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Nuclei undergoing ®ssion can be described by a multi-dimensional potential-energy surface that guides the nuclear shape
evolutionÐfrom the ground state, through intermediate saddle points and ®nally to the con®gurations of separated ®ssion
fragments. Until now, calculations have lacked adequate exploration of the shape parameterization of suf®cient dimensionality to
yield features in the potential-energy surface (such as multiple minima, valleys, saddle points and ridges) that correspond to
characteristic observables of the ®ssion process. Here we calculate and analyse ®ve-dimensional potential-energy landscapes
based on a grid of 2,610,885 deformation points. We ®nd that observed ®ssion featuresÐsuch as the distributions of ®ssion
fragment mass and kinetic energy, and the different energy thresholds for symmetric and asymmetric ®ssionÐare very closely
related to topological features in the calculated ®ve-dimensional energy landscapes.

When a heavy nucleus divides into two fragments in nuclear ®ssion,
two key questions about the process have challenged researchers
since the discovery of ®ssion more than 60 years ago. First, what is
the threshold energy for the reaction and, second, what shape
changes are involved in the transition from a single nuclear
system to two separated daughter fragment nuclei? These two
questions are intimately connected. The potential energy of a
nucleus as a function of shape de®nes a landscape in a multi-
dimensional deformation space. In this landscape, the energy of the
lowest mountain passes, or saddle points, connecting the nuclear
ground state with the region corresponding to separated fragments,
represents the threshold energy of the ®ssion process.

Previous theories and results
The ®rst theory of ®ssion, put forward in 1939 by Meitner and
Frisch1 and Bohr and Wheeler2, explained the break-up of uranium
into two lighter fragments of roughly equal size with a model
involving a charged liquid drop with surface tension. This break-
up had been observed just months earlier by Hahn and Strassmann3

in the reaction n � U. In such a macroscopic model the drop
becomes increasingly less stable with respect to deformation
when the atomic number Z increases, and at Z < 100 stability
is completely lost. For slightly lighter actinide nuclei the ®ssion
barrier between the ground-state shape and the separated-frag-
ment con®guration is suf®ciently low that spontaneous ®ssion,
due to quantum-mechanical penetration of the ®ssion barrier,
occurs with measurable probability. Fission may also be induced
by exciting the nucleus to energies above the barrier energy. For
example, a thermal neutron incident upon 235U imparts suf®-
cient energy to excite the compound nucleus 236U above the
barrier.

In a pioneering use of the ®rst electronic digital computer ENIAC
in 1947, Frankel and Metropolis4 explored some key aspects of the
macroscopic liquid-drop model. In particular, they determined the
shapes of ®ssioning nuclei at the saddle-point thresholds. In the
1960s a greatly improved model for the nuclear potential energy as a
function of shape emerged. In this macroscopic±microscopic
model, the potential energy is the sum of shape-dependent macro-
scopic (liquid-drop) and microscopic (single-particle) terms. Over
the past 30 years the model has provided considerable insight into

nuclear structure. For example, improved descriptions of ®ssion-
isomeric states and mass-asymmetric ®ssion saddle points have
been obtained and nuclear masses are calculated for nuclei through-
out the periodic system to an average root-mean-square (r.m.s.)
accuracy of about 0.7 MeV (refs 5±13).

The microscopic energy, calculated by following the method
developed by Strutinsky5,6 and representing a modi®cation to the
slowly varying macroscopic `liquid drop' energy of the nucleus, is
due to the presence of quantum-mechanical structure in the
nucleus. For chemical properties it is well known that certain
elements, the noble gases, are unusually stable and non-reactive,
due to particularly stable electron con®gurations, which occur for 2,
10, 18, 36, 54 and 86 electrons, corresponding to He, Ne, Ar, Kr, Xe
and Rn. At these numbers large gaps occur in the energy-level
spectrum corresponding to the individual electron orbitals. In
nuclei, quantum-mechanical laws give rise to increased stability at
similar gaps corresponding to nuclear `magic numbers' for protons
and neutrons. Because of differences between the purely electro-
magnetic forces determining the electron levels and the nuclear
forces, the ®rst few `magic numbers' for spherical nuclei are 2, 8, 20,
28, 50 and 82 for both protons and neutrons. However, although the
effects are largest for the `magic' nuclei, microscopic corrections to
the simple liquid-drop model of nuclei occur to some degree in all
nuclei. Strutinsky5,6 generalized the concept of magic numbers so
that a precise, well speci®ed microscopic (shell) correction to the
liquid-drop energy can be calculated for any shape and any particle
number. It is the shell-correction part of the total nuclear energy
that is responsible for the multiple valleys, minima, saddle points
and peaks that appear in general multi-dimensional potential-
energy surfaces as functions of nuclear shape. In such surfaces it
has been demonstrated, for some nuclei in limited shape param-
eterizations, that `shells' or regions of unusually low energy corre-
sponding to magic numbers in separated ®ssion fragments manifest
themselves as deep valleys in the nuclear potential energy surface
long before division into separate daughter fragments14±17. However,
to what extent ridges stabilize these valleys was unclear in these
previous, lower dimensional, schematic calculations.

In the past, ®ssion properties have often been correlated with
models of the binding energy of separated ®ssion fragments, and
of valleys inside the point of contact. However, the valleys by
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themselves do not determine the ®nal state of a ®ssioning nucleus.
Final states corresponding to three or more fragments are in many
cases energetically more favoured than are states of two ®nal ®ssion
fragments. In these cases the nucleus nonetheless divides into only
two fragments. This occurs because the barrier between the ground
state and the binary ®ssion valley favours such divisions and a ridge
separates the binary from the ternary valley, although dynamical
effects may also affect the division. Here we examine what saddles
connect the ground state to the various two-fragment valleys that
emerge in the later stages of the ®ssion process, and what are the
heights of the ridges that allow or prevent movement between the
valleys.

Unsolved mysteries
With our new approach we are now able to explain a number of
previously unresolved, very important characteristic features of
®ssion. These include:
(1) Nuclei just below the actinide region close to 228Ra exhibit two
®ssion modes18±21. Figure 1 illustrates experimental data obtained
for 227Ra in ref. 19. In one mode, with the lower threshold energy,
the fragment mass distribution is asymmetric and the total fragment
kinetic energy is about 10 MeV higher than in the other, symmetric,
mode19. At certain excitation energies these two modes lead to a
striking three-peaked structure of the fragment-mass yield curve.
From the totality of the experimental data the authors of ref. 19
conclude: ``Thus it seems that after the gross determination of the
symmetric or asymmetric character of ®ssion made already at the
barrier, the two components follow a different path with no or
little overlap in the development from the barrier to the scission
con®guration.''
(2) Nuclei at the upper end of the actinide region exhibit sudden
changes with nucleon number in ®ssion properties and sometimes
display a two-mode character in the same nucleus. For example,
the fragment mass distribution changes abruptly from mass
asymmetric for 256Fm to mass symmetric for 258Fm along with a
correlated increase in the fragment total kinetic energy (TKE) by
about 35 MeV. But 258Fm also exhibits the asymmetric mode with
lower TKE with a small probability: ®ssion of such nuclei is
characterized as bimodal.
(3) Throughout the actinide region below Fm, nuclei near the line of
b-stability in spontaneous or low-energy induced ®ssion divide into
a heavy fragment with a mass close to 140 and a light fragment with
a mass that shifts with the total mass of the ®ssioning nucleus. An

example of a typical ®ssion-fragment charge (mass) distribution is
shown in Fig. 2. In our new strategy for applying the macroscopic±
microscopic method to higher-dimensional spaces, all of these
observed ®ssion phenomena can be understood in terms of nuclear
potential-energy surfaces calculated with ®ve appropriately chosen
nuclear shape degrees of freedom.

New approach
Since the early 1970s (refs 5±11), there has been no major improve-
ment in the description of the ®ssion potential-energy landscape,
although many calculations based on 1,000 or so points in defor-
mation space have been presented. We have learned that to describe
properly the evolution of a single nuclear shape into two fragments
of different mass and deformationÐfor example, one spherical
132Sn-like fragment and one deformed fragment with mass number
A near 100Ðat least ®ve independent shape parameters are
required. Earlier, approaches such as self-consistent Hartree±Fock
calculations (see discussion in ref. 22) constrained with respect to
one variable were sometimes thought to take into account auto-
matically all additional shape degrees of freedom. In other
approaches, also called multi-dimensional, the calculated energy
was displayed as energy contour maps in terms of two shape degrees
of freedom where the energy at each point was minimized with
respect to additional shape coordinates. Neither approach results in
a correct description of the structure of the full, multi-dimensional
®ssion potential-energy surface. In fact, they are at least as inexact as
two-dimensional calculations, as is discussed in more detail in
ref. 22. To establish the structure of multi-dimensional spaces it is
necessary to calculate the energies corresponding to all physically
possible combinations of the deformation parameters, which leads
to multi-million-point potential-energy spaces rather than only
1,000 or so points.

We investigate in detail such a space incorporating 2,610,885
points de®ning a ®ve-dimensional shape-coordinate grid. For the
potential energy we use the macroscopic±microscopic ®nite-range
liquid-drop model with shape-dependent Wigner and A0 terms as
de®ned in refs 12 and 16. Speci®cally the ®ve shape coordinates are:
(1) elongation, expressed in terms of the charge quadrupole
moment Q2; (2) neck diameter d; (3) left nascent-fragment defor-
mation ef1; (4) right nascent-fragment deformation ef2; and (5)
mass asymmetry ag, as illustrated in Fig. 3. The charge quadrupole
moment Q2 is given as that of 240Pu with the same shape as
the nucleus being considered, so that the nuclear size effect is
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Figure 1 Asymmetric and symmetric ®ssion probabilities for 227Ra as functions of the

excitation energy in the ®ssioning nucleus. Here d denotes a deuteron, p a proton, Bn the

neutron binding energy, and Gn and Gf are proportional to the neutron-emission and

®ssion probabilities, respectively. The data show that two distinct ®ssion modes coexist in

this nucleus, namely one asymmetric mode and one symmetric mode, the latter with a

1±2 MeV higher threshold energy. The ®gure is based on a ®gure in ref. 19.
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Figure 2 Nuclear charge yield in electromagnetic-induced ®ssion of 234U from ref. 28. The

data are converted to a mass±yield distribution before neutron emission (top axis) by

assuming that the proton/neutron ratio Z/N is the same in each of the two ®ssion

fragments as in the original nucleus.
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eliminated. The end-body masses (or, equivalently, volumes) M1

and M2 are the masses of the left and right nascent fragments were
they completed to closed shapes. The nascent fragments are partial
spheroids whose deformations we characterize by Nilsson's quad-
rupole e parameter7. They are smoothly joined by a partial spheroid
or hyperboloid of revolution. Our approach is based on an estab-
lished realistic microscopic interaction12,23, and the energy behaves
properly as the shape evolves from the one limit of a single shape
corresponding to the nuclear ground state to the other limit of
scission con®gurations corresponding to two touching daughter
®ssion fragments. By `properly' we mean that the model is for-
mulated so that for a touching-fragment con®guration we obtain
the same energy whether the energy is calculated as that of a single,
very deformed nucleus or as that of two touching nuclei16.

We identify signi®cant structures in the calculated ®ve-dimen-
sional potential-energy space by considering imaginary water
¯ows24 in ®ve dimensions22. The threshold saddle-point energy
and the corresponding shape are found by tracing this imaginary
water ¯ow across saddle points when various minima are gradually
®lled with water.

Given the determination of the threshold energies for ®ssion and
the nuclear shapes corresponding to the saddle-point locations, we
turn to the second key question: what are the shape changes
involved in the transition from a single nucleus to two separated
daughter fragment nuclei? Do structures exist in the potential-
energy surface that lead to multi-mode ®ssion such as that of the
well known three-peaked mass distribution in 228Ra ®ssion19? To
look for such structures we ask whether there are valleys of distinctly
different character running in the ®ssion direction of increasing Q2.
That is, for ten or more ®xed Q2 values beyond the outer saddle
region, we determine all minima in the remaining four-dimensional
space of the two fragment deformations, neck size and mass
asymmetry. We ®nd that there are usually two (but sometimes
more) distinct valleys in the region beyond the second saddle
region, one corresponding to a mass asymmetry ag of about
�140 2 �A 2 140��=A and one corresponding to mass symmetry
ag � 0. To understand the signi®cance of these valleys it is necessary
to determine more details about their interconnections in the ®ve-
dimensional deformation-energy space.
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example, zero quadrupole moment cannot be realized for shapes with very deformed

ends. In our grid there exist 156,615 such `unphysical' points. Thus, we are left with

2,610,885 shapes for which we actually calculate the potential energy. We have closely

spaced the asymmetry coordinate so that we will be able to identify favourable saddle-

point shapes, close to fragment magic proton and neutron numbers, that may not appear

in a more sparsely spaced grid. For 240Pu the spacing corresponds to a change of 2.4 units

in the nascent fragment mass numbers.
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Figure 4 Calculated potential-energy valleys and ridges and corresponding nuclear

shapes for 228Ra. Two ®ssion paths exist: one asymmetric path and one symmetric path.

The symmetric path has a higher ®ssion saddle point and the more elongated shapes in

the valley beyond the saddle point indicate that total fragment kinetic energies in the

symmetric mode are lower than in the asymmetric mode. For excitation energies just

above the symmetric saddle the ridge separating the two valleys is high enough to keep

the two modes well separated.
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Variations of the ¯ooding algorithm allow us to determine
that separate saddle points provide entries to the two valleys and
the respective energies of these saddle points. Once the lowest
saddle has been determined we may block the water ¯ow across
this saddle by building an imaginary dam across the saddle
region. We can also totally block the water ¯ow beyond a
selected maximum Q2. This prevents water from ¯owing down
one valley and up `the back way' into the other valley. To
determine the height of the ridge between the two valleys along
their entire length, for each ®xed Q2, we study the remaining
four-dimensional space in which the two valleys correspond to
two minima and the ridge to the saddle separating them. We use
the ¯ooding algorithm in four dimensions to localize this saddle/
ridge.

Mysteries resolved
As examples of structures we have found in the calculated ®ve-
dimensional potential-energy surfaces we show in Figs 4 and 5 some
®ssion-valley and separating-ridge features obtained for 228Ra and
234U. Asymmetric ®ssion dominates in both cases, because the
barrier leading into the asymmetric valley is the lower one, in
agreement with experiment. At the saddle points leading to the
asymmetric ®ssion valleys the shell correction is already about half
of the one calculated for the spherical ground-state shape of 132Sn,
whereas the shell correction at the saddle points leading to the
symmetric ®ssion valleys is essentially zero. The calculated bi-valley
structure of the potential-energy surface leads to the observed
bimodal ®ssion features in this region of nuclei19,21. The high ridge
separating the two valleys for 228Ra peaks at 2.47 MeV above the
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Figure 5 Calculated potential-energy valleys and ridges and corresponding nuclear

shapes for 234U. Two ®ssion paths exist: one asymmetric path and one symmetric path.

The symmetric path has a higher ®ssion saddle point and the more elongated shapes in

the valley beyond the saddle point indicate that total fragment kinetic energies in the

symmetric mode are lower than in the asymmetric mode. The ridge separating the two

valleys is certainly not high enough to permit two well-separated modes to evolve.

256Fm: Higher outer saddle (Towards high TKE) 

εf1 = 0.1500   εf2 = 0.0500   MH/ML = 128.0/128.0

256Fm: Lowest outer saddle (Towards low TKE) 

εf1 = 0.1500   εf2 = 0.2000   MH/ML = 145.9/110.1

258Fm: Higher outer saddle (Towards low TKE) 

εf1 = 0.1000   εf2 = 0.1000   MH/ML = 152.2/105.8

258Fm: Lowest outer saddle (Towards high TKE) 

εf1 = 0.0000   εf2 = 0.1000   MH/ML = 129.0/129.0

Figure 6 Several saddle-point shapes for 256Fm and 258Fm calculated on the grid in

ref. 22. Two views are plotted for each calculated shape; a side view and a view from an

angle. For 258Fm the lowest saddle-point energy corresponds to a compact, mass-

symmetric shape con®guration, which with its nearly spherical nascent fragments

corresponds to the experimental observation of high ®ssion-fragment kinetic energies and

mass-symmetric ®ssion. An observed weak mode of low-kinetic-energy ®ssion

corresponds to ®ssion in a valley accessible across the higher calculated saddle in the top

right part of the ®gure. For 256Fm the calculated heights of these two saddles are reversed,

favouring both low ®ssion-fragment kinetic energies and fragment mass asymmetry, in

agreement with the experimental observations. TKE stands for total kinetic energy.
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entrance saddle to the symmetric valley. At low excitation energies it
therefore keeps the mass-symmetric and mass-asymmetric modes
well separated until scission, whereas for 234U the lower separating
ridge, at almost the same energy as the entrance saddle to the
symmetric valley, allows the symmetric component to partially or
completely revert back to the asymmetric valley before scission. The
elongated shapes obtained in the symmetric valley are consistent
with the lower fragment kinetic energies observed in the symmetric
®ssion mode relative to the asymmetric mode for which we obtain
more compact shapes. The fragment kinetic energies arise from
Coulomb repulsion which mainly becomes effective just after
division into separated fragments. The centres of charge of more
elongated touching fragments are farther apart than for compact
touching fragments. High fragment kinetic energies therefore
indicate compact scission con®gurations, whereas low fragment
kinetic energies indicate more elongated scission con®gurations.

Nuclei in the region near 258Fm also exhibit bimodal ®ssion
features25. We have earlier tentatively identi®ed bimodal structures
in calculated two-dimensional potential-energy surfaces15,16, but
only now have we veri®ed that these interpretations remain valid
when the calculation is extended from two to ®ve dimensions. For
256Fm and 258Fm we ®nd the two distinct classes of saddle points
shown in Fig. 6. For 256Fm the shape of the lowest saddle indicates it

corresponds to normal, low-TKE ®ssion similar to what is observed
in ®ssion of lighter actinides. However, another saddle point exists,
which we calculate to be 0.30 MeV higher than the lower saddle
point. This saddle-point shape shows that it corresponds to a path
leading to symmetric ®ssion with compact scission con®gurations
and higher fragment kinetic energies. For 258Fm the latter type of
saddle point is the lowest saddle point. Thus, we reproduce the
experimentally observed transition point between asymmetric low-
TKE ®ssion and symmetric high-TKE ®ssion25.

For elongations between the outer ®ssion-barrier saddle point
and scission we can unambiguously identify a mass-asymmetric
valley for most actinide nuclei. We have de®ned the deformation-
grid mass-asymmetry parameter ag (compare Fig. 3) as

ag �
M1 2 M2

M1 � M2

�1�

where M1 and M2 are the volumes inside the end-body quadratic
surfaces, were they completed to form closed-surface spheroids.
Suf®ciently far along in the mass-asymmetric valley, say at
Q2 � 64 b, where 1b is 1 barn, corresponding to 10-28 m2, the
®ssioning nuclei always have well-developed necks (see Figs 4 and
5). Therefore it is meaningful to compare the mass asymmetry of the
non-separated shape in the mass-asymmetric valley to the ®nal
heavy and light fragment masses MH and ML.

Although M1 and M2 for shapes with well-developed necks can be
expected to be close to the ®nal fragment masses we cannot directly
compare M1 and M2 to the observed ®ssion fragment masses MH

and ML because the former do not quite sum up to the total nuclear
volume or mass A. However, by scaling M1 and M2 so that their sum
adds up to the total mass number A, we can directly compare the
mass asymmetry of the valley shape to the observed heavy and light
fragment masses. We obtain trivially

Mcalc
L � rsM1 � A

1 � ag

2
; Mcalc

H � rsM2 � A
1 2 ag

2

and rs �
A

M1 � M2

�2�

where rs is a scaling factor for a nucleus with A nucleons. The scaling
is equivalent to a redistribution of the mass in the neck region to the
left and right masses in proportion to their respective volumes. The
amount of matter in this `gedanken' redistribution is quite small,
about 10±20 nucleons.

We use the above de®nitions in Fig. 7 to compare calculated heavy
and light ®ssion-fragment masses, based on valley properties at
Q2 � 99 b, to experimental data for the mean positions of the
heavy- and light-mass peaks in fragment-mass distributions26±28 for
a range of even isotopes of Th, U, Pu, Cm, Cf and Fm. Our calculated
results are in excellent agreement with experimental data, with a mean
deviation of only 3.0 nucleons. Speci®cally, we ®nd that the calculated
heavy-fragment mass is roughly constant and close to A � 140 for all
elements and all isotopes considered. Consequently the mass of the
light fragment, which contains the remainder of the mass of the
®ssioning nucleus, depends on the mass number of the ®ssioning
system, again in excellent agreement with experimental data.

Discussion
The new theoretical results on nuclear ®ssion presented here have
been obtained in our standard nuclear-structure model29,30 that has
also been applied to the calculation of nuclear masses12, heavy-ion
interaction barriers31, nuclear b-decay32, and nucleosynthesis in
stellar environments33, with no change in the model or its param-
eters relative to their 1992 de®nitions in ref. 12. We have used the
FRLDM (1992) version12 of the potential-energy model, rather than
the FRDM (1992) version12 because the latter is unsuitable for
shapes with well-developed necks. We have calculated ®ve-dimen-
sional potential-energy landscapes for 138 even±even nuclei from
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nucleus. However, deviations from this rule of thumb are also reproduced by the

calculations.
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Pb to Fm. Our analysis of these landscapes, of which only some
examples have been discussed in detail above, allows us to draw the
following conclusions:
(1) Multiple ®ssion paths are found for most nuclei.
(2) For radium and light actinide nuclei two paths dominate: one
mass asymmetric and one mass symmetric. These paths correspond
to different ®ssion modes, such as those illustrated in Fig. 1.
(3) The difference in energy between the symmetric and asymmetric
saddle points for Ra and light actinide nuclei in our calculated
potential-energy surfaces is 1±2 MeV, which is consistent with the
experimentally inferred differences in threshold energies for these
two modes19±21,34.
(4) For 228Ra and nearby nuclei we ®nd that the symmetric and
asymmetric ®ssion paths are well separated by a high ridge from
saddle to scission. Thus, our ®ve-dimensional calculations have
veri®ed the experimental conclusion reached in ref. 19 that at low
excitation energies two ®ssion paths exist with little or no overlap.
(5) From experimental observations of ®ssion of elements lighter
than Fm it is deduced that the average kinetic energy is 10±15 MeV
higher for the asymmetric mode than for the symmetric mode18,19,35.
The shape differences we calculate for nuclei evolving in the mass-
asymmetric and mass-symmetric valleys are qualitatively consistent
with these differences in the kinetic energies of the two modes.
(6) The saddle-point shapes and energies for 256Fm and 258Fm are
consistent with the experimentally observed transition between
asymmetric low-TKE ®ssion and symmetric high-TKE ®ssion that
occurs between 256Fm and 258Fm.
(7) The long-observed mass split in mass-asymmetric ®ssion with a
roughly constant heavy fragment mass near A � 140 is convincingly
reproduced in our calculations.

As early as 1950 Meitner36 suggested an interpretation of the
observed mass divisions in ®ssion in terms of fragment shell
structure. We have shown here that it is not only the mass division
that is in¯uenced by shell structure. Shell structure also creates
different modes of ®ssion, each of which has its characteristic
saddle-point energy, mass division, and kinetic energy.

The ®ve-dimensional ®ssion potential-energy surface at and
beyond the several outer saddle points is an imposing landscape
traversed by deep valleys and high ridges. The fragment shells
profoundly in¯uence the topography of this landscape, long
before the system divides into separated ®ssion fragments.
Note added in proof: An interesting discussion of the problem of
®nding structures in multidimensional spaces is in ref. 37. M
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