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Theory of electrical noise induced in a wire loop by the thermal motions
of ions in solution
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Continuous Markov process theory is used to model the electrical noise induced in a passive wire
loop by the thermal motions of ions in a nearby solution. The ions, being charged particles in
Brownian motion, generate a fluctuating magnetic field, and that in turn induces a fluctuating
electromotive force~emf! that augments the loop’s Johnson emf. It is shown that the spectral density
function of the equilibrium current in the wire loop is thereby increased, for moderate cycle
frequenciesn, by approximately a factor (11an2), wherea is determined by the geometry of the
system, the resistance of the loop, and the charges, diffusion coefficients, and concentrations of the
solution ions. It is also shown that the temporal trajectory of the loop current becomes ‘‘thickened,’’
in a randomly fuzzy way, by an approximate factor of the form (11b)1/2, whereb depends not only
on the aforementioned parameters that determinea, but also on the hydrated masses of the ions.
These findings may be useful for estimating the intrinsic background noise in the detector coil of a
medical magnetic resonance imaging machine, or any other sensitive electronic circuit that is
required to operate in an immediate ‘‘salt water’’ environment.@S0021-8979~98!01506-0#

I. INTRODUCTION

In a medical magnetic resonance imaging~MRI! ma-
chine, wire coils placed close to the human body being ex-
amined are used to detect weak magnetic signals emanating
from excited nuclei inside the body. Efforts to improve the
performance of MRI machines by making these detector
coils more sensitive will ultimately be limited by thermal
noise. In addition to the intrinsic and long understood
Johnson noise in each detector coil, thermal noise also arises
from ions, mainly Na1 and Cl2, that are in solution inside
the human body being examined. These ions will be in ther-
mal or Brownian motion, and being also charged, they will
give rise to a fluctuating magnetic field through each coil.
That fluctuating magnetic field will induce a fluctuating elec-
tromotive force~emf! in each coil—a ‘‘noisy’’ emf that is
superimposed on the Johnson emf. A similar noise enhance-
ment would be encountered in any sufficiently sensitive elec-
tronic circuit that is required to operate in an immediate
‘‘salt water’’ environment. Although it is doubtful that such
noise can ever be eliminated, the first step toward dealing
with it in any wise is to gain a quantitative physical under-
standing of it.

We shall examine here what is perhaps the simplest
physical system that exhibits ion-induced electrical noise.
We consider a passive circular wire loop of resistanceR and
self-inductanceL that is positioned just above, and coaxially
with, a cylindrical beaker containing an ionic solution of
known composition~see Fig. 1!. The entire system is as-
sumed to be in thermal equilibrium at some absolute tem-
peratureT. Our goal will be to determine explicitly the effect
of the ionic solution on the electrical current in the wire loop.
Our analysis will be entirely classical, ignoring not only

quantum but also relativistic effects. A summary of our key
findings is given in Sec. VIII.

II. BROWNIAN MOTION AND JOHNSON NOISE

Our problem conjoins two physical phenomena that,
separately, have been well studied: Brownian motion1–5 and
Johnson noise.6,7 A tutorial review of these two phenomena
in the accommodating mathematical context of continuous
Markov process theory may be found in Ref. 8; in this sec-
tion we shall summarize from that reference some facts
about Brownian motion and Johnson noise that will be re-
quired here. We shall use the notationN(m,s2) to denote a
normal random variable with meanm and variances2, and
we shall frequently invoke the fact that, for any two statisti-
cally independent normalsN(m1 ,s1

2) andN(m2 ,s2
2),

a1N~m1 ,s1
2!1a2N~m2 ,s2

2!

5N~a1m11a2m2 ,a1
2s1

21a2
2s2

2!. ~2.1!

A. The Ornstein–Uhlenbeck process

The most convenient mathematical description of both
Brownian motion and Johnson noise is in terms of the
Ornstein–Uhlenbeck~OU! type of continuous Markov pro-
cess. By definition, the OU processX with relaxation timet
and diffusion constantc evolves with timet according to a
Langevin equation that can be written in either of the two
equivalent forms

X~ t1dt!5X~ t !2
1

t
X~ t !dt1c1/2N~ t !~dt!1/2, ~2.2a!

a!Electronic mail: dtg@rattler.chinalake.navy.mil
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dX~ t !

dt
52

1

t
X~ t !1c1/2G~ t !. ~2.2b!

In Eq. ~2.2a!, dt is a nonnegative infinitesimal variable, and
N(t) is a temporally uncorrelated unit normal random
variable—i.e.,N(t)5N(0,1), with N(t) and N(t8) statisti-
cally independent iftÞt8. In Eq. ~2.2b!, G(t) is Gaussian
white noise, a temporally uncorrelated normal random vari-
able with mean zero and varianced~0!, whered is the Dirac
delta function. The equivalence of Eqs.~2.2a! and ~2.2b!
follows from the implication of Eq.~2.1! that (dt)1/2N(0,1)
5dtN(0,1/dt). The solution to Eqs.~2.2! for the initial con-
dition X(t0)5x0 can be shown to be

X~ t !5NS x0e2~ t2t0!/t,
ct

2
~12e22~ t2t0!/t! D . ~2.3!

If Z is a ‘‘stationary’’ stochastic process, in the sense
that its mean is zero and its variance is a constant, then it will
have an autocovariancêZ(t)Z(t1t8)&[CZ(t8) that de-
pends only ont8>0 ~we use^•& to denote the averaging
operation!. The Wiener–Khintchine theorem states that the
positive-frequency Fourier amplitude of this autocovariance,
namely

SZ~n!54E
0

`

CZ~ t8!cos~2pnt8!dt8, ~2.4!

is such thatSZ(n)dn gives the amount of̂ Z2(t)& due to
cycle frequencies in the~positive! interval @n,n1dn); soSZ

is called the spectral density function ofZ. It is clear from
Eq. ~2.3! that the fully relaxed OU process,

X* ~ t ![ lim
t0→2`

X~ t !5N~0,ct/2!, ~2.5!

is a stationary process. And one can show from Eq.~2.2a!
that its autocovariance is given by

cov$X* ~ t !,X* ~ t1t8!%5^X* ~ t !X* ~ t1t8!&

5
ct

2
e2t8/t ~ t8>0!. ~2.6!

Equation~2.4! then gives for the spectral density function of
the fully relaxed OU process,

SX* ~n!5
2ct2

11~2ptn!2 ~n>0!. ~2.7!

The integral Y of the OU processX is defined
by Y(t1dt)5Y(t)1X(t)dt, and its variance,
^Y2(t)&2^Y(t)&2, can be shown to satisfy the asymptotic
relation

var$Y~ t !%'ct2~ t2t0! for t2t0@t. ~2.8!

B. Brownian motion

For a particle of massm immersed in a fluid at absolute
temperatureT, a typical rectilinear component of the parti-
cle’s velocityV(t) obeys the Newton’s second law equation

m
dVx~ t !

dt
52gVx~ t !1Fx~ t !. ~2.9!

Here, thex component of the force exerted on the particle by
the molecules of the surrounding fluid has been expressed as
the sum of a resistive term2gVx(t), whereg.0 is the drag
coefficient, and a zero-mean, temporally uncorrelated ran-
dom termFx(t), which is assumed to be statistically inde-
pendent ofVx(t8<t). Given these assumptions, mathemati-
cal consistency can be shown to require thatFx(t) be
proportional to Gaussian white noise, i.e.,

Fx~ t !5 f Gx~ t !, ~2.10!

wheref is some constant. Equation~2.9! then takes the form
of the OU Langevin equation~2.2b!, implying thatVx is an
OU process.

To determine the relaxation timet and diffusion con-
stantc of the OU processVx , two boundary conditions are
imposed. First, classical statistical thermodynamics requires
that Vx eventually be distributed in a Maxwell–Boltzmann
fashion; thus,Vx(t→`)5N(0,kT/m), where k is Boltz-
mann’s constant. And second, by the definition of the diffu-
sion coefficientD of the particle~which is not to be confused
with the diffusion constantc of the OU processVx!, the
integral X of Vx must satisfy var$X(t→`)%52Dt. When
these two boundary conditions are made to agree with the
asymptotic properties~2.5! and ~2.8! of an OU process and
its integral, one finds that the relaxation timet and diffusion
constantc of the OU processVx defined by Eqs.~2.9! and
~2.10! must be given by

FIG. 1. Geometry of the circular wire loop of resistanceR and self-
inductanceL, and the right circular cylinderV that contains the ionic solu-
tion. The radius of the loop isr 0 , the radius ofV is R0 , and the height of
V is h. The coordinate frame, with axis unit vectorsx, y, and z, has its
origin O at the center of the loop, withz normal to the plane of the loop.
The loop and the cylinderV are coaxial, with the top ofV a distancea
below the plane of the loop. The vectorRi j locates the small subregion
DV i j , of volume 1/r i , which by definition contains thej th ion of speciesi
at time t. The velocity of that ion isV i j (t).

3119J. Appl. Phys., Vol. 83, No. 6, 15 March 1998 Daniel T. Gillespie
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t5
Dm

kT
and c5

2

D S kT

m D 2

. ~2.11!

With these expressions fort andc, an inspection of Eqs.
~2.2b!, ~2.9!, and ~2.10! exposes the Einstein formula,
g5kT/D, and also the fluctuation–dissipation formula,
f 5(2kTg)1/2.

C. Johnson noise

The equation of motion for the currentI (t) in a rigid
wire loop of resistanceR and self-inductanceL is obtained
by integrating the electric potential exactly once around the
loop. That gives

2
d@LI ~ t !#

dt
1@2RI~ t !1V~ t !#50. ~2.12!

The first term on the left is the self-induced Faraday emf.
The other term is thethermal emf, which arises from the
interactions between the conducting electrons and the ther-
mally vibrating atomic lattice of the wire. This thermal emf
is assumed to be expressible as the sum of an ohmic term,
2RI(t), and a zero-mean, temporally uncorrelated random
term, V(t). The latter is called theJohnson emf, and it is
assumed to be statistically independent ofI (t8<t). Given
these assumptions, mathematical consistency can be shown
to require thatV(t) be proportional to Gaussian white noise,
i.e.,

V~ t !5bG~ t !, ~2.13!

where b is some constant. Equation~2.12! then takes the
form of the OU Langevin equation~2.2b!, implying thatI is
an OU process.

The relaxation timet of the OU processI can be seen
from Eqs. ~2.12! and ~2.2b! to be L/R. To determine the
corresponding diffusion coefficientc, we invoke the equipar-
tition theorem of classical statistical thermodynamics to con-

clude that ^ 1
2LI 2(t→`)&5 1

2kT. Comparing this with the
asymptotic OU result~2.5! allows us to conclude that the
relaxation timet and diffusion constantc of the OU process
I are

t5
L

R
and c5

2kTR

L2 . ~2.14!

With the expressions~2.14! for t andc, a simple inspec-
tion of Eqs. ~2.2b!, ~2.12!, and ~2.13! exposes the
fluctuation–dissipation formula,

V~ t !5~2kTR!1/2G~ t !. ~2.15!

And since^G(t)G(t1t8)&5d(t8), then it is easy to show
from Eq. ~2.4! that the spectral density function ofV(t)
5bG(t) is just 2b2; hence, Eq.~2.15! implies that the spec-
tral density function of the Johnson emfV(t) is

SV~n!54kTR ~n>0!, ~2.16!

which is known as Nyquist’s formula.
With Eqs.~2.14!, it follows from Eqs.~2.5! that the equi-

librium current in the loop is

I * ~ t !5N~0,kT/L !, ~2.17!

and from Eq.~2.7! that the spectral density function of this
equilibrium current is

SI* ~n!5
4kT

R S 1

11~2pLn/R!2D ~n>0!. ~2.18!

Finally, if we integrate Eq.~2.6! over all t8.0 and then
invoke Eqs.~2.14!, we get

R215
1

kT E
0

`

^I * ~ t !I * ~ t1t8!&dt8, ~2.19!

which is known as the conductance formula.
Our goal in what follows will be to see how the above

results for anisolated R-L loop will be altered when we
place that loop over a beaker containing an ionic solution.

III. THE ION-INDUCED MAGNETIC FLUX

We suppose that a circular wire loop of resistanceR,
self-inductanceL, and radiusr 0 lies in thexy plane, with its
center at the originO of a Cartesian coordinate frame with
unit axis vectorsx, y, andz. A right circular cylinderV of
radiusR0 and heighth lies coaxially below the loop with its
top surface atz52a ~see Fig. 1!. The cylinder is filled with
an ionic solution that is at the same absolute temperatureT
as the wire loop. The solution is a well-stirred mixture ofK
different ionic species, there beingNi ions of species
i ( i 51,...,K). Although all the Ni are large compared to
unity, V is presumed to be large enough that the motion of
each individual ion can be considered to be independent of
all the other ions; thus, each species-i ion, of chargeqi ,
hydrated massmi8 ,9 and diffusion coefficientDi , is under-
going independent Brownian motion as described in Sec.
II B. In this section we shall compute the instantaneous mag-
netic flux F i(t) through the loop due to theNi thermally
moving ions of speciesi .

Our assumption that the ionic solution is ‘‘well-stirred’’
implies that the species-i ions are distributed in a randomly
uniform manner throughoutV with an average densityr i

5Ni /uVu, where uVu5pR0
2h. We idealize the situation

somewhat by assuming that, at any instantt, the regionV
can be subdivided intoNi nearly cubic cells DV i j

( j 51,...,Ni), all of equal size

uDV i j u5uVu/Ni51/r i , ~3.1!

such that there isexactly onespecies-i ion—by definition the
j th species-i ion—inside cell DV i j . The position of cell
DV i j relative to the originO will be denoted by

Ri j 5xxi j 1yyi j 1zzi j . ~3.2!

Since the cellDV i j is so small~becauseNi@1), Ri j can also
be regarded as the position of thej th ion of speciesi at time
t. The velocity of that ion will be denoted byV i j (t).

As we show in Appendix A, thej th ion of speciesi at
point (xi j ,yi j ,zi j ) will, by virtue of its chargeqi and veloc-
ity V i j (t), induce through the loop at timet a magnetic flux
F i j (t) given by

F i j ~ t !5
m0

4p
qiQ~r i j ,zi j ;r 0!Vi j h~ t !. ~3.3!

3120 J. Appl. Phys., Vol. 83, No. 6, 15 March 1998 Daniel T. Gillespie
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Here, r i j is defined byr i j [(xi j
2 1yi j

2 )1/2; Q is the function
defined in quadrature form in Eqs.~A2!; and Vi j h(t) is the
component ofV i j (t) in the direction of the unit vectorhi j

[z3ji j , whereji j [(xxi j 1yyi j )/r i j . It should be noted that
the derivation of Eq.~3.3! makes the simplifyingapproxima-
tion that the magnetic field produced by the moving ion is
given by the simple Biot–Savart law, and propagates with
essentially infinite speed.

Equation~3.3! showsF i j (t) to be directly proportional
to Vi j h(t). As discussed in Sec. II B,Vi j h(t) can be regarded
as an OU process whose relaxation timet i and diffusion
constantci are given by@see Eqs.~2.14!#

t i5
Dimi8

kT
and ci5

2

Di
S kT

mi8
D 2

. ~3.4!

Now it is easy to show from the normal random variable
property~2.1! and the OU formula~2.3! that if X(t) is an OU
process with relaxation timet and diffusion constantc, then
bX(t) will be an OU process with relaxation timet and
diffusion constantc85b2c. So, from Eq.~3.3! we may con-
clude thatF i j (t) is an OU process with relaxation timet i

and diffusion constant

ci j8 5S m0

4p D 2

qi
2Q2~r i j ,zi j ;r 0!ci . ~3.5!

The instantaneous fluxF i(t) through the loop due toall
the Ni species-i ions in V is

F i~ t !5(
j 51

Ni

F i j ~ t !. ~3.6!

The OU processesF i1(t), F i2(t),... being summed here are
statistically independent of each other, this by virtue of our
assumption that the ionic solution is dilute enough to render
the motions of all the ions independent. Using again the nor-
mal random variable property~2.1! and the OU formula
~2.3!, it is easy to show that ifX1(t) andX2(t) are statisti-
cally independent OU processes with a common relaxation
time t and respective diffusion constantsc18 and c28 , then
X1(t)1X2(t) will be an OU process with relaxation timet
and diffusion constantc85c181c28 . So F i(t) in Eq. ~3.6!
will be an OU process with relaxation timet i and diffusion
constant

ci85(
j 51

Ni

ci j8

5r i (
j 51

Ni S m0

4p D 2

qi
2Q2~r i j ,zi j ;r 0!ci uDV i j u

5S m0

4p D 2

r iqi
2ci (

j 51

Ni

Q2~r i j ,zi j ;r 0!uDV i j u

ci85S m0

4p D 2

r iqi
2ciE E E

V

Q2~r ,z;r 0! dxdydz. ~3.7!

The second line of Eqs.~3.7! follows from Eqs.~3.1! and
~3.5!, and the last line is justified by noting that since the

subvolumesuDV i j u are so small, then any sum over those
subvolumes can be accurately evaluated as a volume integral
over V.

The form of Eq.~3.7! suggests that we define thegeom-
etry factor

G~V;r 0![E E E
V

Q2~r ,z;r 0! dxdydz, ~3.8!

where r[(x21y2)1/2. Taking account of the shape and lo-
cation of V, as shown in Fig. 1, we can writeG more ex-
plicitly as an integral over cylindrical coordinates. Since the
integrand is independent of the azimuthal variable, we get

G~V;r 0!5G~a,h,R0 ;r 0!

52pE
2~a1h!

2a

dzE
0

R0
dr rQ2~r ,z;r 0!. ~3.9!

We conclude thatF i(t) is an OU process whose relaxation
time t i and diffusion constantci8 are

t i5
Dimi8

kT
, ~3.10a!

ci85S m0

4p D 2 2r iqi
2

Dimi8
2 ~kT!2G~a,h,R0 ;r 0!. ~3.10b!

IV. THE GEOMETRY FACTOR G

In Appendix B, we prove that the factorG in Eq.
~3.10b!, which is defined through Eq.~3.9! and the two al-
ternative formulas forQ in Eqs. ~A2!, can be written in
either of the following two explicit quadrature forms: First,

G~a,h,R0 ;r 0!

[8pr 0
3E

2~a1h!/r 0

2a/r 0
du1E

0

R0 /r 0
du2E

21

1

dvE
21

1

dv8

3u2F1~u1 ,u2 ,v !F1~u1 ,u2 ,v8!, ~4.1!

whereF1 is defined by

F1~u1 ,u2 ,v ![
~u22v !~12v2!1/2

~u1
21~u22v !2!~11u1

21u2
222u2v !1/2;

~4.2!

and second,

G~a,h,R0 ;r 0!

[8pr 0
3E

2~a1h!/r 0

2a/r 0
du1E

0

R0 /r 0
du2E

0

1

dwE
0

1

dw8

3u2F2~u1 ,u2 ,w!F2~u1 ,u2 ,w8!, ~4.3!

whereF2 is defined by

F2~u1 ,u2 ,w![@11u1
21u2

222u2~12w2!1/2#21/2

2@11u1
21u2

212u2~12w2!1/2#21/2.

~4.4!

Several comments on these formulas should be made.
First, they show thatG has dimensions ofvolume. Second,
they show that, except in the trivially uninteresting case in
which eitherh or R0 is zero,G will always be positive; this
fact is also clear from Eq.~3.8!. Third, since it seems un-
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likely that either of the above two integral formulas forG
can be computed analytically, then anumerical computation
will probably be necessary. That of course will require that
we specify definite numerical values for the four variablesa,
h, R0 , andr 0 , which collectively define thegeometryof the
loop-ion system.

One numerical method for evaluatingG is the Monte
Carlo method.10 In connection with that procedure, it is
worth noting that Eq.~4.3! might well yield a more accurate
result than Eq.~4.1!. The reason is that the integrand in Eq.
~4.3! is always positive, whereas the integrand in Eq.~4.1!
sometimes goes negative~doing so wheneveru2 is smaller
than either, but not both, ofv andv8!. This suggests, since
the value of the integral itself is positive, that the integrand
in Eq. ~4.1! will exhibit a larger variance over its integration
domain than will the integrand in Eq.~4.3!, in which case a
Monte Carlo evaluation ofG using Eq.~4.1! would have a
larger uncertainty than a Monte Carlo evaluation using Eq.
~4.3!. But in any case, the circumstance of having two dif-
ferent integral formulas forG allows one to check any nu-
merical result by making two independent computations.

V. DYNAMICAL EQUATIONS FOR THE CURRENT IN
THE LOOP

We know that if the ionic solution werenot present, then
the electrical currentI (t) in the wire loop would be governed
by the circuit equation~2.12!, wherein the Johnson emfV(t)
is (2kTR)1/2 times Gaussian white noise. We shall now ar-
gue that, in thepresenceof the ionic solution, the potential
terms on the left side of Eq.~2.12! will, to a good approxi-
mation, just be additively augmented by the Faraday emfs
that are induced by the temporally changing magnetic fluxes
arising from the thermally moving ions; i.e., the currentI (t)
in the wire loop above the ionic solution should obey, to a
good approximation, the equation

2
d@LI ~ t !#

dt
1@2RI~ t !1~2kTR!1/2G0~ t !#

2(
i 51

K
dF i~ t !

dt
50, ~5.1!

where G0(t) is statistically independent Gaussian white
noise, andF i(t) is the ion species-i magnetic flux calculated
in Sec. III.

The correctness of Eq.~5.1! evidently hinges ontwo
assumptions: ~i! the fluctuating electromagnetic field arising
from the thermally moving ions insideV does not alter either
the resistanceR of the loop or the Johnson emf in the loop;
and ~ii ! the fluctuating current in the loop does not alter the
ionic motions insideV that give rise to the magnetic fluxes
F i(t). We shall claim that assumption~i! is exactlytrue, and
assumption~ii ! will be approximatelytrue in nearly all cases
of practical interest.

The basis for assumptions~i! and~ii ! lies in the analysis
given in Ref. 11 of the thermal currents in two inductively
coupledR-L loops. The relevance of that exactly solvable
loop-loop problem to our present loop-ion problem stems
from the fact that, so far as the current in anR-L loop is

concerned, it should make no difference whether the exter-
nally produced Faraday emf arises from thermally moving
ions in a nearby ionic solution, or from the thermally fluctu-
ating current in a nearby wire loop. The analysis of the loop-
loop problem in Ref. 11 showed that the magnetic flux pro-
duced by the current in one loop does not change the other
loop’s resistance, nor its Johnson emf formula~2.15!, nor its
Nyquist formula~2.16!, nor its conductance formula~2.19!.
That result for the loop-loop problem is the basis for our
assumption~i! here.

Of course, in the two-loop problem, the current in one
loop will usually have an effect on the current in the other
loop, and sometimes a quite dramatic effect. But it is shown
in Ref. 11 that there is one case in which this effect turns out
to be practically negligible: If theL/R relaxation time of one
loop is very much smaller than that of the other loop, and if
the inductive coupling between the two loops is weak, then
the current in the loop with thesmaller relaxation time will
be practically unaffected by the current in the loop with the
larger relaxation time~but not vice-versa!. This result is rel-
evant to our loop-ion problem because the relaxation times
of the magnetic fluxesF i(t), namely the timest i in Eq.
~3.10a!, will typically be on the order of 10213 s, and that is
generally orders of magnitude smaller than the relaxation
times L/R of commonly encountered wire loops. Further-
more, in most practical situations the coupling between the
wire loop and the ionic solution will be weak. In such cases,
the fluctuating current in the wire loop should have no sen-
sible effect on the much more rapidly fluctuating ionic move-
ments that produce the magnetic fluxesF i(t).

The condition that the relaxation time of the current in
the wire loop be much larger than the largest relaxation time
of the ions inV is, by Eqs.~2.14! and ~3.10a!,

t* [Maxi 51
K H Dimi8

kT J !
L

R
. ~5.2a!

And, as will be shown at the end of this section, the condi-
tion that the inductive coupling between the loop and the
ionic solution be ‘‘weak’’ is

D[S m0

4p D 2 G~a,h,R0 ;r 0!

L (
i 51

K r iqi
2

mi8
!1. ~5.2b!

These conditions should suffice to ensure the validity of Eq.
~5.1!. We shall henceforth assume that conditions~5.2! are
satisfied, as they in fact will be in most practical situations.

We found in Sec. III that theF i(t) are statistically inde-
pendent OU processes with relaxation timest i and diffusion
constantsci8 , as given in Eqs.~3.10!; therefore, theF i(t)
will satisfy the OU Langevin equations@see Eq.~2.2b!#

dF i~ t !

dt
52

1

t i
F i~ t !1ci8

1/2G i~ t ! ~ i 51,...,K !, ~5.3!

whereG1(t),...,GK(t) are statistically independent Gaussian
white noise processes. By substituting Eq.~5.3! into Eq.
~5.1! and then solving fordI(t)/dt, we get
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dI~ t !

dt
52

R

L
I ~ t !1(

i 51

K
1

Lt i
F i~ t !

1
~2kTR!1/2

L
G0~ t !2(

i 51

K ci8
1/2

L
G i~ t !. ~5.4!

The K11 equations~5.3! and ~5.4! completely define the
dynamics of our loop-ion system. Technically speaking,12

Eqs.~5.3! and~5.4! constitute a multivariate Langevin equa-
tion for the (K11)-variate continuous Markov process
@F1(t),...,FK(t),I (t)#. The K processesF1(t),...,FK(t)
are individually Markovian, each being in fact a statistically
independent OU process, but the processI (t) is not by itself
Markovian.

The ‘‘white-noise form’’ Langevin equations~5.3! and
~5.4! are not especially convenient for analysis. We shall use
instead the corresponding ‘‘standard-form’’ Langevin
equations,13

I ~ t1dt!5I ~ t !2
R

L
I ~ t !dt1(

i 51

K
1

Lt i
F i~ t !dt

1
~2kTR!1/2

L
N0~ t !~dt!1/2

2(
i 51

K ci8
1/2

L
Ni~ t !~dt!1/2, ~5.5!

F i~ t1dt!5F i~ t !2
1

t i
F i~ t !dt1ci8

1/2Ni~ t !~dt!1/2

~ i 51,...,K !. ~5.6!

In these equations,dt is a non-negative infinitesimal vari-
able, andN0(t),...,NK(t) are temporally uncorrelated, statis-
tically independent unit normal random variables.

One immediate consequence of Eqs.~5.5! and ~5.6! is
that, if the value of the currentI is specified at some initial
time t0 , thenI (t) for t.t0 will be anormalrandom variable.
This follows from a theorem in random variable theory
which says that any linear combination of normal random
variables, whether or not they are statistically independent,
will itself be normal.14 So, taking t5t0 in Eq. ~5.5!, and
recalling from Eq.~2.3! that any OU process is normal, we
see thatI (t01dt) is expressed as a linear combination of
normal random variables, and thus is itself normal. The nor-
mality of I (t) for all t .t0 then follows by a simple induction
argument. But of course, we expectI (t) to be correlated with
the F i(t).

In order to calculate the spectral density function ofI (t),
we must first calculate the three asymptotic moments
^I (`)&,^I (`)F i(`)& and^I 2(`)&. To that end, we begin by
deriving from Eqs.~5.5! and ~5.6! three moment-evolution
equations. The first is obtained by averaging Eq.~5.5!, using
the fact that ^Ni(t)&50, and then passing to the limit
dt→0. We get

d

dt
^I ~ t !&52

R

L
^I ~ t !&1(

i 51

K
1

Lt i
^F i~ t !&. ~5.7!

To obtain the second moment-evolution equation, we first
take the product of Eqs.~5.5! and~5.6!. Upon averaging the

result, using the facts that ^F j (t)Ni(t)&50 and
^F i(t)F j Þ i(t)&5^F i(t)&^F j (t)&, and then passing to the
limit dt→0, we get

d

dt
^I ~ t !F i~ t !&52S 1

t i
1

R

L D ^I ~ t !F i~ t !&2
ci8

L
1

1

Lt i
^F i

2~ t !&

1(
j 51
j Þ i

K
1

Lt j
^F j~ t !&^F i~ t !&. ~5.8!

It is tempting to use condition~5.2a! to approximate the co-
efficient of the first term in Eq.~5.8! by 1/t i , but we must
refrain from making such approximations until much later.
Our third moment-evolution equation is obtained by first
squaring Eq. ~5.5!. Upon averaging the result, using
^Ni

2(t)&51 and the statistical independence of theNi(t)’s,
and then lettingdt→0, we get

d

dt
^I 2~ t !&522

R

L
^I 2~ t !&1

1

L2 S 2kTR1(
i 51

K

ci8D
12(

i 51

K
1

Lt i
^I ~ t !F i~ t !&. ~5.9!

SinceF i(t) is an OU process with relaxation timet i and
diffusion constantci8 , then explicit formulas for̂F i(t)& and
^F i

2(t)& can be read off from Eq.~2.3!, and Eqs.~5.7!–~5.9!
can then be solved in succession for^I (t)&,^I (t)F i(t)&, and
^I 2(t)&. However, we require here only thet→` values of
those three moments, and they can be deduced most easily
by first taking thet→` limits of Eqs.~5.7!–~5.9!:

052
R

L
^I ~`!&1(

i 51

K
1

Lt i
^F i~`!&, ~5.10a!

052S 1

t i
1

R

L D ^I ~`!F i~`!&2
ci8

L
1

1

Lt i
^F i

2~`!&

1(
j 51
j Þ i

K
1

Lt j
^F j~`!&^F i~`!&, ~5.10b!

0522
R

L
^I 2~`!&1

1

L2 S 2kTR1(
i 51

K

ci8D
12(

i 51

K
1

Lt i
^I ~`!F i~`!&. ~5.10c!

Next we note from the general OU result~2.3! that
^F i(`)&50 and ^F i

2(`)&5ci8t i /2. Substituting into Eqs.
~5.10! and then successively solving those three equations
for ^I (`)&,^I (`)F i(`)&, and^I 2(`)&, we find after a bit of
algebra the following results:

^I ~`!&50, ~5.11!

^I ~`!F i~`!&52
kTl i

L1Rt i
, ~5.12!
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^I 2~`!&5
kT

L S 11(
i 51

K
l i

L1Rt i
D , ~5.13!

where

l i[
ci8t i

2kT
5S m0

4p D 2

G~a,h,R0 ;r 0!
r iqi

2

mi8
. ~5.14!

We shall make use of the results~5.11!–~5.13! in the
next section, when we compute the spectral density function
of the equilibrium loop current. But first we note from Eq.
~5.13!, after invoking the fact thatt i!L/R @condition
~5.2a!#, that the mean equilibrium energy of the current in
the wire loop is approximately

^ 1
2LI 2~`!&' 1

2kT~11D!, ~5.15!

where

D[(
i 51

K
l i

L
5S m0

4p D 2 G~a,h,R0 ;r 0!

L (
i 51

K r iqi
2

mi8
. ~5.16!

Evidently, the ionic solution increases the mean equilibrium
energy of the current in the loop by~approximately! the fac-
tor ~11D!. The condition that the coupling between the loop
and the solution be ‘‘weak’’ can therefore be expressed as in
Eq. ~5.2b!.

VI. SPECTRAL DENSITY FUNCTION OF THE
EQUILIBRIUM CURRENT

The previously established normality of the loop current,
coupled with the asymptotic results~5.11! and ~5.13!, im-
plies that the asymptotic or equilibrium current in the loop is

I * ~ t ![ lim
t0→2`

I ~ t !

5I ~`!

5NS 0,
kT

L S 11(
i 51

K
l i

L1Rt i
D D . ~6.1!

As was discussed in connection with Eq.~2.4!, I * will have
an autocovariance function,

CI~ t8![z0~ t8![^I * ~ t !I * ~ t1t8!&

5 lim
t0→2`

^I ~ t !I ~ t1t8!& ~ t8>0!, ~6.2!

from which one can compute the spectral density function of
I * :

SI* ~n!54E
0

`

z0~ t8!cos~2pnt8!dt8 ~n>0!. ~6.3!

That computation will be our goal in this section.
To computez0(t8), we begin by replacing in Eqs.~5.5!

and~5.6! t by t1t8(t8.0) anddt by dt8. We then multiply
both equations through byI (t), and average the resulting
equations using the fact that^I (t8)Ni(t)&50 for all t8<t.
Passage to the limitdt8→0 then gives

d

dt8
^I ~ t !I ~ t1t8!&52

R

L
^I ~ t !I ~ t1t8!&

1(
i 51

K
1

Lt i
^I ~ t !F i~ t1t8!&, ~6.4a!

d

dt8
^I ~ t !F i~ t1t8!&52

1

t i
^I ~ t !F i~ t1t8!&. ~6.4b!

We now define, fori 51 to K,

zi~ t8![ lim
t0→2`

^I ~ t !F i~ t1t8!&5^I * ~ t !F i* ~ t1t8!&

~ t8>0!, ~6.5!

where, by the general OU result~2.5!, F i* (t)5F i(`)
5N(0, ci8t i /2). Then by simply taking the limitt0→2` of
Eqs.~6.4!, we obtain

d

dt8
z0~ t8!52

R

L
z0~ t8!1(

i 51

K
1

Lt i
zi~ t8!, ~6.6a!

d

dt8
zi~ t8!52

1

t i
zi~ t8! ~ i 51,...,K !. ~6.6b!

The definition ~6.5! shows thatzi(0)5^I * (t)F i* (t)&
5^I (`)F i(`)&, a quantity that we computed earlier in Eq.
~5.12!. Upon solving Eq.~6.6b! for that initial condition and
then substituting the result into Eq.~6.6a!, we obtain the
following closed differential equation forz0(t8):

d

dt8
z0~ t8!52

R

L
z0~ t8!2

kT

L (
i 51

K
l i /t i

L1Rt i
e2t8/t i. ~6.7!

The initial condition for this differential equation is, by the
definition ~6.2!, z0(0)5^I * (t)I * (t)&5^I 2(`)&, a quantity
that we computed earlier in Eq.~5.13!. As can easily be
checked, the solution to the differential equation~6.7! for
that initial condition is

z0~ t8!5
kT

L H e2Rt8/L1(
i 51

K
l i

L22~Rt i !
2

3@Le2t8/t i2~Rt i !e
2Rt8/L#J . ~6.8!

We now substitute the result~6.8! into Eq. ~6.3! and
integrate overt8. The integration is straightforward, and sub-
sequent algebraic manipulation will bring the result into the
form

SI* ~n!5
4kT

R S 1

11~2pLn/R!2D
3H 11

~2pn!2

R (
i 51

K
l it i

11~2pt in!2J ~n>0!.

~6.9!

Comparing this with the isolatedR-L spectral density for-
mula~2.18!, we see that the ionic solution increases the spec-
tral density function of the equilibrium loop current by the
the factor in curly brackets. Now, we normally will be con-
cerned with cycle frequenciesn that are very small compared
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to 1/t i5kT/Dimi8 ~which for typical ions will be on the or-
der of 1013 Hz). In that low-to-moderate frequency regime,
Eq. ~6.9! evidently predicts aquadratic enhancement effect,

SI* ~n!'
4kT

R S 1

11~2pLn/R!2D $11an2%

S n!Min i 51
K H kT

Dimi8
J D , ~6.10!

where the constanta is, recalling Eqs.~5.14! and ~3.10a!,

a[
~2p!2

R (
i 51

K

l it i

54p2S m0

4p D 2 G~a,h,R0 ;r 0!

kTR (
i 51

K

r iqi
2Di . ~6.11!

Note that the enhancement coefficienta is independent ofL,
but inversely proportional toR. Thata should be an increas-
ing function ofr i , qi , andDi seems quite reasonable; how-
ever, thata should be independent of the ionic masses is
perhaps a bit surprising.

The quadratic enhancement effect predicted by Eq.
~6.10! does not continue for arbitrarily high frequencies; in-
deed, one sees from Eq.~6.9! that

SI* ~n!'
4kT

R S 1

11~2pLn/R!2D H 11
1

R (
i 51

K
l i

t i
J

~n@max$1/t1 ,...,1/tK%!. ~6.12!

But it is questionable whether this result has much practical
significance, since quantum effects will invalidate our clas-
sical theory at very high frequencies.

VII. THE ENHANCED JOHNSON EMF

There is another way of looking at the effect of ionic
noise on the current in the wire loop that is interesting, not
only because of what it implies, but also because of what it
doesnot.

We have seen thatF i(t) is an OU process with relax-
ation timet i and diffusion constantci8 . But t i is typically
‘‘very small,’’ so it follows from the zero-tau limit theorem
for OU processes15 that, at least on time scales large com-
pared tot i , we can approximateF i(t) as

F i~ t !'t ici8
1/2G i* ~ t !, ~7.1!

whereG i* (t) is Gaussian white noise. Multiplying Eq.~7.1!
through by dt and using the fact thatdtN(0,1/dt)
5(dt)1/2N(0,1) @cf. Eqs.~2.2a! and ~2.2b!#, we get

F i~ t !dt't ici8
1/2Ni* ~ t !~dt!1/2, ~7.2!

whereNi* (t) is a temporally uncorrelated unit normal. Sub-
stituting this into Eq.~5.5! gives

I ~ t1dt!'I ~ t !2
R

L
I ~ t !dt1

~dt!1/2

L H ~2kTR!1/2N0~ t !

1(
i 51

K

@ci8
1/2Ni* ~ t !2ci8

1/2Ni~ t !# J . ~7.3!

The unit normal random variablesN0(t), Ni(t), andNi* (t)
are all statistically independent of each other@the statistical
independence ofNi(t) andNi* (t) follows from the facts that
Ni(t) and F i(t) are statistically independent by the OU
property, andF i(t)}Ni* (t) by Eq. ~7.2!#. Because of this
statistical independence, we can use the result~2.1! to sim-
plify the linear combination of unit normal random variables
in braces in Eq.~7.3! as follows:

~2kTR!1/2N0~ t !1(
i 51

K

@ci8
1/2Ni* ~ t !2ci8

1/2Ni~ t !#

5NS 0, 2kTR1(
i 51

K

ci81(
i 51

K

ci8D
5S 2kTR12(

i 51

K

ci8D 1/2

N~0,1!

5S 11(
i 51

K ci8

kTRD 1/2

~2kTR!1/2N* ~ t !,

N* (t) being yet another temporally uncorrelated unit nor-
mal. So Eq.~7.3! can be written

I ~ t1dt!'I ~ t !2
R

L
I ~ t !dt

1~11b!1/2
~2kTR!1/2

L
N* ~ t !~dt!1/2, ~7.4!

where the constantb is, recalling Eq.~3.10b!,

b[(
i 51

K ci8

kTR

52S m0

4p D 2 kT

R
G~a,h,R0 ;r 0!(

i 51

K r iqi
2

Dimi8
2 . ~7.5!

If we transform Eq.~7.4! into ‘‘white noise’’ form and
then multiply through byL, we get

2
d@LI ~ t !#

dt
1@2RI~ t !1V* ~ t !#'0, ~7.6!

where

V* ~ t ![~11b!1/2~2kTR!1/2G* ~ t !, ~7.7!

G* (t) being a Gaussian white noise process. Recalling Eqs.
~2.12! and ~2.15!, we see that Eq.~7.6! appearsto describe
the thermal current in anR-L loop with an enhanced
Johnson emf V* (t), which is larger than the true Johnson
emf V(t) by a factor of (11b)1/2. But this interpretation is
severely circumscribed by several caveats.

First, unlike the isolated circuit equation~2.12!, Eq.~7.6!
is not a genuine OU Langevin equation. The reason is that
the Gaussian white noise processG* (t) that drives Eq.~7.6!
is not statistically independent ofI (t), as it would have to be
in a genuine OU Langevin equation. It follows from Eq.
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~5.12! that I (t) is statistically dependent onF i(t), and from
Eq. ~7.2! that F i(t) is statistically dependent onNi* (t), and
from Eqs. ~7.4! that Ni* (t) is statistically dependent on
N* (t)5G* (t)(dt)1/2; indeed, by chasing through all these
relations, one can prove that

^I ~`!G* ~`!&52~11b!21/2S kT

2RD 1/2

(
i 51

K
l i /t i

L1Rt i
.

~7.8!

The fact that this average isnot zerodemonstrates the statis-
tical dependency ofI (t) andG* (t).

Second, Eq.~7.7! evidently calls for a noise enhance-
ment of (11b)1/2 at all frequencies. But our result~6.9!
shows that there isno noise enhancement at zero frequency.

Finally, one shouldnot write the enhanced Johnson emf
~7.7! as (2kTR8)1/2G* (t), where

R85R~11b!5R1(
i 51

K ci8

kT
,

since that would suggest that the resistance of the loop has
been increased by (kT)21( ici8 . The fallacy of that view can
be seen in three different ways: First, Eq.~7.6! shows that the
dissipativeresistance of the loop isstill R. Second, simply
replacing R in the isolated loop spectral density function
formula ~2.18! with R8 as given above willnot yield the
correct spectral density formula~6.9!. And finally, it is easy
to show, by explicitly integrating Eq.~6.8! over all t8.0,
that the equilibrium autocovariance of the loop current in the
presenceof the ionic solutionstill obeys the isolated loop
conductance formula~2.19!; this implies that the ionic solu-
tion induces no change in the conductanceR21 of the wire
loop.

In spite of all these caveats, there is one effect that the
enhanced Johnson emf~7.8! fairly describes: Equation~7.4!
can legitimately be viewed as an ‘‘updating formula’’ for the
loop current that is reasonably accurate for time increments
dt that aresmall compared toL/R, but large compared to
t i . The second term on the right side of Eq.~7.4! obviously
describes the deterministic component of the increment inI ,
while the third term describes the stochastic component. Evi-
dently, the presence of the ions enhances the stochastic com-
ponent of the increment by a factor of (11b)1/2. We may
expect this enhancement to be manifested as a statistically
fuzzy thickening, by a factor of (11b)1/2, of the trajectory
of the loop current when plotted on a time scale that is large
compared to thet i but small compared toL/R. A similar
stochastic thickening occurs in the loop-loop problem of Ref.
11, specifically in the trajectory of the loop 1 current when
L2 /R2!L1 /R1 and the inductive coupling between the two
loops is weak. Exact numerical simulations for that special
case of the loop-loop problem~see Figs. 8 and 9 of Ref. 11!
show that the trajectory of the loop 1 current is indeed thick-
ened in this manner.

VIII. SUMMARY

We have used continuous Markov process theory to ana-
lyze the electrical noise induced in anR-L loop by the ther-
mal motions of ions in a nearby solution. The geometry is

schematized in Fig. 1. The solution is comprised ofK differ-
ent ionic species, with the ions of speciesi being character-
ized by their chargeqi , hydrated massmi8 ,9 diffusion coef-
ficient Di , and number densityr i . Our analysis is
‘‘classical’’ in that it ignores any quantum or relativistic ef-
fects.

The purely geometrical parameters,a, h, R0 , and r 0

enter our final results only through a functionG(a,h,R0 ;r 0),
which has dimensions of volume, and which is defined in
quadrature through Eqs.~4.1!–~4.4!. Those equations giveG
as two different but mathematically equivalent four-
dimensional integrals, which apparently can be evaluated
only numerically. If a Monte Carlo integration method is
used, Eq.~4.3! is likely to give a more accurate result.

Our analysis is predicated on the assumption that condi-
tions ~5.2! are satisfied, as they should be in most practical
situations. Condition~5.2a! stipulates that the time scalet*
of the thermal motions of the ions be much smaller than the
relaxation timeL/R of the loop. Condition~5.2b! stipulates
that the coupling between the loop and the ionic solution be
weak, in the sense that the fractional increase~11D! in the
mean equilibrium energy of the current in the loop that is
caused by the ions be only slightly larger than unity. The
rationale for conditions~5.2! is drawn from an earlier analy-
sis of thermal noise in two inductively coupled wire loops.11

The principal result of our analysis is Eq.~6.10!. It pre-
dicts that the ionic solution increases the spectral density
function of the equilibrium current in the loop, at least for
moderate cycle frequenciesn, by the approximate factor
~11an2), wherea is given by Eq.~6.11!. We call this the
quadratic enhancement effect. The constanta is directly pro-
portional toG, inversely proportional toR, and independent
of L; it is an increasing function of the charges, diffusion
coefficients, and concentrations of the ions, but is indepen-
dent of the ion masses.

Another result of our analysis here is the formula~7.7!
for the enhanced Johnson emf. Its physical significance is
this: If the loop currentI (t) is plotted on a time scale that is
comfortably betweent* andL/R, then the effect of the ion
noise will be manifested as a ‘‘statistically fuzzy thicken-
ing’’ of the I (t) trajectory by a factor of approximately
(11b)1/2, whereb is given by Eq.~7.5!. The dependence of
b on the ion parameters is notably different froma’s depen-
dence:b does depend on the ion masses, and it depends
inversely on the ion diffusion coefficients. The enhanced
Johnson emf formula shouldnot be construed to imply that
the ionic solution causes any changes in theactual Johnson
emf in the loop, or in the loop’s resistanceR.

This article concludes a series of four theoretical papers
that began with the tutorial reviews in Refs. 8 and 12, and
continued with the analysis of the two-loop system in Ref.
11. But this research program is not yet finished: Still unan-
swered is the question of whether or not the ionic noise en-
hancements predicted by formulas~6.10! and ~7.7! accu-
rately describe the results of laboratory measurements on real
loop-ion systems. A critical ancillary task in any experimen-
tal test of these formulas will be the numerical evaluation of
the four-dimensional integralG for each chosen set of sys-
tem geometry parameter values. Future workers who carry
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out these investigations will write the next chapter in this
story.

ACKNOWLEDGMENTS

The author thanks Jim Tropp for suggesting this prob-
lem, and Dan Harris for some helpful comments. This work
was sponsored by the In-house Laboratory Independent Re-
search Program of the Office of Naval Research.

APPENDIX A: FLUX THROUGH A CIRCLE DUE TO A
MOVING POINT CHARGE

Let a circle of radiusr 0 lie in the xy plane of the Car-
tesian reference frame defined by the unit vectorsx, y, andz,
with the center of the circle at the origin. And let a chargeq,
moving with velocityV, be at the pointxx1yy1zz ~see Fig.
2!. Under the simplifying assumption that the magnetic field
produced by a moving charged particle is given by the Biot–
Savart law and propagates with infinite speed, we shall prove
that the instantaneous magnetic flux through the circle due to
the moving point charge is given by

F~x,y,z!5
m0

4p
qQ~r ,z;r 0!Vh . ~A1!

Here, r[(x21y2)1/2; Q is defined by either of the two
equivalent quadrature forms

Q~r ,z;r 0![2E
2r 0

r 0
djE

0

~r 0
2
2j2!1/2

dh
~r 2j!

@~r 2j!21h21z2#3/2,

~A2a!

[2E
0

r 0
dhE

2~r 0
2
2h2!1/2

~r 0
2
2h2!1/2

dj
~r 2j!

@~r 2j!21h21z2#3/2;

~A2b!

andVh is the component of the velocityV in the direction of
the unit vector h[z3j, where j is the unit vector
(xx1yy)/r .

We begin by lettingjj1hh locate an arbitrary interior
point of the circle. It is clear from Fig. 2 that the vectorR
from the chargeq to this interior point is given by

R5j~j2r !1hh2zz.

According to the Biot–Savart law, the magnetic field at this
point due to the moving chargeq is

B~j,h;x,y,z!5
m0

4p

qV3R

uRu3
.

Thez component of this field, expressed in terms of compo-
nents in thejhz frame, is

Bz~j,h;x,y,z!5
m0

4p
q

Vjh2Vh~j2r !

@~j2r !21h21z2#3/2. ~A3!

In the approximation that the magnetic field propagates
from the charge at (x,y,z) to the point~z,h,0! with infinite
speed~so that every interior point of the loop is ‘‘seeing’’ the
point charge at the same instant!, we may compute the mag-
netic flux through the loop due to the point charge by simply
integratingBz over the area enclosed by the loop:

F~x,y,z!5E
2r 0

r 0
djE

2~r 0
2
2j2!1/2

~r 0
2
2j2!1/2

dh Bz~j,h;x,y,z!.
~A4!

Substituting forBz the expression in Eq.~A3!, we evidently
obtain a two-term integrand. The term containingVj is seen
to be an odd function ofh, and it therefore produces zero
when the symmetric-limith integration is carried out. The
integrand term containingVh is an even function ofh, so for
it the symmetrich integration range can be folded. We thus
obtain

F~x,y,z!5E
2r 0

r 0
dj 2E

0

~r 0
2
2j2!1/2

dh

3
m0

4p
q

2Vh~j2r !

@~j2r !21h21z2#3/2. ~A5!

This expression is evidently the same as Eq.~A1!, given the
definition ofQ(r ,z;r 0) in Eq. ~A2a!. Equation~A2b! follows
from Eq. ~A2a! by simply reversing the order of integration
over j andh.

APPENDIX B: THE EXPLICIT QUADRATURE FORMS
FOR G

Here we shall prove that the functionG(a,h,R0 ;r 0), as
defined by Eq.~3.9! with Q(r ,z;r 0) being defined by the two
equivalent formulas~A2!, can be expressed either as Eqs.
~4.1! and ~4.2!, or as Eqs.~4.3! and ~4.4!.

To derive Eq.~4.1!, we begin by evaluating the inner
integral in Eq.~A2a! analytically:

FIG. 2. Geometry for computing the magnetic fieldB(j,h;x,y,z) produced
at an interior point of a disk of radiusr 0 by a chargeq moving with velocity
V. The coordinates (x,y,z) of the chargeq are measured relative to the unit
axis vectorsx, y, andz, while the coordinates~j,h,0! of the field point are
measured relative to the unit axis vectorsj, h, andz.
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E
0

~r 0
2
2j2!1/2 ~r 2j! dh

@~r 2j!21h21z2#3/2

5
~r 2j!~r 0

22j2!1/2

@~r 2j!21z2#@~r 2j!21z21~r 0
22j2!#1/2

5
1

r 0
F1~u1 ,u2 ,v !. ~B1!

In the last step we have introduced the scaled variables

u1[z/r 0 , u2[r /r 0 , ~B2!

andv[j/r 0 , and we have invoked the definition~4.2! of the
function F1 . Substituting Eq.~B1! into Eq. ~A2a!, we get

Q~r ,z;r 0!52E
2r 0

r 0
dj

1

r 0
F1~u1 ,u2 ,v !

52E
21

1

dv F1~u1 ,u2 ,v !. ~B3!

And substituting this into Eq.~3.9!, we get

G~a,h,R0 ;r 0!52pE
2~a1h!

2a

dzE
0

R0
dr

3r S 2E
21

1

dv F1~u1 ,u2 ,v ! D
3S 2E

21

1

dv8F1~u1 ,u2 ,v8! D . ~B4!

The integration variables change (z,r )→(u1 ,u2) of Eq. ~B2!
then gives the claimed result~4.1!.

To derive Eq.~4.3!, we begin by changing, in the inner
integral of Eq.~A2b!, the integration variablej to z[r 2j,
and then evaluating that inner integral analytically:

E
2~r 0

2
2h2!1/2

~r 0
2
2h2!1/2 ~r 2j! dj

@~r 2j!21h21z2#3/2

5E
r 2~r 0

2
2h2!1/2

r 1~r 0
2
2h2!1/2 z dz

~z21h21z2!3/2

5@r 222r ~r 0
22h2!1/21z21r 0

2#21/2

2@r 212r ~r 0
22h2!1/21z21r 0

2#21/2

5
1

r 0
F2~u1 ,u2 ,w!. ~B5!

In the last step we have used the definitions ofu1 andu2 in
Eqs. ~B2!, the new definitionw[h/r 0 , and the definition
~4.4! of the function F2 . Substituting Eq.~B5! into Eq.
~A2b!, we get

Q~r ,z;r 0!52E
0

r 0
dh

1

r 0
F2~u1 ,u2 ,w!

52E
0

1

dw F2~u1 ,u2 ,w!. ~B6!

And substituting this into Eq.~3.9!, we get

G~a,h,R0 ;r 0!52pE
2~a1h!

2a

dzE
0

R0
dr

3r S 2E
0

1

dwF2~u1 ,u2 ,w! D
3S 2E

0

1

dw8F2~u1 ,u2 ,w8! D . ~B7!

The integration variables change (z,r )→(u1 ,u2) of Eq. ~B2!
then gives the claimed result~4.3!.
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