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Theory of electrical noise induced in a wire loop by the thermal motions
of ions in solution
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(Received 26 August 1997; accepted for publication 26 November)1997

Continuous Markov process theory is used to model the electrical noise induced in a passive wire
loop by the thermal motions of ions in a nearby solution. The ions, being charged particles in
Brownian motion, generate a fluctuating magnetic field, and that in turn induces a fluctuating
electromotive forcéemf) that augments the loop’s Johnson emf. It is shown that the spectral density
function of the equilibrium current in the wire loop is thereby increased, for moderate cycle
frequencies, by approximately a factor (4 av?), wherea is determined by the geometry of the
system, the resistance of the loop, and the charges, diffusion coefficients, and concentrations of the
solution ions. It is also shown that the temporal trajectory of the loop current becomes “thickened,”
in a randomly fuzzy way, by an approximate factor of the forr(d) 2, whereB depends not only

on the aforementioned parameters that deterrsinkeut also on the hydrated masses of the ions.
These findings may be useful for estimating the intrinsic background noise in the detector coil of a
medical magnetic resonance imaging machine, or any other sensitive electronic circuit that is
required to operate in an immediate “salt water” environmé80021-897¢8)01506-(

I. INTRODUCTION quantum but also relativistic effects. A summary of our key

. . ) , findings is given in Sec. VIII.
In a medical magnetic resonance imagifigRI) ma-

chine, wire coils placed close to the human body being ex-

amined are used to detect weak magnetic signals emanating
from excited nuclei inside the body. Efforts to improve the |l. BROWNIAN MOTION AND JOHNSON NOISE
performance of MRI machines by making these detector

coils more sensitive will ultimately be limited by thermal separately, have been well studied: Brownian mdtiband

noise. In addition to the intrinsic and long understood a7 . ;
o . . -~ Johnson nois&’ A tutorial review of these two phenomena
Johnson noise in each detector coil, thermal noise also arisés

i . : o in the accommodating mathematical context of continuous
from ions, mainly Nd and CI", that are in solution inside ; L
. . . . ; Markov process theory may be found in Ref. 8; in this sec-
the human body being examined. These ions will be in ther-. .
: > ; - tion we shall summarize from that reference some facts
mal or Brownian motion, and being also charged, they will : . : .
. . X Y . about Brownian motion and Johnson noise that will be re-
give rise to a fluctuating magnetic field through each coil.

. 5 2

That fluctuating magnetic field will induce a fluctuating elec-qUIred here. We sh_all use _the notatikigm, o ) o deznote a
. . . e . normal random variable with mean and variances*, and

tromotive force(emf) in each coil—a “noisy” emf that is

. - . we shall frequently invoke the fact that, for any two statisti-
superimposed on the Johnson emf. A similar noise enhance- ™. 2 2
ment would be encountered in any sufficiently sensitive elecgally independent normals(my, 1) andN(mg, 03),
tronic circuit that is required to operate in an immediate
“salt water” environment. Although it is doubtful that such alN(ml,ai)JrazN(mz,ag)
noise can ever be eliminated, the first step toward dealing
with it in any wise is to gain a quantitative physical under-
standing of it.

We shall examine here what is perhaps the simplesh The Ornstein—Uhlenbeck process
physical system that exhibits ion-induced electrical noise. ) ) o
We consider a passive circular wire loop of resistaRand The most convenient mathematical description of both

self-inductance. that is positioned just above, and coaxially Brownian motion and Johnson noise is in terms of the
with, a cylindrical beaker containing an ionic solution of Onstein—UhlenbeckOU) type of continuous Markov pro-

known composition(see Fig. 1 The entire system is as- C€SS: .By dgfinition, the OU proce)ls’swi.th relaxation timer
sumed to be in thermal equilibrium at some absolute temand dlff.usmn constant evolves Wlth timet aqcordmg to a
peratureT. Our goal will be to determine explicitly the effect L@ngevin equation that can be written in either of the two
of the ionic solution on the electrical current in the wire loop. €Auivalent forms

Our analysis will be entirely classical, ignoring not only

Our problem conjoins two physical phenomena that,

=N(a;m;+a,m,,a205+a303). (2.1

1
— _- 1/2 112
dElectronic mail: dtg@rattler.chinalake.navy.mil X(t+dH=X(1) T X(Odt+ N (YT, (2.29
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z is such thatS,(v)dv gives the amount ofZ2(t)) due to
T cycle frequencies in thgpositive interval[ v,v+dv); soS;
wire loop is called the spectral density function &f It is clear from

Eq. (2.3 that the fully relaxed OU process,
X*(t)= lim X(t)=N(0,c7/2), (2.5

tg—— o

is a stationary process. And one can show from @03
that its autocovariance is given by

COV{X* (1), X* (t+1)} = (X* (1) X* (t+1))

volume Q2

cT

2

Equation(2.4) then gives for the spectral density function of

the fully relaxed OU process,

___________ _ 2c7?
Sxx (V)= 1+ (27 7v)?
The integral Y of the OU processX is defined

by  Y(t+dt)=Y(t)+X(t)dt, and its  variance,

{Y?(t))—(Y(1))?, can be shown to satisfy the asymptotic

relation

var{Y(t)}=cr(t—ty) for t—ty>r. (2.9

e " (t'=0). (2.6

(v=0). 2.7

jth ion of species i

FIG. 1. Geometry of the circular wire loop of resistanBeand self-
inductancel, and the right circular cylindef) that contains the ionic solu- B. Brownian motion
tion. The radius of the loop iy, the radius of) is Ry, and the height of

Q is h. The coordinate frame, with axis unit vectorsy, andz, has its For a particle of masm immersed in a fluid at absolute
origin O at the center of the loop, with normal to the plane of the loop. temperatureT, a typical rectilinear component of the parti-

The loop and the cylindef) are coaxial, with the top of) a distancea cle’s velocitvV(t) obevs the Newton's second law equation
below the plane of the loop. The vect&; locates the small subregion v ity V(t) Y w W eduat

AQ;;, of volume 1p;, which by definition contains thigh ion of specie$ dV,(t)
at timet. The velocity of that ion i8/;(t). (;(t

Here, thex component of the force exerted on the particle by
dXx(t) 1 the molecules of the surrounding fluid has been expressed as
—r = X0+ cr(t). (2.2  the sum of a resistive term yV,(t), wherey>0 is the drag
coefficient, and a zero-mean, temporally uncorrelated ran-
In Eq. (2.2, dt is a nonnegative infinitesimal variable, and dom termF,(t), which is assumed to be statistically inde-
N(t) is a temporally uncorrelated unit normal random pendent ofV,(t’<t). Given these assumptions, mathemati-
variable—i.e.,N(t)=N(0,1), with N(t) andN(t") statisti- cal consistency can be shown to require tig{t) be
cally independent it#t". In Eq. (2.2b, I'(t) is Gaussian proportional to Gaussian white noise, i.e.,
white noise, a temporally uncorrelated normal random vari- E(t)= T (1) (2.10
able with mean zero and variané®), whered is the Dirac X XA '
delta function. The equivalence of Eq®.2a8 and (2.2b  wheref is some constant. Equati¢8.9) then takes the form
follows from the implication of Eq(2.1) that (dt)¥N(0,1)  of the OU Langevin equatiof2.2b), implying thatV, is an
=dtN(0,1dt). The solution to Eqs(2.2) for the initial con-  OU process.

= — YV +Fi(1). (2.9

dition X(tg) =X, can be shown to be To determine the relaxation time and diffusion con-
stantc of the OU proces¥,, two boundary conditions are
X(t)=N| xpe~ ¢ t0)/7, T (1—e 2t-to)l7) | (2.3  imposed. First, classical statistical thermodynamics requires
2 that V, eventually be distributed in a Maxwell-Boltzmann

If Z is a “stationary” stochastic process, in the sensefashion; thus,Vy(t—%)=N(0kT/m), wherek is Boltz-
that its mean is zero and its variance is a constant, then it wiffann’s constant. And second, by the definition of the diffu-
have an autocovariancéZ(t)Z(t+t'))=C,(t') that de- sion coefficienD of the particle(which is not to be confused
pends only ont’=0 (we use(-) to denote the averaging With the diffusion constant of the OU process/,), the
operation. The Wiener—Khintchine theorem states that theintegral X of V, must satisfy vaiX(t—c)}=2Dt. When
positive-frequency Fourier amplitude of this autocovariancethese two boundary conditions are made to agree with the

namely asymptotic propertie§2.5 and(2.8) of an OU process and
its integral, one finds that the relaxation timand diffusion
Sy( v)=4fwcz(t’)cos(2wvt’)dt’, (2.4  constantc of the OU proces¥/, defined by Egs(2.9) and
0 (2.10 must be given by
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With these expressions farandc, an inspection of Egs.
(2.2b, (2.9, and (2.10 exposes the Einstein formula,

y=KkT/D, and also the fluctuation—dissipation formula

f=(2kTy)Y2

C. Johnson noise

The equation of motion for the currehft) in a rigid

Daniel T. Gillespie

and from Eq.(2.7) that the spectral density function of this
equilibrium current is

4KT
3|*(V)=?

1

1+ (27LvIR)? (218

) (v=0).

' Finally, if we integrate Eq(2.6) over allt’>0 and then

invoke Eqgs.(2.14), we get

1 ©
R‘lzk—T fo (I*(O)1* (t+1"))dt’, (2.19

wire loop of resistanc® and self-inductancé is obtained ~Which is known as the conductance formula.

by integrating the electric potential exactly once around the

loop. That gives

L]

G HRID+V(DI=0.

(2.12

Our goal in what follows will be to see how the above
results for anisolated RL loop will be altered when we
place that loop over a beaker containing an ionic solution.

IIl. THE ION-INDUCED MAGNETIC FLUX

The first term on the left is the self-induced Faraday emf.

The other term is thehermal emf which arises from the

We suppose that a circular wire loop of resistamite

interactions between the conducting electrons and the theself-inductancé., and radius , lies in thexy plane, with its
mally vibrating atomic lattice of the wire. This thermal emf center at the origirD of a Cartesian coordinate frame with
is assumed to be expressible as the sum of an ohmic terranit axis vectorss, y, andz. A right circular cylinder(Q) of
—RI(t), and a zero-mean, temporally uncorrelated randomadiusR, and heighth lies coaxially below the loop with its

term, V(t). The latter is called thdohnson emfand it is
assumed to be statistically independentl @f <t). Given

top surface az= —a (see Fig. 1L The cylinder is filled with
an ionic solution that is at the same absolute temperature

these assumptions, mathematical consistency can be shows the wire loop. The solution is a well-stirred mixturekof
to require that/(t) be proportional to Gaussian white noise, different ionic species, there beinly; ions of species

ie.,
V(t)=bI'(1), (2.13

where b is some constant. Equatiof2.12) then takes the
form of the OU Langevin equatiof2.2b), implying thatl is
an OU process.

The relaxation timer of the OU process$ can be seen
from Egs.(2.12 and (2.2b to be L/R. To determine the
corresponding diffusion coefficient we invoke the equipar-

tition theorem of classical statistical thermodynamics to con-

clude that(3L1%(t—o))=3kT. Comparing this with the
asymptotic OU resul{2.5 allows us to conclude that the
relaxation timer and diffusion constarnt of the OU process
| are

L 2kTR
Tzﬁ and C:—Lz—.

(2.19

With the expression&.14) for randc, a simple inspec-
tion of Egs. (2.2b, (2.12, and (2.13 exposes the
fluctuation—dissipation formula,

V(t)=(2kTRYI(t). (2.15

And since(T(t)'(t+t")y=45(t'), then it is easy to show
from Eq. (2.4) that the spectral density function &f(t)
=bI'(t) is just 20%; hence, Eq(2.15 implies that the spec-
tral density function of the Johnson eift) is

S/(v)=4kTR (v=0),

which is known as Nyquist's formula.
With Eqgs.(2.14), it follows from Egs.(2.5) that the equi-
librium current in the loop is

I* (1)=N(OKT/L),

(2.16

(2.17

i(i=1,...K). Although all theN; are large compared to
unity, ) is presumed to be large enough that the motion of
each individual ion can be considered to be independent of
all the other ions; thus, each specie®n, of chargeq;,
hydrated massn/ ,% and diffusion coefficienD;, is under-
going independent Brownian motion as described in Sec.
Il B. In this section we shall compute the instantaneous mag-
netic flux ®;(t) through the loop due to thbl; thermally
moving ions of species.

Our assumption that the ionic solution is “well-stirred”
implies that the specidsions are distributed in a randomly
uniform manner throughouf) with an average density;
=N/|Q|, where |Q|==R35h. We idealize the situation
somewhat by assuming that, at any instgnthe region(Q}

can be subdivided intoN; nearly cubic cells AQ;;
(j=1,...N;), all of equal size

|AQ;;|=|Q/N;j=1lp;, (3.2

such that there isxactly onespecies-ion—Dby definition the
jth species- ion—inside cell AQ);;. The position of cell
A();; relative to the originO will be denoted by

(3.2

Since the cellA();; is so smallbecauséN;>1), R;; can also
be regarded as the position of thth ion of species at time
t. The velocity of that ion will be denoted by;;(t).

As we show in Appendix A, thgth ion of species at
point (xi; ,Yij ,z;;) will, by virtue of its chargeg; and veloc-
ity V;;(t), induce through the loop at tintea magnetic flux
®;;(t) given by

Rij :XXij+yyij +ZZij .

Pij(1)= 7 GQTi; 2 i) Vi (1), (3.3
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Here, rj; is defined byr;;= (x er,J)l’2 Q is the function subvolumes{AQi” are so small, then any sum over those
defined in quadrature form |n EqeA2); and Vjj,(t) is the  subvolumes can be accurately evaluated as a volume integral
component ofVj;(t) in the direction of the unit vectos; over ().
=zx§;, where&;=(xx;; +yy;;)/rj; . It should be noted that The form of Eq.(3.7) suggests that we define tgeom-
the derivation of Eq(3.3) makes the simplifyin@pproxima-  etry factor
tion that the magnetic field produced by the moving ion is
given by the simple Biot—Savart law, and propagates with G(Q;ro)zf f f Q2(r,z;ro) dxdydz (3.9
essentially infinite speed.

Equation(3.3) shows(IJ,J(t) to be directly proportional 212 ]
to Vi;,(t). As discussed in Sec. Il B/;;,(t) can be regarded wherer = (x*+y?)*2 Taking account of the shape and lo-
as an OU process whose relaxation timeand diffusion ~ cation ofQ, as shown in Fig. 1, we can write more ex-

Q

constantc; are given by[see Eqs(2.14)] plicitly as an integral over cylindrical coordinates. Since the
integrand is independent of the azimuthal variable, we get
D;m/ kT\2 Y= :
T Y G(Q;rp)=G(a,h,Ry;rp)
=T and c; D] (mi,> (3.9 0 0.0
-a Ro
Now it is easy to show from the normal random variable :Zﬂf_(a+h)d2f0 dr rQ*(r,ziro). 3.9

property(2.1) and the OU formuld2.3) that if X(t) is an OU ) )
process with relaxation timeand diffusion constart, then ~ We conclude thatb;(t) is an OU process whose relaxation
BX(t) will be an OU process with relaxation time and time 7; and diffusion constant; are

diffusion constant’ = B8%c. So, from Eq.(3.3) we may con- D;m/
clude that®;;(t) is an OU process with relaxation time ST (3.10a
and diffusion constant
qul
Mo c = ( ) — (kT)2G(a,h,Ry;ry). (3.10b
c.J—( arQ(rij 12 To)Ci (35 ' \4m] Dim/* 0o
The instantaneous flu®;(t) through the loop due tall IV. THE GEOMETRY FACTOR G

the N, species-ions inQ is In Appendix B, we prove that the factot in Eqg.
(3.10b, which is defined through Eq3.9) and the two al-
ternative formulas forQ in Egs. (A2), can be written in

<I>i(t)=]_21 @i (1). (3-8 gither of the following two explicit quadrature forms: First,

The OU processe®;,(t), ®;,(t),... being summed here are G(a,h.Ro:ro)
statistically independent of each other, this by virtue of our 3 [~ Ro/ro 1 1
assumption that the ionic solution is dilute enough to render — 7 f du f duzf d”J dv

the motions of all the ions independent. Using again the nor-

mal random variable propert§2.1) and the OU formula XUzFg(ug,Uz,v)Fy(ug,uz,v’), (4.1
(2.3), it is easy to show that iK;(t) and Xy(t) are statisti-  whereF, is defined by
cally independent OU processes with a common relaxation

N;

—(a+h)/rg 0

(Up—v)(1—0v?)¥?

time 7 and respective diffusion constant$ andc;, then Fi(Up,Up,0)= :
X, (t)+X,(t) will be an OU process with relaxation time (Ui+(Up—0)?)(1+Uui+usz—2up0)"?
and diffusion constant’=c]+cj}. So ®;(t) in Eq. (3.6) (4.2
will be an OU process with relaxation time and diffusion  and second,
constant G(a,h,Ro;ro)

N —alrg Ro/fo 1 1

=2 ¢ ESWFSJ dulf duzf dwf dw’
i=1 —(a+h)irg 0 0 0
N X UgF5(ug,Up,W)F,(uq,up,W'), 4.3
“Pigy ( ) ArQ*(rij i o) Gil ALY whereF, is defined by
Fo(uy,Up,W)=[1+ U2+ u3—2u,(1—w?)¥2]~ 12

i

0

P|q| C.z Q Fij 1Zij !rO)|AQIJ| —[1+U%+U%+2u2(l—W2)l/2]_l/2.

I
3

S

0

(4.4
( ) plq, f f f Q?(r,z;ry) dxdydz (3.7 Several comments on these formulas should be made.
First, they show thaG has dimensions afolume Second,
they show that, except in the trivially uninteresting case in

The second line of Eq¥3.7) follows from Egs.(3.1) and  which eitherh or R, is zero,G will always be positive; this
(3.5, and the last line is justified by noting that since thefact is also clear from Eq(3.8). Third, since it seems un-

A
3
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likely that either of the above two integral formulas f6r  concerned, it should make no difference whether the exter-
can be computed analytically, themamerical computation nally produced Faraday emf arises from thermally moving
will probably be necessary. That of course will require thations in a nearby ionic solution, or from the thermally fluctu-
we specify definite numerical values for the four varialdes ating current in a nearby wire loop. The analysis of the loop-
h, Ry, andrg, which collectively define thgeometryof the  loop problem in Ref. 11 showed that the magnetic flux pro-
loop-ion system. duced by the current in one loop does not change the other
One numerical method for evaluating is the Monte loop’s resistance, nor its Johnson emf form(2al5), nor its
Carlo method® In connection with that procedure, it is Nyquist formula(2.16), nor its conductance formulk®.19.
worth noting that Eq(4.3) might well yield a more accurate That result for the loop-loop problem is the basis for our
result than Eq(4.1). The reason is that the integrand in Eqg. assumptior(i) here.
(4.9 is always positive, whereas the integrand in E41) Of course, in the two-loop problem, the current in one
sometimes goes negatiydoing so wheneveu, is smaller loop will usually have an effect on the current in the other
than either, but not both, af andv’). This suggests, since loop, and sometimes a quite dramatic effect. But it is shown
the value of the integral itself is positive, that the integrandin Ref. 11 that there is one case in which this effect turns out
in Eq. (4.2) will exhibit a larger variance over its integration to be practically negligible: If th&/R relaxation time of one
domain than will the integrand in E¢4.3), in which case a loop is very much smaller than that of the other loop, and if
Monte Carlo evaluation o6 using Eq.(4.1) would have a the inductive coupling between the two loops is weak, then
larger uncertainty than a Monte Carlo evaluation using Eqgthe current in the loop with themallerrelaxation time will
(4.9. But in any case, the circumstance of having two dif-be practically unaffected by the current in the loop with the
ferent integral formulas fo6s allows one to check any nu- larger relaxation timébut not vice-versa This result is rel-
merical result by making two independent computations. evant to our loop-ion problem because the relaxation times
of the magnetic fluxesb;(t), namely the timesr; in Eq.
(3.103, will typically be on the order of 10'% s, and that is
generally orders of magnitude smaller than the relaxation
times L/R of commonly encountered wire loops. Further-
We know that if the ionic solution weneot present, then more, in most practical situations the coupling between the
the electrical currerit(t) in the wire loop would be governed Wwire loop and the ionic solution will be weak. In such cases,
by the circuit equatiori2.12, wherein the Johnson envf(t) the fluctuating current in the wire loop should have no sen-
is (2kTR)Y? times Gaussian white noise. We shall now ar-sible effect on the much more rapidly fluctuating ionic move-
gue that, in thepresenceof the ionic solution, the potential ments that produce the magnetic fluxegt).
terms on the left side of Eq2.12) will, to a good approxi- The condition that the relaxation time of the current in
mation, just be additively augmented by the Faraday emféhe wire loop be much larger than the largest relaxation time
that are induced by the temporally changing magnetic fluxe§f the ions in{) is, by Egs.(2.14 and(3.103,
arising from the thermally moving ions; i.e., the curré(t)

V. DYNAMICAL EQUATIONS FOR THE CURRENT IN
THE LOOP

in the wire loop above the ionic solution should obey, to a . K D;my L
good approximation, the equation T =Max_i| 17 <R (5.28
d[LI(D)] u
—— gt T[-RIO+(2KTR) To(t)] And, as will be shown at the end of this section, the condi-
tion that the inductive coupling between the loop and the
o dd(t) ionic solution be “weak” is
—;L ity (5.1)
) 2G(a,h,Ryifo) — P07
where Ty(t) is statistically independent Gaussian white AE(QL—O) ( - 0ifo) > <Ll (5.2b
noise, andb,(t) is the ion species-magnetic flux calculated & =1 m

" S‘I?ﬁé”cl:.orrectness of Eq5.1) evidently hinges ortwo  1nese conditions should suffice to ensure the validity of Eq.
assumptions(i) the fluctuating electromagnetic field arising (°-1- We shall henceforth assume that conditi¢h=) are
from the thermally moving ions insid does not alter either satisfied, as they in fact will be in most pracpc_al S|tgat|ons.
the resistanc® of the loop or the Johnson emf in the loop; We found in Sec. Il that theb;(t) are statistically inde-
and (ii) the fluctuating current in the loop does not alter thePendent OP processes with relaxation timesnd diffusion
ionic motions inside) that give rise to the magnetic fluxes CONStantsc; , as given in Eqs(3.10; therefore, thed;(t)
®,(t). We shall claim that assumptidgh is exactlytrue, and  Will satisfy the OU Langevin equatiorisee Eq(2.2)]
assumptior(ii) will be approximatelytrue in nearly all cases
of practical interest. dd;(t)
The basis for assumptioriy and(ii) lies in the analysis dt
given in Ref. 11 of the thermal currents in two inductively
coupledR-L loops. The relevance of that exactly solvable wherel',(t),...,I'k(t) are statistically independent Gaussian
loop-loop problem to our present loop-ion problem stemswhite noise processes. By substituting E§.3 into Eq.
from the fact that, so far as the current in BaL loop is  (5.1) and then solving fodI(t)/dt, we get

1 1/2 i
=—— RO+ (D) (i=1..K), (63
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di(t) R K1 result, using the facts that(®;(t)N;(t))=0 and
TR I(t)+2 F(IJi(t) (Pi(1)Pj.i(t)) =(P;(t))(P;(t)), and then passing to the
=1 = limit dt—0, we get
(2kTR)1’2 oM
+—T —T(t (5.9 1
L 2 o T (' DPi(1)=— <|(t)<D (t)>—fI - (PF(D)
I
The K+1 equations(5.3) and (5.4) completely define the
dynamics of our loop-ion system. Technically speaKihg,
Egs. (5.3 and(5.4) constitute a multivariate Langevin equa- + 2 <q> (ONPi(D). 58
tion for the (K+1)-variate continuous Markov process H“

[D4(1),...,. Dk(1),I(t)]. The K processesb(t),...,. k(1)
areindividually Markovian, each being in fact a statistically
independent OU process, but the proddss is not by itself
Markovian.

The “white-noise form” Langevin equation&.3) and
(5.4) are not especially convenient for analysis. We shall us
instead the corresponding “standard-form” Langevin

It is tempting to use conditiofb.2g to approximate the co-
efficient of the first term in Eq(5.8) by 1/7;, but we must
refrain from making such approximations until much later.
Our third moment-evolution equation is obtained by first
squaring Eg. (5.5. Upon averaging the result, using
?Niz(t))=1 and the statistical independence of thHgt)'’s,
and then lettingdt— 0, we get

equations?
1 d R, 1 <
I(t+dt)—|(t)——|(t)dt+2 o Pt gt (PO)==2[ (P)+ 7 | kTR+ 3 ¢
i=
(ZkTR)lIZ K 1
+—0 No(t)(dt)*? +2, — (I(HDi(1)). (5.9
i=1 L’Ti
K 11/2
E N, (t)(dt)Y2 (5.5 Since®;(t) is an OU process with relaxation timeand
= N ’ ' diffusion constant/ , then explicit formulas fo{®;(t)) and

1 <<Di2(t)> can be read off from Eq2.3), and Eqs(5.7)—(5.9
®,(t+dt)=D,(t)— — @,(t)dt+c/ V2N, (t)(dt) 2 can then be solved in succession {bft)),{l (t)®;(t)), and
Ti (12(t)). However, we require here only the-x values of

(i=1,..K). (5.6)  those three moments, and they can be deduced most easily

In these equationg]t is a non-negative infinitesimal vari- by first taking thet—c limits of Eqs.(5.7)~(5.9)

able, andNy(t),...,Nk(t) are temporally uncorrelated, statis-
tically independent unit normal random variables. 0=— — <|(oo Y+ 2 <q) (%)), (5.10a
One immediate consequence of E¢s.5 and (5.6) is
that, if the value of the currentis specified at some initial
timet,, thenl(t) for t>t, will be anormalrandom variable.
This follows from a theorem in random variable theory
which says that any linear combination of normal random
variables, whether or not they are statistically independent,
will itself be normal** So, takingt=t, in Eq. (5.5, and +2 _<q>( I Pi(=)),
recalling from Eq.(2.3) that any OU process is normal, we J?“
see thatl (t,+dt) is expressed as a linear combination of
normal random variables, and thus is itself normal. The nor- 0= _25 <|2(m)>+ i
mality of I (t) for all t>t, then follows by a simple induction
argument. But of course, we expé¢t) to be correlated with
the ®;(t).
In order to calculate the spectral density function (@},
we must first calculate the three asymptotic moments
(1()),{1(*)®i()) and(I?()). To that end, we begin by Next we note from the general OU resul.3) that
deriving from Egs.(5.5) and (5.6) three moment-evolution {(®;(*))=0 and (®Z(=))=c/7/2. Substituting into Egs.
equations. The first is obtained by averaging &g9), using  (5.10 and then successwely solving those three equations
the fact that(N;(t))=0, and then passing to the limit for (I()),(I(*)®;(«)), and(I*(«)), we find after a bit of
dt—0. We get algebra the following results:

!

R ¢ 1
TR~ o ()

0=-

(5.100

K
2kTR+ D, c{)
=1

K
1
+22 (1) Pi(=)). (5.109

T <|(t)>———<|(t)>+2 <q> (1). (5.7 (I(=))=0, (5.11)

To obtain the second moment-evolution equation, we first (1(0)D;(0))= — KTA
take the product of Eqg5.5) and(5.6). Upon averaging the L+Rr

(5.12
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2 all 5 i|t|t+t’ ——Bltlt+t'
(17(s0))=— ( 2 L+RT| (5.13 g (HOE+E))=—(OI(t+t"))
where +2 —<| )®i(t+t")), (6.4a
_Ci,Ti_ Mo P|q|
' g (1O@(t+t))==—((OPi(t+1).  (6.4b

We shall make use of the results.11)—(5.13 in the
next section, when we compute the spectral density functioiVe now define, foi =1 to K,
of the equilibrium loop current. But first we note from Eq. e T . N 1% * ,
(5.13, after invoking the fact thatr;<<L/R [condition zi(t )_tollnjw“(t)q)'(tﬂ ) =(IFOPF(E+)
(5.23], that the mean equilibrium energy of the current in

the wire loop is approximately ('=0), 6.9
o ) where, by the general OU resul®.5), @i (t)=d;(x)
(2L1%())~2kT(1+A), (5159 =N(0, ¢/ #/2). Then by simply taking the limity— — o of
where Egs.(6.4), we obtain
SN MOZG(ahRoro « i OIz(t) z(t +E z(t) (6.6a
: _: ~o 1t ) ; 0 _ 0 .
_;l i (477) 2 . (5.18 dt
Evidently, the ionic solution increases the mean equilibrium di z(t")=— % z(t") (i=1,...K). (6.6b

energy of the current in the loop Wgpproximately the fac-

tor (1+A). The condition that the coupling between the Ioop  The definition (6.5 shows thatz;(0)=(I* (H)DF (1))

and the solution be “weak™ can therefore be expressed as in- (| («) P, ()}, a quantity that we computed earlier in Eq.

Eq. (5.2D. (5.12). Upon solving Eq(6.6b for that initial condition and
then substituting the result into E¢6.6a, we obtain the
following closed differential equation fary(t'):

VI. SPECTRAL DENSITY FUNCTION OF THE K

d Nil T
EQUILIBRIUM CURRENT — "= - ' gt
Q g 2o(t) zo<t 21 C+Rn (6.7
The previously established normality of the loop current,
coupled with the asymptotic results.11) and (5.13), im-

plies that the asymptotic or equilibrium current in the loop is

The initial condition for this differential equation is, by the
definition (6.2), zo(0)=(I*(t)I*(t))=(1%()), a quantity
that we computed earlier in Eq5.13. As can easily be

I*(t)= lim 1(t) checked, the solution to the differential equati@?) for
tg——= that initial condition is
=1() KT < N
Z(t') = — eth’/L_F I B
KT 0( ) L ;l L2—(R7i)2
=N| 0, 1+|§1 |_+RT| (6.1

. . o _ x[Le /i~ (Rr)e RULYL. (6.9
As was discussed in connection with Eg8.4), I* will have

an autocovariance function, We now substitute the resu(6.8) into Eg. (6.3) and

Ci(t")=zo(t)=U*(D)I* (t+1t")) integrate ovet’. The integration is straightforward, and sub-
. sequent algebraic manipulation will bring the result into the
= lim {I(D)I(t+t")) (t'=0), (6.2 form
tg——
from which one can compute the spectral density function ofg = AkT —1
- P P d S R
w (27v)? NiTi
s.*(v)=4f0 Zo(t")cog2mut’)dt’  (v»=0). (6.3 X1+ — .21 T+ (2m7,9)2 (v=0).

That computation will be our goal in this section. (6.9

To computezy(t'), we begin by replacing in Eq$5.5) Comparing this with the isolateR-L spectral density for-
and(5.6) t by t+t'(t’>0) anddt by dt’. We then multiply mula(2.18, we see that the ionic solution increases the spec-
both equations through bi(t), and average the resulting tral density function of the equilibrium loop current by the
equations using the fact thét(t’)N;(t))=0 for all t'<t. the factor in curly brackets. Now, we normally will be con-
Passage to the limdt’—0 then gives cerned with cycle frequenciesthat are very small compared
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to 1/7=kT/D;m/ (which for typical ions will be on the or- R (dt )1/2
der of 13° Hz). In that low-to-moderate frequency regime,  I(t+dt)~I(t)— T l(hdt+ (2KTRY2Ny(t)

Eq. (6.9 evidently predicts ajuadratic enhancement effect

K
4kT 1 + RN _ a2y ]
SI*(”)”? m {l+av2} ;l [CI N () —¢j Nl(t)] (7.3
The unit normal random variablégy(t), N;(t), and N (t)
kT are all statistically independent of each otfigre statistical
(V<M'”| 1[ D }) (6.10  independence dfi;(t) andN* (t) follows from the facts that
T N;(t) and ®;(t) are statistically independent by the OU
where the constant is, recalling Eqs(5.14 and(3.103, property, and®;(t)=N(t) by Eq. (7.2)]. Because of this
statistical independence, we can use the rg@ul) to sim-
277)2 plify the linear combination of unit normal random variables
a= E AT in braces in Eq(7.3) as follows:
K
G(a,h,RO,rO « (2KTRYNo(t)+ 2, [ ¢f "NF (1) — ¢/ " Ni(t) ]
=47 (477) _ Z (6.11) =1

K K
=N| 0, XTR+ >, ¢+, c{)
=1 =1

Note that the enhancement coefficienis independent off ,
but inversely proportional t&. That« should be an increas-
ing function ofp;, g;, andD,; seems quite reasonable; how-
ever, thata should be independent of the ionic masses is
perhaps a bit surprising.

The quadratic enhancement effect predicted by Eq.
(6.10 does not continue for arbitrarily high frequencies; in-
deed, one sees from E6.9) that

K 1/2
=| 2kTR+2> c{) N(0,1)
i=1

1/2
128 1%
+2 kTR) (2KTRY2N* (1),

N*(t) being yet another temporally uncorrelated unit nor-
mal. So Eq.(7.3 can be written

Se(n) 4KT 1 N 1% xi]
V)~ 5\ T o R 2 B4 R
R A1+ (27Lv/R) RiZ 7 |(t+dt)~1(H)— T 1(t)dt
(V>ma){l/7'l,...,l/TK}). (612 ( )1/2
. _ _ . +(1+8)1 N*()(dH*™? (7.4
But it is questionable whether this result has much practical L

significance, since quantum effects will invalidate our clas-yhere the constarﬁ is, recalling Eq.(3.10,
sical theory at very high frequencies. K

=1 T

B

| _ o 2 = G(ahRyire) S p'q' (7.5
There is another way of looking at the effect of ionic i=1 D m; ®

noise on the current in the wire loop that is interesting, not  |f we transform Eq.(7.4) into “white noise” form and
only because of what it implies, but also because of what ithen multiply through by, we get

doesnot d[ 1(1)]

We have seen thab;(t) is an OU process with relax-

ation time 7; and diffusion constant{ . But 7; is typically S dt
“very small,” so it follows from the zero-tau limit theorem where
for OU processés that, at least on time scales large com- V* (1) =(1+ B) YA 2kTR Y * (1), 7.7
pared tor;, we can approximaté;(t) as

VII. THE ENHANCED JOHNSON EMF (M ) K
.

+[—=RI(t)+V*(1)]~0, (7.6

I'*(t) being a Gaussian white noise process. Recalling Egs.
®y(t)~rc! 1’2Fi*(t), (7.1) (2.12 and(2.15, we see that Eq.7.6) appearsto describe
the thermal current in arR-L loop with an enhanced
wherel'* (t) is Gaussian white noise. Multiplying E¢z.1) ~ Johnson emf V(t), which is larger than the true Johnson
through by dt and using the fact thatdtN(0,1dt)  emfV(t) by a factor of (1+B)"2 But this interpretation is

=(dt)1’2N(0,1) [cf. Egs.(2.23 and (2.2b)], we get severely circumscribed by several caveats.
First, unlike the isolated circuit equatio®.12), Eq.(7.6)
@, (t)dt~ric/ V2N (1) (dt) 2, (7.2 is nota genuine OU Langevin equation. The reason is that

the Gaussian white noise procdss(t) that drives Eq(7.6)
whereN; (t) is a temporally uncorrelated unit normal. Sub- is not statistically independent d{t), as it would have to be
stituting this into Eq(5.5) gives in a genuine OU Langevin equation. It follows from Eg.
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(5.12 thatl (t) is statistically dependent oh;(t), and from  schematized in Fig. 1. The solution is comprisedadiffer-
Eqg. (7.2 that®;(t) is statistically dependent d¥ (t), and  ent ionic species, with the ions of speciekeing character-
from Egs. (7.4 that N*(t) is statistically dependent on ized by their charge; , hydrated mass/ ,° diffusion coef-
N* (t)=T*(t)(dt)*% indeed, by chasing through all these ficient D;,, and number densityp,. Our analysis is
relations, one can prove that “classical” in that it ignores any quantum or relativistic ef-
KT\ 12K s fects. .
<|(30)F*(oo)>:_(1+ﬁ)—1/2(_) E o The purely geometrical parameteis, h, Ry, andrg
2R} =1 L+R7 enter our final results only through a functiGa,h,Ry;ry),
(7.8 which has dimensions of volume, and which is defined in
The fact that this average i®t zerodemonstrates the statis- quadrature through Eqét.1)—(4.4). Those equations give
tical dependency off(t) andI'™™* (t). as two different but mathematically equivalent four-
Second, Eq(7.7) evidently calls for a noise enhance- dimensional integrals, which apparently can be evaluated
ment of (1+ 3)1/2 at all frequencies. But our resul6.9) only numerically. If a Monte Carlo integration method is
shows that there iro noise enhancement at zero frequency.used, Eq(4.3) is likely to give a more accurate result.
Finally, one shouldot write the enhanced Johnson emf  Our analysis is predicated on the assumption that condi-
(7.7) as (XTR)Y*(t), where tions (5.2) are satisfied, as they should be in most practical
K . situations. Conditior(5.29 stipulates that the time scaté
' _ of the thermal motions of the ions be much smaller than the
RI=R(1+A) R+21 KT’ relaxation timeL/R of the loop. Condition(5.2h stipulates

since that would suggest that the resistance of the loop ha{gat the coupling between the loop and the ionic solution be

been increased byk{) "¢/ . The fallacy of that view can weak, in ”_“? sense that the fractional inc_reéﬂseA) in the .
be seen in three different \INc'IinZ First, E@.6) shows that the mean eqwhbnum energy of thg current in the Ioop' that is
dissipativeresistance of the loop istill R. Second, simply cagsed by the 1ons be on!y slightly larger than. unity. The
replacingR in the isolated loop spectral density function re_ltlonale for con<_j|t|0_ns§5.2) 1S drayvn from an earl!er analy-
formula (2.18 with R' as given above willnot yield the sis of therr_nal_ noise in two |nduct|vely_ cpupled wire lodps.
correct spectral density formu(®.9). And finally, it is easy The principal result of our analysis is E.10. It pre-

to show, by explicitly integrating Eq(6.8) over all t’>0, dicts that the ionic solution increases the spectral density

that the equilibrium autocovariance of the loop current in thefuncuon of the equilibrium current in the loop, at least for

presenceof the ionic solutionstill obeys the isolated loop moderate cycle frequencies by the approximate factor

conductance formulé2.19); this implies that the ionic solu- (1+av ) wherea is given by Eq.(6.1)). We qall this the
tion induces no change in the conductaie" of the wire guadratic enhancement effedhe constant is directly pro-
loop portional toG, inversely proportional t&®, and independent

In spite of all these caveats, there is one effect that tth L; it is an increasing function of the charges, diffusion
enhanced Johnson erfi.8) fairly describes: Equatiofi7.4) coefficients, and concentrations of the ions, but is indepen-
can legitimately be viewed as an “updating formula” for the dent of the ion masses. _ _
loop current that is reasonably accurate for time increments Another result of our analysis here is the formufa7)
dt that aresmall compared to_/R, but large compared to fo_r the enhanced Johnsoq enits phyS|caI_ significance is
7. The second term on the right side of Ed.4) obviously this: If the loop current(t) is plotted on a time scale thqt is
describes the deterministic component of the incremeh in comfortably betweer™ andL/R, “then_ the effect of the ion
while the third term describes the stochastic component. Evil0iS€ Will be manifested as a “statistically fuzzy thicken-
dently, the presence of the ions enhances the stochastic cofR9 °f1/;he I(t) trajectory by a factor of approximately
ponent of the increment by a factor of £18)Y2 We may (1+8) . wherep is given by Eq.(7.5). The dependence of
expect this enhancement to be manifested as a statisticalfy ©" the ion parameters is notably different frars depen-
fuzzy thickening, by a factor of ( 8)Y2 of the trajectory ence:f8 doesdepend on Fhe ion masses, and it depends
of the loop current when plotted on a time scale that is largdVersely on the ion diffusion coefficients. The enhanced
compared to the; but small compared ta/R. A similar J°hnson emf formula shouldot be construed to imply that
stochastic thickening occurs in the loop-loop problem of Ref (€ ionic solution causes any ,Changes in dlceuial Johnson
11, specifically in the trajectory of the loop 1 current when€Mf in the loop, or in the loop’s resistange _

L,/R,<L, /R, and the inductive coupling between the two This article concludes a series of four theoretical papers
loops is weak. Exact numerical simulations for that speciafnat began with the tutorial reviews in Refs. 8 and 12, and
case of the loop-loop problefsee Figs. 8 and 9 of Ref. 11 continued with the analysis of the two-loop system in Ref.

show that the trajectory of the loop 1 current is indeed thick-L1- But this research program is not yet finished: Still unan-
ened in this manner. swered is the question of whether or not the ionic noise en-

hancements predicted by formul&.10 and (7.7) accu-
rately describe the results of laboratory measurements on real
loop-ion systems. A critical ancillary task in any experimen-
We have used continuous Markov process theory to anaal test of these formulas will be the numerical evaluation of
lyze the electrical noise induced in &L loop by the ther- the four-dimensional integrab for each chosen set of sys-
mal motions of ions in a nearby solution. The geometry istem geometry parameter values. Future workers who carry

!

VIlIl. SUMMARY
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B(&7; X,Y,2) z andV, is the component of the velocity in the direction of
4 the unit vector p=zx§ where § is the unit vector
(xx+yy)/r.

We begin by letting&éé+ n7 locate an arbitrary interior
point of the circle. It is clear from Fig. 2 that the vectar
from the chargey to this interior point is given by

R=&¢-1)+yn—2zz.

According to the Biot—Savart law, the magnetic field at this
point due to the moving charggis

n=zx§
0 O

X s mo GV XR

(0,0,2)

J The z component of this field, expressed in terms of compo-

(Er=xx+yy) — ‘\ nents in theg »z frame, is

________ ™.y.2) Ven—V,(§—1)
Mo N Vy
\; charge q BAA& mxy.2)= He—r77+ 7+ 27

In the approximation that the magnetic field propagates
FIG. 2. Geometry for computing the magnetic fi@¢é, ;x,y,z) produced  from the charge atx,y,z) to the point({,7,0) with infinite
at an interior point of a disk of radiug, by a chargey moving with velocity Speedso that every interior p0|nt of the |oop is “Seeing” the
V. The coordinatesx,y,z) of the chargey are measured relative to the unit - : _
axis vectorsx, y, andz, while the coordinategt, »,0) of the field point are pOII_’1t charge at the same instanwe may _CompUte the m_ag
measured relative to the unit axis vectdtsy, andz. netic flux through the loop due to the point charge by simply

integratingB, over the area enclosed by the loop:

(A3)

out these investigations will write the next chapter in this ERERT:
d(x,y,2)= J dgf 0

story. n B,(&,1;X,Y,2).

2_g2) 1/2 (Ad)
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APPENDIX A: FLUX THROUGH A CIRCLE DUE TO A
MOVING POINT CHARGE

Let a circle of radiug lie in the xy plane of the Car-
tesian reference frame defined by the unit veckoss andz, D(X,y.2)= J”O dé Zf(rfri%mdn
with the center of the circle at the origin. And let a chagge 7 - 0
moving with velocityV, be at the poinkx+yy+zz (see Fig.
2). Under the simplifying assumption that the magnetic field Ho q —Vy(6—1) (A5)
produced by a moving charged particle is given by the Biot— am N [(E-1)2+ P+ 2
Savart law and propagates with infinite speed, we shall prov
that the instantaneous magnetic flux through the circle due tg
the moving point charge is given by

his expression is evidently the same as &dl), given the
efinition of Q(r,z;rp) in Eq. (A2a). Equation(A2b) follows
from Eq. (A2a) by simply reversing the order of integration

Mo over & and .
D(xy.2)= 42 4QUr Zro)V,. (ay)  overeandn
Here, r=(x?>+y? Y2 Q is defined by either of the two
equivalent quadrature forms APPENDIX B: THE EXPLICIT QUADRATURE FORMS
FOR G
a1 (rj—g3)12 (r—=§)
Q(r,z,r0)=2frod§f0 d [(r—¢&)%+ p?+ 2% Here we shall prove that the functi@(a,h,Ry;ro), as
(A23) defined by Eq(3.9) with Q(r,z;ry) being defined by the two
equivalent formulagA2), can be expressed either as Egs.
_ J J(r 1’2 (r-=4 . (4.1) and(4.2), or as Eqs(4.3) and(4.4).
2>1’2 [(f—§)2+ R To derive Eq.(4.1), we begin by evaluating the inner

(A2b) integral in Eq.(A2a) analytically:
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(r—¢§) dgy
[(r=%+ n?+271

J‘(rg_gz)llz
0
(15—

T =97+ A[(r— &)+ 2+ (13- &)

:r_Fl(ulyUZyv)- (B1)
0

In the last step we have introduced the scaled variables
(B2)

andv=¢£/ry, and we have invoked the definitiga.2) of the
function F,. Substituting Eq(B1) into Eq. (A2a), we get

U1§Z/r0, UZEr/rO;
r

0 1
Q(r,Z;ro):ZJ dé EFl(ULUz,U)
o

1
:2'[ dl) Fl(ul,uZ,U). (83)
-1

And substituting this into Eq3.9), we get

—a

R
G(a,h,Ro;r0)=27rf dzj 0dr
—(a+h)y  Jo

Xr

1
2J dv Fl(ul,uz,v)>
-1

X

Zjldv’Fl(ul,uz,v’)>. (B4)
-1

The integration variables changg () — (u4,u,) of Eq.(B2)
then gives the claimed resut.l).

To derive Eq.(4.3), we begin by changing, in the inner
integral of Eq.(A2b), the integration variablg to {=r — ¢,
and then evaluating that inner integral analytically:

f(ré—rﬁ)l’z (r—¢ dé
—(r2- )12 [(r—&)°%+ n?+2°]%2

B J'r+(rg_7]2)1/2 é’ d§
r—(r(z)—nz)l/2 (L +n +2z9)

:[r2_2r(rc2)_ 772)1/2_|_22_i_rg:|71/2
_[r2+2r(r(2)_ 772)1/2_|_22_,’_r(%:|*1/2

= Fa(ug,up,w). (B5)
0

In the last step we have used the definitionsipfandu, in
Egs. (B2), the new definitionw= 7/ry, and the definition

(4.4 of the functionF,. Substituting Eq.(B5) into Eq.
(A2b), we get

Daniel T. Gillespie

o 1
Q(r,z;ro)=2f dn — Fa(ug,up,w)
0 lo

1
=2j dw F(uq,u,,w). (B6)
0
And substituting this into Eq3.9), we get
-a Ro
G(a,h,RO;ro)=27rf dzf dr
—(a+hy Jo
1
Xr ZJ dWFz(ul,uz,w))
0
1
X ZJ dW’Fz(ul,uz,w’)). (B7)
0

The integration variables changg () — (uq,u,) of Eqg.(B2)
then gives the claimed resut.3).
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