters and phase shifters. IfU is passive linear, then
Ua†(r)u0&5(susra

†(s)u0&, whereusr defines a unitary matrix
û. Conversely, for every unitary matrixû, there is a corre-
sponding passive linear optics transformation@10#. For the
remainder of this paper, all linear optics transformations
assumed to be passive.

III. CONDITIONAL PHASE SHIFTS

A conditional phase shift byu on two modes is the map
CSu :uab&→ei (ab)uuab& for 0<a,b<1. These phase shift
can be used to implement conditional sign flips on tw
bosonic qubits. A bosonic qubitQr ,s is defined by identifying
a qubit’s logicalu0& with u01& rs and logicalu1& with u10& rs .
The modesr ands can be two distinct spatial modes or th
two polarizations of one spatial mode. A key gate in quant
information processing is the controlled-NOT ~see, for ex-
ample,@11#!, which ‘‘flips’’ the second qubit if the first qubit
is in the stateu1&. A gate that is equivalent to the controlled
NOT up to one-qubit transformations is the conditional si
flip, which changes the sign ofu11&. To realize the condi-
tional sign flip between two bosonic qubitsQ1,2 and Q3,4 ,
apply CS180° to modes 1 and 3. The bosonic qubit
controlled-NOT can then be implemented using condition
sign flips and single qubit rotations, which are realizab
with beam splitters. Note that all one-qubit gates can be
alized with linear optics on bosonic qubits.

In @1#, conditional sign flips were implemented indirect
using a postselected~referred to there as ‘‘nondeterministic’’!
realization of the map

NS:au0&1bu1&1gu2&→au0&1bu1&2gu2& ~1!

that succeeds with probability 1/4. The realization of N
requires one helper photon and two ancilla modes. T
implementation of CS180° in @1# requires two instances o
NS, resulting in a probability of success of 1/16. The goa
to implement CS180° more efficiently directly using two
helper photons. One helper photon can be shown to be in
ficient by means of the same algebraic method about to
©2002 The American Physical Society06-1
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used. Let modes1 and2 contain the state to which CSu is to
be applied. The basic scheme is to start with two anc
modes3 and 4 initialized with one photon each, apply
linear optics transformation to modes1,2, . . . ,k with k
>4, measure all but the first two of these modes, and ac
only a predetermined outcome, say where one photon is
tected in each of modes3 and 4 and none in the adde
modes. Letû be the unitary matrix associated with the line
optics transformation, withusr the entries ofû. The postse-
lected final state is determined completely by the 434 upper
left submatrixV of û with entriesVrs5usr for s,r<4.

It is necessary to consider the effects of the scheme on
initial states u00&12 ,u01&12 ,u10&12 ,u11&12 . Since photon
number is conserved, we have, without renormalization,

u00&12→a0000u00&12 , ~2!

u01&12→a0101u01&121a0110u10&12 , ~3!

u10&12→a1010u10&121a1001u01&12 , ~4!

u11&12→a1111u11&121a1120u20&121a1102u02&12 . ~5!

To be successful, the amplitudes have to satisfy

a01105a10015a11205a110250, ~6!

a10105a01015a0000, ~7!

a11115eiua0000. ~8!

The probability of success isua0000u2. The amplitudes are
polynomials of the coefficients ofV. For example,a0000
5v33v441v34v43. More generally, defineps5( rv rsa

†(r). If
the initial state in modes hasds photons, then the outpu
state is given by)sps

dsu0&. Let P5)sps
ds . Thus,P is a poly-

nomial of thea†(r). If b is the coefficient of the monomia
) t(a

†(t))mt in P, then the output amplitude for havingmt

photons in each modet is given byA) t(mt!)b. The coeffi-
cient b is a polynomial of the coefficients of theps . This
shows that the output amplitudesaabcd are polynomials of
the v rs .

The first step for constructing CSu is to solve Eqs.~6!–
~8!, which are polynomial identities in thev rs . Before show-
ing how to reduce the difficulty of doing that, let us see ho
to proceed from there. Since there are 16 free complex v
ables, the solution will have a number of remaining fr
variables that must be chosen to optimize the probability
successua0000u2 and to satisfy one more constraint: The s
lution must be an~explicit! matrix V that needs to be ex
tended to a unitary matrixû. This is possible if and only if
the maximum singular value~that is the square root of th
maximum eigenvalue ofV†V) is at most 1. The extension i
not unique. One can set the first four columns ofû to the
matrix with orthonormal columns,

X5S V

~ I2V†V!1/2D , ~9!
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and then complete the last four columns with any orthon
mal basis of the orthogonal complement of the spa
spanned by the columns ofX. The maximum singular value
constraint ensures that one can compute the square ro
the expression forX. If some of the singular values ofV are
equal to 1, then fewer than four additional columns and ro
can be used.

The singular value constraint cannot be easily achie
using algebraic methods. In principle, one can reparamet
the matrixV to guarantee the constraint, for example by u
ing the polar decomposition and an Euler angle represe
tion of unitary matrices. In the case in which CSu is to be
applied to the ‘‘left’’ modes of a pair of bosonic qubits, th
singular value constraint can be removed by exploiting
rescaling symmetry. In this situation, there are two additio
modes contributed by the bosonic qubits. The total num
of photons is always four. LetV be a matrix whose coeffi-
cients satisfy the identities for theaabcd. Let l5l(V) be
the maximum singular value ofV and consider the matrix

Ve5
1

l S I 0

0 VD , ~10!

where I in the upper left corner ofVe is a 232 identity
matrix whose indeces are associated with the two ot
~‘‘right’’ ! qubit modes.Ve has maximum singular value 1
and can be extended to a unitaryûe as before. The claim is
that if the resulting optics operation is applied to the pair
bosonic qubits with the same postselection procedure, it
the intended effect with probability 1/l8. To see that this is
true, first observe thatV85lVe satisfies the polynomia
equations obtained by requiring that the operation works c
rectly for the pair of bosonic qubits. The amplitudes@as in
Eqs. ~2!–~5!# that occur in these equations are polynomi
which are either homogeneous linear in the coefficients o
given column ofV8 or independent of them.~A polynomial
is homogeneous of degreed if each monomial has total de
gree exactlyd in the variables.! This is because the inpu
states have at most one photon in each mode. Because
input state under consideration has exactly four photons,
amplitudes are all homogeneous of degree 4 in the co
cients ofV8. This implies that multiplyingV8 by d scales the
amplitudes byd4. Since the equations to be satisfied a
homogeneous linear in the amplitudes, every scalar mult
of the matrix also satisfies the equations.

With the observation of the previous paragraph, instead
trying to satisfy the singular value constraint, one can rec
culate the probability of success by dividingV’s probability
of success byl8 before optimizing. Note that this work
even if l,1. In computer experiments using naive optim
zation methods~see below!, this usually led to solutionsV
with l51 for u5180° andu590°.

To simplify solving the equations for theaabcd, one can
use scaling symmetries to standardizeV. Since each of the
aabcd is homogeneous in the variables associated with
one row or column ofV, the equations of the formaabcd
50 are satisfied for any rescaling of a row or column. T
nonzeroaabcd are homogeneous of degree 1 in the third a
6-2
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QUANTUM GATES USING LINEAR OPTICS AND . . . PHYSICAL REVIEW A66, 052306 ~2002!
fourth column~because of the presence of the helper phot
at the input in modes3 and 4) and in the third and fourth
row ~because of the postconditioning on detecting exa
one photon in each of modes3 and4). Because Eqs.~7! and
~8! are homogeneous linear in the amplitudes, rescaling th
rows or columns preserves the identities. The nonzeroaabcd
satisfy that they are of equal degree and homogeneous in
first column and~separately! in the first row. This is due to
the fact that when a photon is present in mode1 at the input,
this is designed to be the case at the output too. Thus m
plying the first column byd and the first row by 1/d does not
change the values. Similarly, this rescaling can be used
the second column and row.

FIG. 1. Optical network realizing CS180° . The notation is as
explained in@1#. The lines denote the time lines of optical mode
Modes1 and2 are the input modes; the first gates applied to th
are linear phase shifts exp(ipa†a) that mapu1&→2u1&. Modes3
and4 are prepared in their one-photon states; the elements ap
to these modes at the end of the operation are photon coun
where the outcome is conditioned on the indicated classical ou
~in circles!. The elements that mix the modes in the middle a
beam splitters, whose action exp„2 i (eifa†(A)a(B)

1e2 ifa(A)a†(B))u… is determined by the two phasesu;f given in
degrees. In each instance, modesA and B are the top and bottom
modes, respectively, at both the input and the output of the b
splitter.
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The scaling rules of the previous paragraph can be use
introduce unconstrained scaling variables and standardize
entries ofV. For example, one can takev135v245v335v44

5v4351. Note that this choice implies that solutions whe
any one of these variables is 0 are not easily found. It m
therefore be necessary to try solving with some of the v
ables set to 0. For example, the CS gate of@1# after transla-
tion into the form used here satisfiesv4350. I did not find
any solutions satisfying this constraint with better probabil
of success.

MATHEMATICA was used to solve the equations~any other
computer algebra system would do equally well!. The strat-
egy was to solve linear equations first and then to simp
expressions.MATHEMATICA notes can be found in the appe
dix of the online version of this paper@12# and include for-
mulas for the solution found. The solution can be expres
in terms of the remaining variables of the last two colum
of V and one additional variable. After some experimen
tion, it seemed that in all the best solutions,v115v22. This
was exploited in the final version of the optimization proc
dure, implemented inMATLAB ~the programs are available b
request!. Briefly, the function to be optimized takes as inp
the remaining free complex variables (v14,v23,v34,l 1), and
a nonredundant subset of the scaling variables. To avoid
finities, one can provide the logarithms of the scaling va
ables as inputs. The scales can be taken to be real s
phases have no effect on the probability of success.
function can then be optimized using random starting poin
With the optimization procedures provided byMATLAB , it
was found useful to randomly perturb the point returned a
repeat until the solution no longer changes significantly. T
procedure routinely finds the same optimum. Foru5180°, it
was possible to guess the algebraic numbers to which it c
verged. Here is a version of the matrix found, which tur
out to be unitary,

.

ed
rs,
ut

m

hase-shift

o
between
V180°5S 21/3 2A2/3 A2/3 2/3

A2/3 21/3 22/3 A2/3

2A31A6/3 A32A6/3 2A~31A6!/2/3 A1/621/~3A6!

2A32A6/3 2A31A6/3 2A1/621/~3A6! 2A~31A6!/2/3

D . ~11!

The probability of success is 2/27. The matrix can be systematically decomposed into elementary beam splitter and p
operators@10#. An optical network realizing it is shown in Fig. 1. The implementation uses fewer elements~four beam splitters,
four modes, two photon counters, probability of success 2/27) than the solution in@1# ~six beam splitters, six modes, tw
photon counters, two photodetectors, probability of success 1/16). As before, the counters must be able to distinguish
zero, one, or more than one photon.

A matrix that can be extended to obtain CS90° by postselection was also obtained,

V90°5S 20.320210.0418i 20.252020.3226i 0.2883 20.129220.7221i

20.252020.3226i 20.320210.0418i 20.129220.7221i 0.2883

20.321610.7210i 20.171120.1725i 0.2469 0.332210.3285i

20.171120.1725i 20.321610.7210i 0.332210.3285i 0.2469

D . ~12!
6-3
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E. KNILL PHYSICAL REVIEW A 66, 052306 ~2002!
The probability of success for this solution is 1/19.37.
‘‘nice’’ beam splitter decomposition of this matrix was n
found. This is partly due to the fact that because only two
the singular values are~close to! 1, at least two extra mode
must be added for the unitary completion. The simpl
method of decomposing a 636 unitary matrix normally re-
quires 15 beam splitters.

It is an open problem to determine whether the abo
solutions are indeed optimal, as is suggested by the resu
the numerical experiments.

IV. BOUNDS ON CONDITIONAL PHASE SHIFTS?

To obtain bounds on the probability of success of a pha
shift gate implemented with helper photons, one can atte
to use a characterization of the states obtained in the ou
modes after tracing out the helper modes. The purpose of
section is to obtain such a characterization and to show
the phase-shift gate cannot be implemented with probab
of success 1. For obtaining a bound, the initial state of
modes that the gate is applied to can be chosen arbitra
Assume that this is a state obtained by applying linear op
to prepared single photons. In this case, the final state af
linear optics transformation is given by

uc f&5)
k51

n

~ak1a†(1)1•••1akma†(m)!u0&. ~13!

The goal is to show that after tracing out modesm8
11, . . . ,m, the state in the remaining modes is a mixture
states of the form

)
k51

n

~bk01bk1a†(1)1•••1bkm8a
†(m8)!u0&. ~14!

In fact, this is the case even if the final state before trac
out is also of this form, which is more general than the fo
in Eq. ~13!. To be explicit, add to the factors in the expre
sion for uc f& any constant termsak0 so that

uc f&5)
k51

n

~ak01ak1a†(1)1•••1akma†(m)!u0&. ~15!

First trace out modem. Given a set of states$ug&m%g from
which one can form a partition of unityI5*dm(g)ug&m

m^gu
for some measurem, the state of the remaining mode
1•••m21 can be expressed as a mixture of the~unnormal-
t

nt
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ized! statesm^guc f&. Choosing as the set of states the coh
ent states and using the fact that for these statesm^gua†(m)

5m^guḡ, the mixture consists of states of the form

)
k51

n

~ak01ḡakm1ak1a†(1)

1•••1ak(m21)a
†(m21)!u0&1•••(m21) . ~16!

Iterating this procedure proves the desired result.
Consider the conditional sign-flip gate. With this gate a

using a few beam splitters, one can map the stateu1100&
to the state 1/A2(u1100&1u0011&)51/A2(a†(1)a†(2)

1a†(3)a†(4)), an entangled photon state. By the above,
fore postselection on a measurement of the other modes
with n helper photons, the state can be written as a mixt
of products of linear expressions in the creation operat
Therefore, to obtain a bound on the probability of succes
suffices to obtain a bound on the overlap of~normalized!
such states with the Bell state. Because the normalized o
lap of (a†(1)1a†(3))(a†(2)1a†(4)) with the Bell state is 1/A2,
the bound on the probability of success thus obtained can
no smaller than 1/2. It is clear that the probability of succe
cannot be made equal to 1: The polynomialxy1uv associ-
ated with the creation operators in the Bell state cannot
factored.

A problem suggested by the above is as follows.
Problem.What is the maximum probability of success f

implementing CSu using linear optics with at mostk inde-
pendently prepared helper photons and postselection f
photon counters without feedback?

It was shown that foru5180°, a probability of success o
1 is not possible, but fork>2, 1/13.5 can be realized. A
variant of the problem asks the same question for conditio
sign shifts of two bosonic qubits~a four-mode operation!.
Other directions for investigation are to determine what i
provements are possible if active linear optics operations
be used, or if initial states such as prepared entangled ph
pairs @6# or photon number states likeu2& are available.
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