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Many important properties of a macromolecule can be expressed in terms of averages over the
trajectories of diffusing particles that begin in the medium surrounding the molecule and terminate
at its surface. These properties include its translational hydrodynamic friction coefficient and the
Smoluchowski rate constant for diffusion-limited reactions. In this paper we introduce a
first-passage algorithm~FPA! for calculating such quantities. This algorithm uses certain exact
Green’s functions, or propagators, for the Laplace equation to eliminate the need to construct
explicitly those portions of a diffusing particle’s trajectory that are not near an absorbing object. The
algorithm is especially efficient for studying objects that contain large voids or have very irregular
surfaces, such as macromolecules. Diffusion algorithms were previously shown to give accurate
results for the quantities we study. In this paper, we show that first-passage methods make these
algorithms more accurate and efficient. In future work, we expect to present systematic results for
the properties of globular proteins. ©1997 American Institute of Physics.
@S0021-9606~97!50109-7#

I. INTRODUCTION

This paper initiates a project of calculating the bulk
properties of disordered media by the use of a novel class of
diffusion techniques. Disordered media1–3 are systems be-
longing to the liquid state of matter,1 i.e., those lacking long-
range positional order, but possessing substantial organiza-
tion, as measured by more complicated order parameters.
Many such systems are two-phase materials in which one
phase is dispersed throughout the other in an irregular man-
ner. Examples of disordered media abound in physical chem-
istry ~electrolytes or complex fluids undergoing phase sepa-
ration!, polymer chemistry~polymer or diblock copolymer
blends!, and biophysics~self-organizing lipid-membrane or
polypeptide structures!.

Bulk properties can be defined as large-scale averages2,3

over the microstructure of a disordered system; frequently
these are volume averages and/or ensemble averages over the
solutions of Laplace equations or wave equations with
source terms and/or boundary conditions prescribed on very
complicated boundaries. These include the calculation of
electrical and thermal conductivity~in the case that both
phases are solid!, and diffusion-limited reaction rate and
fluid permeability~in the case that one phase is solid and the
other is liquid!.

By the term ‘‘diffusion techniques,’’ we denote the gen-
eral class of methods of solving partial differential equations
that are based on mapping these equations onto generalized
diffusion equations;4 these are often called Monte Carlo dif-
fusion algorithms. The theory behind this type of mapping is
probabilistic potential theory.

In this series of papers, we develop a novel class of
algorithms, which we call ‘‘first-passage algorithms,’’ for ef-
ficiently solving a large class of parabolic and elliptic differ-
ential equations. These algorithms involve three steps.

~1! We rewrite the differential equation as a Poisson equa-
tion, by putting all the non-Laplacian terms on the right-
hand side of the equation.

~2! We interpret this equation as a diffusion equation for
freely diffusing particles, with the right-hand side terms
interpreted as source terms, to be determined self-
consistently. Precisely how this is done is the subject of
a later paper in this series.5 Here we simply note that this
step allows us to solve, using random diffusion methods,
a large class of differential equations, including the type
of Smoluchowski equation that governs both the Brown-
ian dynamics6 and the solvation free energy7 of a
macromolecule.6,36

~3! We perform efficient simulation of free diffusion near
irregular surfaces using the basic first-passage concept;
each diffusing particle performs a series of propagating
events or ‘‘jumps’’ that allow it to traverse quickly do-
mains of the system that that contain no reactive sur-
faces. At present, propagators for these events are taken
from a library of Green’s functions that can be sampled
by performing a single numerical integration. We are
presently relaxing this restriction by calculating some
other Green’s functions using grid tabulation and higher-
order interpolation.

The first-passage concept allows rapid simulation of dif-
fusion near a great variety of reactive surfaces, including
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those present in macromolecular models. This allows simu-
lation of diffusion-limited reactions8~a!,8~b! with or without
force fields, between a small ligand molecule and a macro-
molecular containing one or more binding sites.

First-passage algorithms can also be used to determine a
large number of macromolecular bulk properties by exploit-
ing the mappings of potential theory. The capacitance9 C of
a macromolecule, defined as the electrostatic capacitance of
a perfect conductor with size and shape identical to the mac-
romolecule, determines,10 either exactly or approximately, a
number of bulk properties of a macromolecule. An example
is the diffusion-limited reaction ratek using Smoluchowski
boundary conditions of a small ligand diffusing near a
macromolecule,6

k54pCD, ~1.1!

whereD is the diffusion constant of the diffusing ligands.
Certain bulk properties, for example, the hydrodynamic fric-
tion and intrinsic viscosity, are given accurately by a class of
‘‘angle averaged approximations’’11 that reduce their calcu-
lation to the solution of a scalar wave equation. These give
for the isotropically averaged translational hydrodynamic
friction12 j the relation11

j56phC, ~1.2!

whereh is the shear viscosity, and for the intrinsic viscosity
h0 the formula,

h05
5

6
a, ~1.3!

wherea is the electrical polarization of a conductor shaped
like the macromolecule. This approximation is accurate for a
wide variety of molecular shapes.15 We do not yet have an
accurate formula of this type for the rotational friction
coefficient.16 The rotational friction coefficient of an axisym-
metric molecule about its symmetry axis can be
expressed17~a! in terms of the virtual mass17~b! of the object;
the latter quantity is readily calculated using first-passage
diffusion algorithms.5,18 The hydrodynamic friction of flow
through a packed bed14 can be calculated using formula~1.2!
by treating the particle bed as a large ‘‘molecule’’; this is a
simple case of the general problem of suspension viscosity.13

The first passage algorithm constructs a random diffu-
sion path as a series of first-passage propagation events~see
Fig. 1! or ‘‘jumps.’’ To construct one of these ‘‘jumps’’ for
a diffusing particle at positionx0, one constructs a first-
passage volume that surrounds it. Such a volume is the in-
tersection of a sphere with a portion of the absorbing target
surface sufficiently simple, geometrically, to allow construc-
tion of an analytic Green’s function for the Laplacian inside
its surface. Here by an ‘‘analytic’’ Green’s function, we
mean one whose values are determined by at most a single
numerical quadrature. The surrounding first-passage sphere
divides the trajectory into manageable portions; we absorb
the diffusing particle at its surface in order to terminate it
there, thus making its behavior inside the first-passage sur-
face independent of the geometry of the absorbing target
surface outside. As explained in Sec. III, the Green’s func-

tion gives the probability density associated with the diffus-
ing particle at positionx0 first contacting the first passage
sphere~and thus being terminated! at the pointx1 on its
surface. This termination site then becomes the center of the
next first-passage surface.

Our present algorithm allows several possibilities for the
first-passage surface: it may be a sphere19 that does not in-
tersect an absorbing target surface at all.~When a diffusing
particle is far from the absorbing target surface, this is ad-
vantageous; we explain this in Sec. III.! It may be a sphere
that intersects a spherical20,21 or cylindrical patch of absorb-
ing target surface. We have not exhausted the possibilities.
The set of Green’s functions presented in Sec. III~see Fig. 2!
is sufficient for calculating the geometrical, and thus the
bulk, properties of a macromolecule, as represented in stan-
dard molecular mechanics packages.

First passage algorithms are free of three limitations that
plagued earlier Monte Carlo diffusion methods. These are

~1! We need not discretize22 either absorbing medium or dif-
fusing particle trajectory, either in space or in time. We
do not approximate an absorbing target surface as a dis-
crete set of periodically-spaced lattice points.24 Nor do
we approximate a diffusion path, which is a continuum
Brownian motion, by a discrete-time random walk. Such
an approximation~see Fig. 3! is fraught with difficulties
when modeling a diffusing particle very near an absorb-
ing surface.22 Finally, we do not discretize the source.23

~2! We need not approximate absorbing boundary condi-
tions at a surface by defining an ‘‘absorption length,’’
and specifying that any random walker that steps closer
to the surface than this length is absorbed. This concept

FIG. 1. A sample trajectory of the first-passage algorithm~FPA!, simulating
a particle diffusing near an absorbing cube. Here the symbol L denotes the
launch sphere, and T denotes the target. The trajectory shown goes through
five first passage events before hitting the target.
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may be useful for some practical problems, but it yields
an ‘‘absorption rate’’ that depends essentially upon the
absorption length.~One could, alternatively, model ab-
sorbing boundary conditions by specifying that any
walker stepping over the surface of the absorbing target
object is absorbed. This method, however, requires that
one use very small random walk step size when diffusing
near an absorbing object.!

~3! We need not require a diffusing particle to take small
steps in both space and time when it diffuses in a strong
force field,6 because, even when forces are present, we
need consider only force-free diffusion. As mentioned
above, we do this by moving the non-Laplacian terms in
a differential equation to the right-hand side of the equa-
tion, and treat them as ‘‘source terms’’ to be determined
self-consistently.

One final advantage; our statistics are not degraded near
a point of surface discontinuity even though solutions to the
Laplace equation tend to have singularities at such points;
first-passage algorithms already perform importance sam-
pling, by definition of this term.

In this paper, we develop and test a first-passage algo-
rithm for the capacitance of an object with the geometry of a
macromolecule. In future publications, we intend to discuss
first-passage algorithms5 for the other bulk quantities men-
tioned in this Introduction. In addition, we will present a
first-passage algorithm for Brownian dynamics and solvation
free energy.

This paper is organized as follows: Section II describes
the electrostatic analogies that we find useful for relating the

statistics of diffusing particles to the physical properties of
macromolecules. Section III develops the set of Laplacian
Green’s functions that are the basis for the present class of
algorithms. Section IV describes some exacting numerical
tests that show first-passage methods, to be free of limita-
tions present in other methods. Section V gives our conclu-
sions and implications for further research. Five technical
appendices are provided, in which we present explicitly the
five exact Green’s functions that are incorporated in the cur-
rent version of our algorithm. A sixth technical appendix
shows how to use them to obtain the explicit surface density
of absorbed particles as a function of position on the target
surface.

II. ELECTROSTATIC ANALOGY FOR CALCULATING
DIFFUSION-LIMITED QUANTITIES

In this section, we develop briefly the isomorphism be-
tween the electrostatic properties of an object that is an ideal
conductor, and the statistical properties of particles diffusing
near a geometrically identical object that is a perfect ab-
sorber.

The class of first-passage algorithms studied in this work
are based on the mathematical study4 termed ‘‘probabilistic
potential theory.’’ This study develops a detailed isomor-
phism, or mapping, between the calculation of electrostatic
quantities9 and the calculation of the average properties of
diffusion paths. We first develop this mapping. Consider a
system of particles undergoing diffusive motion near an ab-
sorbing object. The particles diffuse independently of one
another and are absorbed upon contact with the object. The
densityp(x) of diffusing particles near an absorbing target
surface at positionx obeys the Laplace equation, the same
equation obeyed by the electrostatic potentialf(x) near an
identically shaped conducting surface. In fact, the correspon-
dence

FIG. 2. Schematic of the five electrostatic Green’s functions, or propagators,
for the Laplacian that we use in this paper.

FIG. 3. Discrete random walk as an approximation to continuum Brownian
motion. As shown here, a diffusing particle, exhibiting continuum Brownian
motion may contact the absorbing set in between the discrete moments in
this motion that are chosen by the random walk.
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p~x!/p~`![f~x!/f~`! ~2.1!

results from the fact that these two quantities obey Laplace’s
equation with identical boundary conditions. Heref~`! is
the ~constant! value of the electrical potential at infinity, and
p~`! is the density of diffusing particles at infinity, i.e., far
from the absorbing object. The gradient of this density gives
the flux of diffusing particles, a quantity analogous to the
electric field. The divergence of this flux gives the rate at
which diffusing particles are absorbed or created at a surface,
a quantity analogous to the density of electric charge on that
surface. In fact, the time derivative of the diffusive particle
density is related to the fluxJ of random walkers by the
equation

]

]t
p1¹•J50 ~2.2!

just as the charge densityr is related to the electric fieldE by
the equation

4pr1¹•E50. ~2.3!

The absorbing~resp., reflecting! boundary condition for dif-
fusion problems corresponds to Dirichlet or conducting
~resp., Neumann, or insulating!, boundary condition for elec-
trostatic problems.

Applications of this analogy are applied to problems in
chemical physics in Ref. 8, to which the reader is referred.
We will generalize this analogy substantially in Ref. 5.

III. CALCULATION OF DIFFUSION-LIMITED
QUANTITIES TO USING THE FIRST-PASSAGE
ALGORITHM (FPA)

In this section, we develop in detail the first-passage
algorithm ~FPA! for simulating diffusive motion. We define
a set of five Green’s functions that completely characterize
interaction of a diffusing particle with a general class of sur-
faces adequate to model macromolecular surfaces.

We can efficiently model diffusion-limited processes if
we can determine the first-passage probability density on an
absorbing first-passage surface surrounding a diffusing par-
ticle. In the diffusion problem shown in Fig. 2, absorbing
boundary conditions must be imposed on both the absorbing
target surface and the first-passage sphere; on the former
because it reacts with diffusing particles, and on the latter
because the contacts made with it by diffusing particles
would otherwise not be ‘‘first-passages.’’ The probability
density associated with a diffusing particle originating at a
point source atx0 and being absorbed at pointx1 is given by

s1~x1!5n~x1!•
d

dx1
G~x0 ,x1!. ~3.1!

Heren~x1! is the unit normal vector to the absorbing surface
at pointx1; G(x0 ,x1) is the Green’s function for the Laplace
equation associated with a unit source at pointx0 and absorb-
ing boundaries at the target surface. If the portion of bound-
ary of the absorbing object included in the first-passage
sphere is not too irregular, the calculation of this Green’s
function reduces to a single one-dimensional integral, which

can be performed numerically for any specific value ofx1. In
particular, if the included patch of boundary is either flat or
spherical20,21 this can be done with Green’s functions pro-
vided in this paper.

We first indicate how to use the solution fors1~x1! to
generate points on the first-passage surface having the cor-
rect distribution. If the absorbing target were not present,
each pointx1 on the first-passage sphere would be reached
by the diffusing particle with uniform probability

s0~x1!51/~4pd2!, ~3.2!

whered is the radius of the first-passage sphere. We choose
a point on the first-passage sphere using this distribution. If
the point lies inside the target, the diffusing particle has been
absorbed. If this point lies outside the target, the diffusing
particle may nevertheless have contacted the target before
reaching this point. We correct for this possibility by gener-
ating points on the first-passage sphere with uniform prob-
ability densitys0~x1!, then rejecting them with probability

P5
s0~x1!2s1~x1!

s0~x1!
. ~3.3!

Again, the diffusing particles that are rejected are taken to
have been absorbed.

Capacitance calculations do not require the charge dis-
tribution on the target, but only the total charge. However,
many applications of first-passage algorithms do require the
charge distribution, i.e., they require determination of the
specific point on the target at which absorption took place.
We give an algorithm for the density of absorbed particles,
as a function of position on the target surface, in Appendix F.

The five Green’s functions used in the present first-
passage algorithm are shown in Fig. 2. Complete formulas
for these are given in the appendices to this paper. This set of
Green’s functions allows us to simulate, in an exact an effi-
cient manner, diffusion near absorbing boundaries that, lo-
cally, are composed of either planar or spherical sections. As
discussed in the Introduction, this class of surfaces includes
that encountered in basic molecular mechanics modeling of
macromolecules.

The present algorithm can be extended to provide first-
passage probabilities near more complicated absorbing sets;
this requires the inclusion of more Laplacian Green’s func-
tions or propagators. In particular, the study of fibrous
media14 suggests the inclusion of the Green’s function for
first passage near a cylindrical absorbing object. The small
library of Green’s functions chosen here seems to us to offer
a good compromise between simplicity and flexibility.

The strategy adopted for our initial computations might
be termed the ‘‘greedy’’ algorithm. It consists of choosing at
each step the largest possible first-passage sphere for which
the Green’s function is available. The major computational
expense of our algorithm lies in evaluating the Green’s func-
tions required in nontrivial first-passage calculations. If a
first-passage sphere is very large in relation to the natural
length scale of the target, the probability of starting at its
center and making a first-passage contact with the target is
very small. In such cases it is best to use instead a first-
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passage sphere which is as large as possible without inter-
secting the target. This maximizes the probability of either
getting closer to the target or of diffusing to infinity. We
implement this idea as follows: no first-passage sphere may
intersect the target unless its center lies closer to the target
than a distanced. For each absorbing object one can study
using this algorithm, there is an optimal choice ofd in terms
of minimizing the computer time used. We get good results
for the problems studied here usingd5~0.1!*b, with b the
radius of the launch sphere. However, we have no general
results on the optimal value of this quantity.

IV. TESTS OF THE FIRST-PASSAGE ALGORITHM

In this section we apply a number of exacting tests to the
FPA in order to test its ability to treat absorbing targets with
irregular surfaces. We show that, although edges and cusps
in the definition of macromolecular accessible surface7 pose
problems for boundary element methods, first-passage algo-
rithms have no such problems. We also show that, although
local correlations in random number generators pose a seri-
ous potential problem for Brownian motion studies, our ca-
pacitance algorithm is free of such problems.

We test the FPA by calculating the capacitance of a
number of sets for which exact results are available. We
perform high-accuracy simulations to search for systematic
errors in our method, i.e., surface irregularities that are
treated incorrectly. Also, because the FPA replaces the gen-
eration of a very large number of random steps with the
generation of a very small number of first-passage moves, it
is a statistical process with strong local correlations, i.e., cor-
relations between consecutive moves. Thus, the FPA should
be sensitive to additional local correlations in random num-
ber generators, of just the type that have been detected
recently.25

Our result for the capacitance of a unit sphere is

C~unit sphere!51.000 0160.0001 ~4.1!

after simulating 40 million diffusing particles. We also cal-
culate the capacitance of a pair of unit spheres26 whose cen-
ters have variable separationl . For l52 andl54 we obtain,
respectively,C51.386360.0001 andC51.605260.0001 af-
ter simulating at least 50 million diffusing particles near each
set. Here the quoted uncertainty in the last decimal place
corresponds to one standard deviation.~According to the law
of large numbers, the fractional errore corresponding to one
standard deviation, in any of the simulations described here,
is given by

e5A12p

p

1

AN
, ~4.2!

where p is the probability that a single diffusing particle
contacts the target, andN is the number of diffusing par-
ticles.! These numerical results agree with exact analytic re-
sults to the available accuracy. We also simulated the case
l52 in greater detail, using extremely long runs of 200 mil-
lion walks each. After a total of 1.2 billion walks we get

C51.386 3060.000 025, which agrees with the exact result
to one part in 40 thousand. This is consistent with formula
~4.2!.

Next, we use these test cases to search for any depen-
dence of our results on the radius of the launch sphereb. We
obtained statistically indistinguishable results when using
b52a, b54a, andb510a.

Next, we calculate the capacitance of a symmetrical lens,
which is defined to be the intersection of a pair of equal-
sized spheres. This test allows us to check for inaccuracies in
the method when applied to shapes that have sharp edges and
corners. This is important for the study of macromolecules,
because classical models for solvent-accessible surface fre-
quently have cusps and other surface singularities. For such
surfaces one finds27 a very slow~logarithmic! rate of conver-
gence of the boundary element result as the finite elements
are made progressively smaller.~The physical basis for this
is clear; charge tends to concentrate at the edges and corners
of a surface, the natural places to piece together the boundary
elements.! We study the symmetric lens formed by the inter-
section of two identical spheres whose centers have variable
separation. For lenses with aspect ratio between one and
2000, we calculate the exact capacitance,28 after simulating
100 million diffusing particles, to at least one part in twenty
thousand.

Finally, we give our result for the capacitance of a unit
cube. Boundary-element estimates of this quantity differ
substantially.27,29–31Our result for this quantity is

C~unit cube!50.660 67560.000 01 ~4.3!

after simulating 4.7 billion diffusing particles. Again, Eq.
~4.2! is used for the error bar. Note that we have done highly
accurate simulations in order to eliminate random error, and
identify any sources of systematic error. This result is con-
sistent with, but more accurate than, the result obtained from
periodically sampled diffusion paths by Zhouet al.8 This
result agrees with the most recent boundary-element
calculations,29,30 to the accuracy available with those
methods.24 However, our approach is exact in principle for
the class of absorbing surfaces we treat, in the sense that no
systematic error is present.

There is a natural approximation,32 which we call the
‘‘simplex approximation’’ for the capacitance of any geo-
metrical set that tiles a periodic lattice. For the capacitance of
a cube, it givesC50.6594. This is accurate to half a percent.

V. DISCUSSION OF RESULTS AND DIRECTIONS FOR
FUTURE RESEARCH

This paper is the first in a series of papers devoted to
calculating the bulk properties of macromolecules using a
very efficient class of continuum diffusion algorithms, which
we call first-passage algorithms. We provide an overview of
our research program. We review and develop the relations
between bulk properties, solutions of Laplace equations, and
properties of diffusion paths.

In this paper, we provide an efficient algorithm for the
capacitance of objects with the geometry of macro-
molecules.33 In future papers,5 we expect to provide first-
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passage algorithms for the other basic geometrical quantities
described in the Introduction~and thus the bulk properties
one can determine from them!. Also, we plan to offer effi-
cient algorithms for Brownian dynamics and other problems
involving diffusion in the presence of forces.

We anticipate the following fact: the Green’s functions
needed to calculate the solutions to all the problems dis-
cussed in this paper can be constructed rather easily out of
those developed in detail in this paper. This will emerge in
future work.

First-passage algorithms can be extended to provide the
entire distribution of first-passage times for a diffusion pro-
cess. To do this, we use a natural approximation for the
average first-passage time associated with any Brownian
path, that is with any sequence of first passages. It requires
that one use a fairly small value of thed-parameter described
at the end of Sec. IV. This implies that all large first-passage
spheres do not intersect the target set. The average first-
passage time to reach the surface of such a sphere, starting at
the center, is given by

tav5
d2

6D
, ~5.1!

whered is the radius of the sphere andD is the diffusion
constant. Most of the time required to trace out a trajectory
will be spent in these large first-passage spheres. The contri-
bution to the diffusion time from small first-passage spheres,
i.e., from the ones that intersect the target set, can be ap-
proximated in several ways@the easiest is to pretend that
they do not intersect the target set and use the result~5.1!#.

A different extension of diffusion Monte Carlo methods
to the calculation of rate constants is provided in Ref. 34.
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APPENDIX A: GREEN’S FUNCTION NO. 1: FIRST
PASSAGE TO THE BOUNDARY OF A SPHERE
LOCATED TOTALLY IN THE VOID

First passage to a sphere located in the void, i.e., not
intersecting any part of the absorbing target set, must be
homogeneous, that is, the diffusing particle will first make
contact with any point on the first-passage sphere with equal
probability @see Fig. 2~a!#.

APPENDIX B: GREEN’S FUNCTION NO. 2: FIRST
PASSAGE TO A SPHERE THAT INTERSECTS A FLAT
ABSORBING BOUNDARY

In this Appendix, we present an algorithm for computing
the fate of a particle diffusing near a flat, absorbing surface
@see Fig. 2~b!#.

In the first-passage an algorithm developed in this paper,
we simulate a diffusing particle near a flat surface, e.g. a face
of a cube, as follows: we draw as large a first-passage sphere
as possible, without that sphere intersecting the edges of the
cube. The resulting first-passage sphere intersects the face of
the cube to form a disk. The particle, beginning at the center
of this sphere, must then make a first passage to some point
on the union of the sphere and the disk. Both boundaries

FIG. 4. The sequence of transformations used to calculate the Green’s func-
tion for a point source of diffusing particles near a flat, absorbing surface.
~a! A point source at positionO1 between two flat intersecting absorbing
surfaces is inverted about pointO1 with a radiusd5O1O2 to yield ~b! two
intersecting absorbing spheres with a source at infinity.~c! This problem is
again inverted through centerO3 with radius r5O3O2. ~c! This yields a
point source inside an absorbing sphere truncated by an absorbing plane.
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satisfy absorbing boundary conditions. If the particle first
contacts a point on the disk it is considered to have hit the
target set, and that random walk then terminates. If the par-
ticle first contacts a point on the first-passage sphere, that
point becomes the center of the next first-passage sphere to
the drawn.

This problem is isomorphic to a standard electrostatic
problem, namely that of calculating the surface charge den-
sity on a conducting sphere truncated by a conducting plane,
as induced by a unit charge at the center of the sphere. We
present the solution to this problem here.20,21

The surface charge density is most naturally calculated
by the method of inversion; using the notation of Fig. 4~c!,
we invert this problem through a sphere of radiusd centered
on the charge at pointO. We set the value of the electric
chargeq equal to2V0d. The resulting inverted problem@see
Fig. 4~b!# consists of a pair of intersecting spheres having~in
general! different radii r 1 and r 2, with the pair of spheres
being held at a finite potential differenceV0 with respect to
infinity. The two spheres have in general different surface
charge distributions.

This problem can be further simplified by again using
the method of inversion. This time, we invert about one of
the pointsO1 ,O2 , in which the two spheres meet with a
radius of inversion 2c equal to the distance between these
points. The result is Fig. 4~a!. The potential differenceV0
with respect to infinity inverts into a charge of magnitude
2V0a located at pointO1, with two infinite conducting
planes at distancesd1 and d2. These planes intersect in an
anglea. The charge induced on these two planes by the point
charge gives, via the chain of isomorphisms just described,
the probability density associated with a random walker
making a first passage at a particular pointx in the original
problem.

Maxwell20 first computed the charge densities induced
on a pair of infinite conducting intersecting planes by a

charge located between them. The isomorphism between this
problem and that of two conducting intersecting spheres was
exploited by MacDonald21 in 1895 to give a solution for the
latter. Thus if we perform the final inversion, relating Figs.
4~b! and 4~c!, we get an analytic solution to the problem
discussed here. We discuss this solution, using the notation
of MacDonald when possible.

We first define the geometric parameters that character-
ize the pair of conducting surfaces in Fig. 4~b!. Definer 1 and
r 2 to be the greater, resp., the lesser of the two sphere radii.
These quantities must be equal tod and (d2/2d2) in order to
give Fig. 4~c! on inversion. Define

a[sin21S d2d D1
p

2
, ~B1!

b[sin21S cr 1D . ~B2!

Now define quantities that characterize the point on the
surface at which we want to know the density of random
walkers. For brevity, we call this the ‘‘first-passage point.’’
This is pointO3 in Fig. 5~b!. Give this point the cylindrical
coordinates~r,z! with respect to the center of the sphere. The
density of random walkers will then be given as a function of
the parameters~h,j!, where

h[U logS r

2cD U, ~B3!

j[u2b. ~B4!

These variables are used because the Maxwell solution is
cast in terms of them. The intermediatesr and u are polar
coordinates, in the geometry of two intersecting spheres, of
the first-passage point. Similarly,R8 and r̂ are bipolar coor-
dinates, andz andr are cylindrical coordinates for the same
point. To obtain the quantitiesh and j, we begin with the
quantitiesz andr @calculated directly from the displacement
~xnew2xold!#, calculate the corresponding bipolar coordinates
from

R825~r1c!21z2, ~B5!

r̂ 25~r2c!21z2, ~B6!

and finally deriver andu from

r 254c21R224cR cosg. ~B7!

Also

u5 H 0, if r 15d
a, if r 25d. ~B8!

Here

R[4c2/R8, ~B9!

cosg[
~4c21R822 r̂ 2!

4cR8
. ~B10!

Again, ~r,z! is the position in cylindrical coordinates of the
first-passage point with respect to the starting point.

Finally, the random walker densitys~h,j! is given by

FIG. 5. Definition of coordinates for the point at which we want to know the
first-passage probability.
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s~h,j!5
F

4pcda E
h

`

f ~z!dz, ~B11!

where the integrandf ~z! is

f ~z!5

sinhS p

a
z D

@cosh~z!2cosh~h!#1/2
1

FcoshS p

a
z D2cosS p

a
j D G2

~B12!

and the prefactorF is

F[2
2p

a
@cosh~h!2cos~j!#3/2•sinS p

a
j D . ~B13!

Here the geometric parametersc,d, a are defined in Fig.
4~c!. The charge density, or equivalently the diffusing-
particle first-passage probability is being specified by a point
with coordinates~j,h!; those quantities are defined in Eqs.
~B3! and ~B4!.

We note that the integrand defined in Eq.~B12! is sin-
gular at the pointz5h. The integral in Eq.~B11! is still
well-defined; however, this singularity may slow the conver-
gence of certain numerical integration procedures. Thus, we
find it advisable to remove the singularity using integration
by parts. To do this, we rewrite the integrand as follows:

f ~z!5
sinh~z!

@cosh~z!2cosh~h!#1/2
•

sinhS p

a
z D

sinh~z!

•

1

FcoshS p

a
z D2cosS p

a
j D G2 . ~B14!

The first factor is easily seen to be an exact derivative. Thus
integration by parts can be applied directly.

APPENDIX C: GREEN’S FUNCTION NO. 3: FIRST
PASSAGE TO A SPHERE THAT INTERSECTS AN
ABSORBING SPHERICAL BOUNDARY

In this Appendix, we compute the fate of a particle dif-
fusing near an absorbing spherical boundary@see Fig. 2~c!#.

In the first-passage algorithm developed in this paper,
we deal with absorbing sets composed of a number of spheri-
cal particles. In order to model the diffusive behavior of a
particle moving near a set of absorbing spherical particles,
one draws as large a first-passage sphere as possible such
that it intersects only one absorbing particle. The diffusing
particle is then contained in a domain bounded partly by the
first-passage sphere and partly by the absorbing particle. The
diffusing particle will first exit this domain at some point on
its periphery, with transition probability given by the solu-
tion of a basic diffusion problem. These transition probabili-
ties are most directly provided as discrete values of the
Green’s functions corresponding to the solution of this dif-
fusion problem. There are three possible geometries for
which we calculate Green’s functions; we give these separate

treatments. These are depicted in Fig. 6. The first two of
these will be described in detail in this Appendix. The third
is a singular limit of the second; it is sufficiently different
from the second, and also sufficiently important, that it is
given a separate discussion, presented as Appendix D.

The sequence of steps followed in the solution of the
first-passage problems presented here is the same as that pre-
sented in Appendix B. The only change is that we begin, not
with Fig. 4~c!, but with the appropriate case of Fig. 6. We
invert through the point labeled 0 to give the potential prob-
lem shown in Fig. 4~b!, and from that point solve as in Ap-
pendix B. The only difference between the problem dis-
cussed in Appendix B and that discussed here is the value of
the geometric parameters used to characterize the problem
shown in Fig. 4~b!. We present expressions for those param-
eters here, in terms of three basic quantities;r , the radius of
the closest particle,d8, the distance from the random walker
to the center of that particle, andd, the radius of the first-
passage sphere. In terms of these, we define auxilliary quan-
tities d2 andd4. These are, in Case I,

d45
~d821r 22d2!

2d8
, ~C1!

d25d82d4, ~C2!

c5Ar 22d42. ~C3!

In Case II, we have

FIG. 6. Geometry for the first-passage sphere intersecting an absorbing
sphere.~a!, ~b!, and~c! are, resp., Case 1 and Case 2~treated in Appendix C!
and Case 3~treated in Appendix D!.
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d45
~d22r 22d82!

2d8
, ~C4!

d25d81d4, ~C5!

c5Ar 22d42. ~C6!

In both cases, we have

a5sin21S d2d D6sin21S d4r D , ~C7!

where the plus sign applies in Case I and the minus sign in
Case II. Also, the radiir 1 and r 2 of the two intersecting
spheres in Fig. 4~b! are given by

r 15maxFd, d2r

~d822r 2!G , ~C8!

r 25minFd, d2r

~d822r 2!G , ~C9!

where r 1 is chosen to be the larger of these two quantities
and r 2 is the smaller. The angleb is given by

b5sin21S cr 1D . ~C10!

The formulas of Appendix B, beginning with Eq.~B3!,
can now be used without change.

APPENDIX D: GREEN’S FUNCTION NO. 4: FIRST
PASSAGE TO A SPHERE THAT COMPLETELY
ENGULFS AN ABSORBING SPHERICAL BOUNDARY

In this Appendix, we compute the fate of a particle dif-
fusing near a spherical absorbing object. We treat here the
special case of a first-passage sphere precisely big enough to
engulf the absorbing object@see Fig. 2~d!#. This is a special
case of the Green’s function computed in Appendix C. We
compute this Green’s function explicitly for two reasons;
first, if the terminology of Appendix C be retained, the spe-
cial case studied here is apparently singular. Thus, we must
use a renormalized set of geometric parameters to get a finite
result. Second, the Green’s function corresponding to this
special case is used by the algorithm a finite fraction of the
time, namely, every time the diffusing particle is sufficiently
closer to one absorbing sphere than it is to all the others.
Thus, we have implemented it as a separate subroutine in our
computer code.

The geometry of this problem is shown in Fig. 6~c!, it is
the limit of Fig. 6~b! as the first-passage sphere gets larger.
Examination shows that the geometrical parametersa, b,
andc are zero in this case;a→0 becaused2→d andd4→r ;
b→0 becausec→0. We then see from the definition~B4! of
j, one of the two parameters that identifies the position of the
first passage, that this quantity is zero in this case, because
b→0 andu→0 @the latter is implied by Eq.~B8!#. The other
such parameter,h, is also zero. To see this, we note from
Fig. 5~b!, that the auxilliary quantitiesr̂ andR8 are identical
~because the anglea is zero!. From Eq.~B9! and the fact that
R8 is in general nonzero,R;e2. Thus, according to Eq.~B7!,

r 2;e2. Finally, Eq.~B3! implies thath→0. Reference to the
general formula~B11! for the probabilitys(x) of making the
first passage at a pointx shows that this formula is quite
useless as it stands.

We obtain finite results for this case as follows: we set
c5e, with e a small quantity. All of the geometric quantities
mentioned above, which go to zero whenc→0, are then
calculated to first order ine. This gives

h5
22er

~r21z2!
, ~D1!

a5eS 1r2
1

dD , ~D2!

b5e/r 1 , ~D3!

j5 Ha2b if r 15d
02b if r 25d. ~D4!

We reformulate the solution for the first-passage probability
s(x) in terms of the parameters

h8[h/a, ~D5!

j8[j/a, ~D5!

a85a/c, ~D6!

all of which are finite asc→0. Also, we change the integra-
tion variable in Eq.~B11! to x, where

x[z/a. ~D7!

The first-passage probability is then

s~j8,h8!5F̄E
h8

`

f̄ ~x!dx, ~D8!

where

f̄ ~x!5
2 sinh~px!

@cosh~px!2cos~pj8!#2
•

&

~x22h82!1/2
~D9!

and

F̄[
2&

16d
• sin~pj8!•a8•~h821j82!3/2. ~D10!

APPENDIX E: GREEN’S FUNCTION NO. 5: RETURN
TO THE LAUNCH SPHERE

In this Appendix, we discuss a Green’s function needed
in the first-passage algorithm to place a diffusing particle
back on the launch sphere after it has diffused outside that
sphere.

First one determines whether the particle diffuses to in-
finity without returning. This is Eq.~27! of Ref. 19. If the
diffusing particle does return to the surface, its probability
density of first reaching a particular point on the surface is
given by Eq.~30! of Ref. 19. An algorithm for efficiently
choosing points with this distribution is given in Eq.~12! of
Ref. 8. To make use of this formula, one must rotate coordi-
nates so that the diffusing particle is on the polar axis, i.e. the
z-axis of Cartesian coordinates, choose the site of return in
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this transformed system, then perform the inverse rotation.
This is discussed in Ref. 35, and illustrated in Fig. 7.

APPENDIX F: CALCULATION OF THE DISTRIBUTION
OF ABSORBED PARTICLES ON THE TARGET
SURFACE

In this Appendix, we give an algorithm for determining
the surface charge distribution~in an electrostatics problem!
or the distribution of particle absorption events~in a diffu-
sion problem!.

The discussion above Eq.~3.2! gives a method for de-
termining when a diffusing particle is taken to have been
absorbed during a first-passage simulation. We now offer a
method which can be applied after such an absorption event
to determine the explicit point at which that absorption took
place. To do this, we follow a process similar to that em-
ployed in Sec. III. We choose a candidate absorbing point by
sampling from a distributions~r ,u,f! which is both invert-
ible ~to give r as a function ofs! and also is known to be an
upper bound for the exact absorption probabilitys1~r ,u,f!.

We first determine the absorption point for a first pas-
sage sphere that intersects a spherical target section with ra-
diusa, including a sector of polar angleu0. To determine the
distributions~r ,u,f!, we assume the absorbing first-passage
sphere is not present. The distributions~r ,u,f! is then given
by the surface charge distribution induced on a conducting
spherical surface by an external point charge. This quantity

is given by Eq.~3!, but with the quantitya now given by
a5~a/r 0!. Here~r ,u,f! are spherical coordinates of the can-
didate absorption point defined with the origin at the center
of the absorbing target sphere and polar axisu50 normal to
the target surface.

In order to sample from this distribution, we normalize it
by its integral over the sector cos~u!<u0, set it equal to a
random numbers, and solve foru. The result is

cos~u!5
11a22C22

2a
, ~F1!

with

C[
s

@122a cos~u0!1a2#1/2
1S 12s

12a D . ~F2!

Here the sector angleu0 is given by~see Fig. 6!

u05tan21
c

d4
. ~F3!

In Case 6a,

u05
p

2
tan21

c

d4
. ~F4!

in Case 6b, and byu05p in Case 6c. The candidate absorp-
tion point is then given by polar coordinates~a,u,f!.

We then reject this candidate absorption site with a prob-
ability given by

P5
s~x1!2s1~x1!

s~x1!
. ~F5!

Heres1~x1! is the exact absorption probability, as given by
the Green’s functions of Appendices B and C; see in particu-
lar Eq. ~B11!. Here the Green’s function is used with field
point x1 on the target sphere, not the first-passage sphere.
The only change that must be made to accommodate this
difference is to replace Eq.~B8! with

u5U 0, if r 25d
a, if r 15d. ~F6!

We also show how to determine the point of absorption
for a diffusing particle that is absorbed at a planar section of
the target surface. In the limitb→`, the conducting sphere
becomes a conducting plane. In this case, we havea51 and

p1~u8,f8!5s~u8,f8!5
1

2p

uzu
@r 21z2#3/2

, ~F7!

where (r ,z,u) are cylindrical coordinates of a point on the
conducting plane with respect to the origin determined by the
old position of the diffusing particle.

To sample this distribution, we determine a point~r ,u!
on the planar target section. Here the center of this polar
coordinate system is the point on the planar target section
closest to the last position of the diffusing particle. We nor-
malize and invert the distribution~F7! as above to yield

r 25
d22

@12~s/s0!#
22d22, ~F8!

FIG. 7. Schematic of the calculation used to return diffusing particles to the
launch sphere once they have left it. The particle is discovered at position
(x0 ,y0 ,z0). We use rotationR21 to move it onto the polar axis, and use the
solution of an electrostatics problem~in spherical coordinates to place the
particle back on the sphere, then use rotationR to return to the original
coordinate system!.
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where the quantityd2 is defined in Eq.~C2!, and the quan-
tity s is again a uniform random numberssP@0,1#. The co-
ordinateu is uniformly distributed on@0,2p#. Finally,

s0[F11
d22

c2 G•F11
d22

~c21d22!G
1/2

. ~F9!
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