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A review of constitutive models based on the mechanics of dislocation motion is presented, with focus
on the models of Zerilli and Armstrong and the critical influence of Armstrong on their development.
The models were intended to be as simple as possible while still reproducing the behavior of real
metals. The key feature of these models is their basis in the thermal activation theory propounded by
Eyring in the 1930’s. The motion of dislocations is governed by thermal activation over potential bar-
riers produced by obstacles, which may be the crystal lattice itself or other dislocations or defects.
Typically, in bcc metals, the dislocation-lattice interaction is predominant, while in fcc metals, the
dislocation-dislocation interaction is the most significant. When the dislocation-lattice interaction is
predominant, the yield stress is temperature and strain rate sensitive, with essentially athermal strain
hardening. When the dislocation-dislocation interaction is predominant, the yield stress is athermal,
with a large temperature and rate sensitive strain hardening. In both cases, a significant part of the
athermal stress is accounted for by grain size effects, and, in some materials, by the effects of
deformation twinning. In addition, some simple strain hardening models are described, starting from
a differential equation describing creation and annihilation of mobile dislocations. Finally, an application
of thermal activation theory to polymeric materials is described.

I. INTRODUCTION

IN the 1970s and 1980s, as well as in more recent years,
there has been a great deal of interest in constitutive rela-
tions that could describe material behavior sufficiently well
enough to produce accurate predictions of deformation and
fracture when used in large scale computer simulations. An
important advance was made by Johnson and Cook,[1] who
successfully described cylinder impact (Taylor) test results
for a variety of materials using the Lagrangian material-
dynamics code EPIC-2, which they had developed. They
employed a temperature and strain rate-dependent constitu-
tive relationship relating the von Mises yield stress to the
von Mises effective strain:

[1]

where is the strain rate, T* is the ratio (T � Troom)/(Tmelt �
Troom), and T is the absolute temperature. The terms A, B, n,
C, and m are material constants determined from limited strain-
ing tests done in tension or torsion. In this equation, strain
hardening, strain rate hardening, and thermal softening are
taken into account, but it turns out that the variation of ther-
mal softening with strain rate is not reproduced well for real
materials.

Since 1934, when Taylor,[2] Orowan,[3] and Polany,[4] try-
ing to understand slip in crystals, independently proposed that
the presence of imperfections, in particular, edge dislocations,
is able to account for the discrepancy between the large the-
oretical shear strength and the much lower observed strength
of metals, considerable research has been done in develop-
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s � (A � B�n)(1 � C ln �# )(1 � T *m)

ing a dislocation mechanics basis for describing material
behavior. The key to this dislocation mechanics description
is the description of the motion of dislocations by means of
Eyring’s thermal activation theory.[5] In the 1960s and 1970s,
a number of researchers, including Armstrong, developed
these ideas, and most of the recent work has drawn upon
this body of knowledge. The mechanical threshold stress model
of Follansbee and Kocks[6] incorporates these ideas to describe
the temperature, strain rate, and even evolutionary history
dependence of the flow stress.

One of the simplest dislocation mechanics formulations was
propounded by Armstrong and described in 1987 by Zerilli
and Armstrong,[7] in which heuristic arguments, based on the
idea of the thermally activated motion of dislocations, were
used to derive relations for fcc and bcc metals. Armstrong also
pointed out the need for certain athermal effects due to grain
size and related deformation twinning, to be treated separately
and explicitly.

The nature of the dislocation interactions leads to different
forms for the fcc and bcc equations. For bcc metals, the motion
of dislocations is governed by the Peierls–Nabarro stress result-
ing from the interaction produced by the overall lattice potential.
This leads to little increase in flow stress (“strain hardening”)
with strain. For fcc metals, the motion of dislocations is con-
strained by their mutual intersections, leading to substantial
strain hardening. The hcp metals have a stress strain behavior
falling somewhere between bcc and fcc metals.

II. THERMAL-ACTIVATION MODEL

In the thermal activation picture, the dislocations are
assumed to move in a periodic potential, and the average
dislocation velocity is determined by the thermodynamic
probability for achieving sufficient energy at temperature T
to move past a peak in the potential.

By simple geometry, the glide-plane shear strain rate is
related to the average dislocation velocity v by
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where �m is the areal density of mobile dislocations and b
is the magnitude of the dislocation Burgers vector. The aver-
age dislocation velocity can then be written in terms of a
Gibbs free energy, a function of T and the thermal compo-
nent of stress �. The form of the Gibbs function is deter-
mined by assuming that the area of activation,

[3]

is inversely proportional to the glide plane shear stress.[8]

While much more complicated expressions have been pro-
posed for the dependence of the activation area on shear
stress (refer to the monograph of Kocks et al.[9]), the inverse-
proportionality assumption has given extremely good results
for a wide range of materials from metal to polymers. Even
in the early 1970s, there was some theoretical and experi-
mental justification for this choice. Hartley,[10] using a simple
model for the dislocation intersection mechanism, showed
that A was inversely proportional to glide-plane shear stress
for small stresses. Similarly, in the case of the Peierls–
Nabarro stress due to the dislocation lattice interaction,
Feltham[11] showed that A is proportional to ��1/2 for small
stresses and to ��3/2 for large stresses, with an intermediate
range in which A is inversely proportional to �. Experi-
mentally measured activation areas also showed a close
correspondence to the inverse proportionality relation.[12] At
a very high shear stress, or, equivalently, low temperatures,
A approaches a nonzero constant A0.

The result is that the thermal component of stress may be
written as

[4]

where

[5]

and

[6]

For bcc metals, A0 is considered to be constant. In fact,
it was the observation that A0 is essentially independent of
plastic strain for a number of bcc metals, including reason-
ably pure iron, molybdenum, and niobium, that led to the
interpretation that the intrinsic Peierls stress associated with
the movement of an isolated dislocation is responsible for
their thermal-activation behavior.[13]

For fcc metals, A0, determined by dislocation intersections,
is proportional to the inverse square root of strain.[7] There-
fore, for fcc metals, B may be written as

[7]

To obtain the total flow stress, a constant term describing
the influence of solutes and grain boundaries must be added
to the thermal stress, so that the complete constitutive
relation for fcc metals is 

[8]

where �G is the contribution due to solutes and initial dislo-
cation density, kH is the microstructural stress intensity,

s � sTh � sG � kH��1/2
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and � is the average grain diameter. For bcc metals, an
additional empirical term of the form K	n is added to describe
the strain dependence. In theory, n is 1/2 in this case as well.

In summary, the relation for fcc metals is

[9]

and for bcc metals is

[10]

where

[11]

General Constitutive Equation

In order to describe the intermediate behavior of hcp
materials and certain alloy steels, we later introduced both
Peierls stress type interactions and intersection of forest-
dislocations type interactions into a single equation writ-
ten in the form

[12]

where

[13]

and

[14]

As it turns out, this equation gives a very good representation
for the constitutive relation for HY-100 steel, which has
characteristics of both fcc and bcc metals.[14] The fcc and bcc
equations are just special cases of this more general equation.

III. APPLICATIONS

The constitutive relations were applied to the description
of several materials, and they were found to describe the
major features of the material deformation behavior reason-
ably well. These features include the flow stress and tensile-
instability strain as functions of temperature, strain rate, and
grain size. The equations do not describe features such as
the upper and lower yield points, related strain-aging phe-
nomena, and deformation twinning, all common in bcc and
hcp metals. Of these, deformation twinning is the most
important when an accurate prediction of deformation is
required.

A. FCC Metals—Copper

The first application of the fcc equation was in modeling
an OFHC copper Taylor cylinder impact.[7] For this purpose,
the equation was incorporated into the EPIC-2 code[1] to
describe the relation of the von Mises effective stress to
effective strain. The constants for the model were obtained
from tensile and torsion test data reported by Johnson and
Cook.[1,15] Figure 1 shows the improved accuracy of the
thermal-activation model compared with the Johnson–Cook
model. The equation also produced good results in predict-
ing deformation behavior under a variety of conditions of
temperature, strain rate, and grain size in expanding-ring
experiments.[16]

a � a0 � a1 ln �#

b � b0 � b1 ln �#

s � sa � Be�bT � B0�
1/2e�aT

c0 � sG � kH��1/2

s � c0 � Be�bT � K�n

s � c0 � B0�
1/2e�bT
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Fig. 1—Radial strain vs distance from the impacted end for the 190 m/s
copper cylinder impact test. The dotted line is the experimental result of
Johnson and Cook, the dashed line is the EPIC-2 simulation result based
on the Johnson–Cook constitutive relation, and the solid line is the EPIC-2
simulation result based on the fcc dislocation mechanics thermal activation
equation.

B. BCC Metals—Iron

In the first application of the bcc equation, an iron Taylor-
cylinder impact was modeled.[7] Again, the equation was
implemented in the EPIC-2 code, and the constants for the
model were obtained from tensile and torsion test data
reported by Johnson and Cook. The results are shown in
Figure 2. Although the model is reasonably good, it is seen
from the deformation of the cylinder at the impact end that
the material is harder than predicted by the calculation.
The effect is small but unmistakable, and no fudging of the
model parameters could reproduce it. This led to the con-
clusion that deformation twinning in iron was responsible
for the additional hardening.

Armstrong noted that deformation twinning is important
in certain bcc metals and occurs when a certain threshold
stress, depending on grain size and little else, is exceeded.
The dependence of the twinning threshold stress on grain
size may be written as

[15]

which is similar to the dependence of the athermal part of
the flow stress on grain size.[7,17] For iron, �T0 is 330 MPa
and kT is 90 MPa-mm1/2. The grain size of the cylinder test
material was about 100 
m; thus, twinning would occur at
a stress level of 600 MPa. This stress will be achieved at
the impact end of the cylinder in impacts of 200 ms�1, in
which strain rates of 104 s�1 are generated. Twinning had
been shown to occur in fcc metals, but generally at very
much higher stress levels. For copper, the stress levels are
in the range of 1600 to 2800 MPa.[18] Twinning would harden
the material, because twin boundaries could be as effective
as grain boundaries in immobilizing dislocations.

sT � sT0 � kT��1/2

The hypothesis that twinning was responsible for the addi-
tional hardening was confirmed with a simple addition to the
numerical model. From photomicrographs of the impacted
specimen, Armstrong determined that, at the impacted end,
each grain contained approximately four twins. With this infor-
mation and the value of 22 MPa-mm1/2 for the microstructural
stress intensity kH for iron, it could be inferred that the twinned
grains were hardened by about 83 MPa. The twinning would
occur above a threshold stress of 600 MPa. So, the numerical
model was modified to add 83 MPa to the yield stress in any
computational cell in which the flow stress at any time exceeded
600 MPa. The result was the almost perfect agreement between
computation and experiment shown in Figure 3.

Tantalum, a bcc metal, shows little susceptibility to twin-
ning, and, so, constants derived from independent data give
a good description of its deformation behavior.[19] In our study,
a range of values for �G was given. The value to be used for
a particular material would depend on the solute concentra-
tion and could be determined by a yield stress measurement.

Constants for tungsten were obtained from experimental
data of Bechtold and Shewmon[20] and Bechtold,[21] which
covered strain rates from 10�2 to 10�5 s�1 and temperatures
from 450 to 1175 K. Three sets of constants were obtained
that could equally well fit these high temperature, low strain-
rate data.[22] The constants were applied to predict the ductile-
brittle transition behavior.

Flyer plate impact experiments for iron and tantalum have
also been successfully described by the bcc equations.[23]

C. Deformation Twinning

As we have seen, twinning must be taken into account
when modeling the deformation of iron at high strain rates.

Fig. 2—Radial strain vs distance from the impacted end for the 221 m/s
iron cylinder impact test. The dotted line is the experimental result of
Johnson and Cook, the dashed line is the EPIC-2 simulation result based
on the Johnson–Cook constitutive relation, and the solid line is the EPIC-2
simulation result based on the bcc dislocation mechanics thermal activa-
tion equation.
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Fig. 4—Titanium cylinder impact, experimental data of Holt et al.[27] Simu-
lation fails when twinning not taken into account.

Fig. 5—Titanium cylinder impact, experimental data of Holt et al.[27] Good
result is achieved with twinning model based on refining effective grain size
until twinning threshold stress rises to current value of local Mises stress.

The method that was used to confirm the effect of twin-
ning was based upon the premise that twinning effectively
refines the grain size.[24] If a grain reaches the appropriate
stress level, it is considered twinned and a constant incre-
ment is added to the flow stress. Once twinned, the new
threshold stress is much higher than the original one, so fur-
ther twinning is unlikely to occur. Unfortunately, this model
requires a priori knowledge of the number of twins per grain.
However, this leads to the idea that enough twinning will
occur in a grain to accommodate the excess by which the
von Mises equivalent stress exceeds the twinning threshold
stress. That is, the twinning will be just sufficient to harden
the material up to the current local value of the von Mises
stress. Under conditions of plastic flow, the von Mises stress
is equal to the flow stress, so the implementation of a model
based on this idea consists of calculating a new effective
grain size by setting � � �T, with the result that[25]

[16]

where

[17]

Note that, for Eq. [16] to have a physically meaningful solu-
tion, �0 must be greater than ��0. The locus of points for which
�0 � ��0 gives a relation between strain rate, temperature, and
strain that determines the conditions under which twinning
will occur. So, for example, in iron (�G � 0, B � 1033 MPa,
�0 � 6.98 � 10�3 K�1, �1 � 4.15 � 10�4 K�1), at 300 K and
zero plastic strain, the strain rate must exceed 2000 s�1 for
twinning to occur.

This model was applied to the hcp metals titanium and
zirconium, both of which tend to exhibit a behavior similar
to bcc metals and both of which twin readily. The base con-
stants were obtained from data published by Ramachandran

s0 � sG � Be�bT � K�n

� � a kT � kH

s0 � sT0
b2

et al.[26] As can be seen from Figures 4 and 5, the effect of
twinning is quite striking in the case of titanium.[27]

D. Tensile Instability

The condition for stability against necking in a tensile test
is that the rate of strain hardening of the test material be
sufficient to overcome the loss of load-bearing capability
due to reduction of cross section. In mathematical terms,

[18]

The Eqs. [9] through [11] have successfully described the
necking behavior of copper[8,13] and tantalum[18,28] as functions
of temperature and strain rate, showing the contrasting behav-
ior of fcc and bcc metals: the uniform strain before necking
increases with strain rate for fcc metals and decreases with
strain rate for bcc metals. The fcc instability condition was
used[8] to discount dislocation drag being responsible for

ds

d�
 s

Fig. 3—Confirmation that deformation twinning was responsible for the
failure of the bcc constitutive equation to simulate the hardness of the iron
cylinder impact specimen at the impact end. Good result when computational
cells in which the Mises stress exceeds 600 MPa have their yield stress
increase by 83 MPa.
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observations of a significant upturn in flow stress of copper
at strain rates greater than 103 s�1.

IV. STRAIN HARDENING AND RECOVERY

Up to this point, we have been satisfied with a strain hard-
ening proportional to the square root of plastic strain, a rela-
tion originally derived by Taylor.[29] At the same time, Taylor
and Quinney,[30] in a pioneering study, observed saturation
in the flow stress of copper compressed to a strain of 4.
Although the Taylor strain hardening works reasonably well
for small strains, the flow stress generally falls below that
given by the parabolic law at larger strains. The use of a
power law strain hardening with a power of somewhat less
than 1/2 is an attempt to account for this approach to satu-
ration. Following work by Bergstrom,[31] Klepaczko,[32] and
Estrin and Mecking,[33] it is possible to extend Taylor strain
hardening to include dynamic recovery and the consequent
saturation of the stress-strain curve at large strains. A similar
approach with somewhat different assumptions was under-
taken by Follansbee and Kocks in including dynamic recov-
ery in their description of OFE copper.[6]

At low temperatures, in the absence of thermal fluctuations,
the flow stress is related to the areal density of dislocations
� by

[19]

where is a constant of the order of unity which depends
on the geometry and strength of the dislocation-dislocation
interaction, 
 is the shear modulus, and b is the magnitude
of the Burgers vector. This result was originally obtained
by Taylor,[2] and a number of strain hardening models lead
to this relation, as is discussed in some detail by McClean.[34]

In the case of hardening due to dislocation-dislocation inter-
actions, the relation arises because the forces between dis-
locations are inversely proportional to the distance between
them, and the areal density of dislocations is inversely pro-
portional to the square of the distance between them.

Taking a heuristic approach, the density of immobile dislo-
cations may be related to the strain by the differential equation

[20]

where � is the mean free path for immobilization of mobile
dislocations, and � is the probability for remobilizing or
annihilating a stopped dislocation. If � � 0, then with con-
stant �, the solution of this evolution equation results in

[21]

which leads to Taylor strain hardening, � . For simplicity,
it is assumed that the initial density of immobile dislocations
is zero.

How is it that the density of immobile dislocations appears
in Eq. [21], when it is the mobile dislocations that produce
strain? The answer is that, in this picture, exactly �i mobile
dislocations per unit area are created and become immobi-
lized after moving an average distance of �. The creation of
mobile dislocations is described by the equation

[22]
drm

d�
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�
# �
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� vri

â

ŝTh � âmb1r

where �m is the density of mobile dislocations, and cm and am

are the creation and annihilation rates for mobile dislocations,
respectively, the forms of which need not be specified here.

If � is a nonzero constant, a simple extension to Taylor
strain hardening is obtained that exhibits a saturation stress.
In this case, the cold flow stress becomes

[23]

where , and 	r � 1/� is a characteristic strain
for recovery. At temperatures above zero, this cold flow
stress is reduced by the thermal activation factor, and Eq. [12]
becomes

[24]

Figure 6 shows a comparison of Eqs. [12] and [24] using
constants derived for tantalum from data of Chen et al.[35]

A value of 	r of 1.0 fits their large strain data well.
With a slightly more complicated form for �,

[25]

a strain hardening law is obtained which exhibits an initial
linear strain hardening and an intermediate Taylor behavior,
with an ultimate saturation of the flow stress at large strains.
The form is physically reasonable, as it expresses the fact
that the mean free path is large (and equal to the average
distance between dislocations) for small dislocation densities,
but has a lower limiting value for large dislocation densi-
ties. With this strain-hardening law, an excellent fit to the
stress-strain behavior of pure polycrystalline copper may be
obtained.[36]

V. POLYMERS

A. General Thermal-Activation Model

We now would like to turn our attention to the general
description of the thermal activation model with a view

l � l0 � 1/1r

s � sa � Be�bT � B01�r(1 � e��/�r) e�aT

B0 � âm1b/l

ŝ � B01�r(1 � e��/�r)

Fig. 6—Computed stress vs strain for tantalum at T � 298 K, � 10�3 s�1.
The squares depict the best fit (�a � 130 MPa, B0 � 460 MPa) Taylor
(�a � B0 ) strain hardening to the small strain data of Chen et al.[35]

The triangles represent the relation �a � B0 where the recov-
ery strain 	r � 1 and �a � 120 MPa, B0 � 500 MPa.

1�r (1 � e��/�r)
1�

�
#
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toward describing its application to polymers. The thermal-
activation model describes the rate of any process in which
matter rearranges by surmounting a potential energy barrier.
When the potential barrier is sufficiently high, the rate in
the forward direction exceeds the reverse rate significantly,
and the plastic strain rate is given by the expression[37]

[26]

where G is the activation energy for the reaction, k is
Boltzmann’s constant, and T is the absolute temperature.
The term G may be identified with the Gibbs free energy,
so we may write the standard thermodynamic relation

[27]

where S is the entropy, and the volumes of activation Vij are
the thermodynamic variables conjugate to the stresses �ij. At
constant temperature, specializing to isotropic materials and
assuming that there is no dependence on the third stress invari-
ant, Eq. [26] may now be written as

[28]

where we assume that V� is a function of effective stress �
and pressure p and that Vkk is a function only of pressure.

Assuming that the effective stress-activation volume depends
inversely on the effective stress,

[29]

and solving for the effective stress, Eq. [28] becomes

[30]

where the function B(p) is the flow stress at T � 0 K and

[31]

B. Strain Hardening Revisited

A number of processes may play a role in the plastic or
elastic deformation of polymers: chain slippage, kinking and
unkinking of chains, chain scission, cross linking, chain
entanglement, and chain segment rotation. One or more of
these processes will be important for a given polymer in a
certain regime of temperature, strain rate, and pressure. What-
ever the processes, we describe the aggregate result abstractly
in terms of units of flow, as defined by Kauzmann:[38] “struc-
tures in a body whose motions past one another make up
the unit shear stress process . . . the unit of flow may be a
single molecule or a group of many molecules, and the bar-
rier may arise directly from the repulsions between a few
molecules or from some more complicated mechanism.”

Here, we consider an areal density of units of flow which
are somewhat analogous to dislocations in crystalline mater-
ials—line defects which are the boundaries between slipped
and unslipped regions. Gilman[39] has discussed the appli-
cation of dislocation theory to amorphous materials and the
need to replace the constant Burgers displacement in crys-
talline materials with the average of a fluctuating Burgers
displacement in the amorphous material.

b(p,�# ) �
k

W0(p)
 ln (�# 0/�# )

s � B(p) e�b(p,�# )T

Vs �
W0(p)

s

∫Vs ds � ∫Vkk dp � G0 � kT  ln (�# /�# 0)

dG � �S dT � Vij dsij

�
#

� �
#
0e�G/kT

Extending the analogy further, we assume that, at low tem-
peratures, in the absence of thermal fluctuations, the flow
stress is proportional to the square root of �,

[32]

where is a constant. Then, the total flow unit density
may be related to the plastic strain by the differential equa-
tion described previously (Eq. [20]). But, we reinterpret the
parameters in the differential equation. The term b is now
the average displacement produced by a flow unit, � is the
mean free path for immobilization of flow units, and � is
the probability for mobilization of flow units. If we allow
� to have negative values, this term is to be interpreted as
contributing to the immobilization of flow units in proportion
to the currently existing density of immobile flow units. If
b, �, and � are constant, the equation is easily solved and
the cold flow stress becomes

[33]

At temperatures above zero, this cold flow stress is reduced
by the thermal activation factor .

C. Plastic Stress-Strain Behavior of Polymers

In order to describe the plastic stress-strain behavior of
polymers, two thermally activated processes are considered,
one associated with the initial yield behavior, the other asso-
ciated with subsequent strain hardening. Thus, the total flow
stress is written as

[34]

where two terms of the form of Eq. [30] have been included.
The presence of two separate deformation mechanisms was
suggested in a differential scanning calorimetry study of glassy
polymers by Hasan and Boyce.[40] Two distinct exotherms were
found, one at temperatures below the glass transition temper-
ature, associated with the initial yield and strain softening
behavior, and the other at temperatures above the glass-
transition temperature, associated with the strain hardening
behavior.

D. Total Plastic Component of Deformation

The resulting plastic component of the deformation is
described by the equation

[35]

where

[36]

and, neglecting their potential pressure dependence, �0, �1,
�0, are �1 are constants. From available experimental data
for polytetrafluoroethylene (PTFE), it was determined that �
depends approximately logarithmically on the strain rate and
linearly on the pressure, so we choose the functional form

[37]v � va � vb ln � # ln �# � vp p

 a � a0 � a1 ln �#
 b � b0 � b1 ln �#

s � Be�bT � B01(1 � e�v�)/v e�aT

s � B(p)e�b(p,�# )T � ŝ(�, p)e�a(p,�#)T

e�a(p,�# )T

ŝ � B01(1 � e�v�)/v

â

ŝ � â1r
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where �a, �b, and �p are constants. The form of the pressure
dependence for the coefficients B and B0 follows the result
of Argon,[41] who derived the expression

[38]

for the low temperature shear yield stress of glassy poly-
mers as a function of pressure. Argon’s model is based on
the thermally activated production of pairs of kinks in the
collection of interpenetrating smooth chain molecules com-
prising the polymer. Thus, we choose

[39]

where Bpa, Bpb, Bpn, B0pa, B0pb, and B0pn are constants.

E. Polymer Constitutive Equation: Viscoelastic
Component

A Maxwell–Weichert model is used to describe the ini-
tial viscoelastic stress. This model is placed in series with
the nonlinear dashpot described by Eq. [35], as illustrated
in Figure 7. Thus, the basic equations which describe the
model are

[40]

where �p(	p, p) is the function in Eq. [35] relating stress to
strain and strain rate,

[41]

where Ei and �i are the modulus and viscosity of the ith
component, respectively, and 

[42]

where 	, , and 	p are the total strain, the ith-compo-
nent elastic strain, the ith-component viscous strain, and the
plastic strain, respectively. The viscosities, or, equivalently,
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� � �(e)
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si � Ei �
(e)
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# (v)
i

�
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s � a
n

i�1
si � sp(�p,�

#
p)

  B0 � B0pa(1 � B0pb p)B0pn

 B � Bpa(1 � Bpb p)Bpm

t � (a � cp)6/5

the relaxation times, �i � �i/Ei, have a temperature and pres-
sure dependence given by

[43]

where

[44]

F. The Yield Stress of Polymethylmethacrylate

The thermal activation model was applied to the yield stress
of polymethylmethacrylate (PMMA) at various temperatures
and strain rates,[42] as measured by Bauwens–Crowet.[43] It
was shown that a volume of activation inversely proportional
to the yield stress gives good agreement between the calcu-
lated and measured yield stresses.

Bauwens–Crowet’s data for the compressive yield stress
of PMMA divided by its shear modulus is plotted, in Fig-
ure 8, as a function of the quantity T ln ( ) � G/k. With
the correct choice of , the equality holds, the quantity is
the activation energy in Kelvin, and the data in the plot
should coalesce into a single one-parameter curve, as they
do in Figure 8 with the choice of � 2 � 107 s�1.

Furthermore, if the volume of activation is inversely pro-
portional to the effective shear stress, then the curve in an
ln (stress) plot should be a straight line with a slope of �k/W0

and intercept of ln(B/
). An inspection of Figure 8 shows
this to be very closely the case, with k/W0 � 2.56 � 10�4 K�1

and B/
 � 0.454. These parameters then give calculated
values of yield stress vs strain rate and temperature that
match well with Bauwens–Crowet’s data.

G. Constitutive Equations for Polytetrafluoroethylene

The model was also applied to describe the isothermal,
constant strain rate stress-strain behavior of PTFE.[44,45] The
parameters for use in the constitutive equation for PTFE were
obtained by analyzing results reported by a number of inves-
tigators: for the plastic part, compressive split Hopkinson

�
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0/�
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Fig. 7—Spring and dashpot diagram for Maxwell–Weichert linear visco-
elasticity plus thermal activation nonlinear viscoplasticity.

Fig. 8—Compressive yield stress divided by shear modulus vs G/k � T ln
( ) for PMMA. Data of Bauwens–Crowet[43] is shown by the symbols.
The solid line is the model fit for a volume of activation inversely pro-
portional to effective shear stress, while the dotted curve is the result of a
fit for a more general inverse power dependence.
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Fig. 9—Calculated compressive stress vs strain at several strain rates for
PTFE compared with split Hopkinson pressure bar data reported by Walley
and Field for PTFE.[46]

Fig. 10—Calculated compressive stress vs strain at several pressures for
PTFE compared with tensile test data reported by Sauer and Pae.[49]

pressure bar stress-strain curves at a number of strain rates
as reported by Walley and Field,[46] a low temperature (130 K)
Hopkinson bar stress-strain curve as reported by Walley
et al.,[47] Hopkinson bar data at a number of temperatures
and strain rates as determined by Gray et al.,[48] and tensile
stress-strain data at various superposed hydrostatic pressures
as reported by Sauer and Pae.[49] An eight component
Maxwell–Weichert model was used for the viscoelastic part,
with the moduli, relaxation times, and activation energies (Ei,
�0i, and H0i, respectively) chosen to give a reasonably good
match to the shear modulus and logarithmic decrement vs
temperature data at 1 Hz, published by McCrum.[50]

Figures 9 and 10 show stress-strain curves calculated
with Eqs. [35] and [40] through [44] compared to the reported
experimental data. In Figure 9, the compressive Hopkinson-
bar data for stress vs strain at six strain rates ranging from
0.016 to 22,600 s�1, reported by Walley and Field, [46] are
compared to the calculated results. The change in shape of
the curves with strain rate is well reproduced. The increased
strain hardening with strain corresponds to negative values

of � in Eq. [35], � becoming more negative (increased prob-
ability for immobilization of flow units) with increasing
strain rate. In Figure 10, data for the tensile stress-strain with
superimposed hydrostatic pressure, reported by Sauer and
Pae,[49] are compared to calculated results. The change of
shape of the curves with pressure is well reproduced.

VI. CONCLUSIONS

The thermal activation model with a volume of activation
inversely proportional to the effective shear stress gives an
excellent description of the flow stress of a wide range of mater-
ial ranging from metals to polymers. In addition, in metals,
separate treatment of grain size and twinning effects leads to
significant improvements in accuracy of numerical models.
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