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Summary The oculocerebrorenal syndrome of Lowe

(Lowe syndrome) is an X-linked disorder of phospha-

tidylinositol metabolism characterized by congenital

cataracts, renal proximal tubulopathy and neurological

deficits. The disorder is due to the deficiency of the

phosphatidylinositol 4,5-bisphosphate (PIP2) 5-phos-

phatase, ocrl1. PIP2 is critical for numerous cellular

processes, including cell signalling, actin reorganiza-

tion and protein trafficking, and is chronically elevated

in patients with Lowe syndrome. The elevation of PIP2

cells of patients with Lowe syndrome provides the

unique opportunity to investigate the roles of this

phospholipid in fundamental cellular processes. We

previously demonstrated that ocrl1 deficiency causes

alterations in the actin cytoskeleton. Since actin re-

modelling is strongly activated by [Ca+2], which in-

creases in response to IP3 production, we hypothesized

that altered calcium signalling might contribute to the

observed abnormalities in actin organization. Here we

report a specific increase in bradykinin-induced Ca+2

mobilization in Lowe fibroblasts. We show that the

abnormal bradykinin signalling occurs in spite of normal

total cellular receptor content. These data point to a

novel role for ocrl1 in agonist-induced calcium release.

Abbreviations

2-APB 2-aminoethoxydiphenylborate

EGF epidermal growth factor

GPCR G-protein-coupled receptor

PDGF platelet-derived growth factor

PIP2 phosphatidylinositol 4,5-bisphosphate

TGN trans-Golgi network

Introduction

The oculocerebrorenal syndrome of Lowe (Lowe syn-

drome) is a rare X-linked disorder characterized by bila-

teral congenital cataracts, renal proximal tubulopathy

including low-molecular-weight proteinuria, albumin-

uria, aminoaciduria, hypercalciuria, metabolic acidosis,

phosphaturia and nephrocalcinosis (Bockenhauer et al.

2008) and neurological deficits. It is due to the defi-

ciency of ocrl1, a type II phosphatidylinositol 4,5 bis-

phosphate (PIP2) 5-phosphatase. This enzyme catalyzes

the hydrolysis of PIP2, which has a prominent role in a

number of essential cellular processes including cell

signalling, protein trafficking and actin polymerization
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(Di Paolo and De Camilli 2006; Sheetz et al 2006).

Lowe syndrome is the first known human disorder

caused by the deficiency of a PIP2 5-phosphatase. Thus

the study of cells derived from patients with Lowe

syndrome provides a unique opportunity to investigate

the roles of PIP2 metabolism in cells and tissues.

The ocrl1 protein is ubiquitously expressed, except

for haematopoietic tissues; its localization to the trans-

Golgi network (TGN), endosomes (Choudhury et al

2005; Dressman et al 2000; Ungewickell et al 2004) and

the plasma membrane (Erdmann et al 2007; Faucherre

et al 2005) suggest that ocrl1 plays a role in protein

trafficking. The deficiency of ocrl1 leads to elevated

cellular levels of PIP2 (Wenk et al 2003; Zhang et al

1998). However, it is unknown at present why a

deficiency of this widely expressed protein primarily

affects the lens, kidney and brain in Lowe syndrome.

PIP2 plays an important role as a second messenger in

regulating cell adhesion through the actin cytoskeleton

(Raucher et al 2000). Since actin reorganization is

required for the formation and maintenance of cell–

cell contacts (Lee et al 2000; Shen and Turner 2005),

the defects in lens epithelial cell differentiation and

renal proximal tubule function in Lowe syndrome

could result, in part, from abnormalities in the actin

cytoskeleton. We have previously shown that actin

remodelling is disrupted in Lowe fibroblasts (Suchy

and Nussbaum 2002). Further evidence for a role for

type II inositol polyphosphate 5-phosphatases in cell–

cell contact formation, particularly in polarized cells, is

suggested by work in the mouse. A mouse knockout of

the closest paralogue to Ocrl1, Inpp5b, showed abnor-

mal germ cell adhesion and abnormal Sertoli cell

junctions (Hellsten et al 2002). However, the loss of

ocrl1 by itself did not result in a detectable phenotype

in the mouse as it does in humans (Janne et al 1998).

Actin polymerization and the formation of actin-

dependent structures such as tight junctions are

calcium-dependent processes (Vasioukhin et al 2000).

Intracellular calcium concentrations are strongly influ-

enced by the hydrolysis of PIP2, which results in the

release of calcium from internal stores. We therefore

hypothesized that a chronic PIP2 5-phosphatase defi-

ciency and elevation of PIP2 in Lowe syndrome

fibroblasts might also lead to increased calcium release

from internal stores. This in turn might contribute to

the observed abnormalities in actin remodelling,

ultimately resulting in abnormal junction formation.

Differences in calcium signalling between cell types

might help explain the tissue specificity of the Lowe

syndrome phenotype.

To test the hypothesis that calcium signalling is

disrupted in Lowe cells, we measured calcium release

from internal stores in Lowe fibroblasts and controls.

We found that Lowe fibroblasts had an augmented

response to bradykinin stimulation but, surprisingly,

we did not observe a generalized increase in cell signal-

ling with other agonists known to induce IP3-mediated

intracellular calcium release. These data point to a

novel role for ocrl1 in altering only certain pathways in

agonist-induced calcium release.

Materials and methods

Patients and cell lines

Normal human skin fibroblast cultures were obtained

from American Type Culture Collection (Manassas,

VA, USA), and from the NIGMS Human Genetic

Mutant Cell Repository (Camden, NJ, USA). Fibro-

blast cultures from unrelated patients with Lowe

syndrome, which had been obtained with the informed

consent of a responsible parent or guardian, were used

(NIH IRB protocol numbers 01-HG-0008, 01-HG-

0095). Cells were grown in Dulbecco_s modified

essential medium (Gibco; Grand Island, NY, USA)

with 15% fetal bovine serum and 2 mmol/L glutamine

at 37-C with 5% CO2.

Calcium imaging

Live cell imaging was performed with cell permeant,

acetoxymethyl (AM) ester dyes, fluo 4 (0.5 mmol/L)

and fura red (1.0 mmol/L), to measure calcium

response to agonists. Upon binding calcium, fluo 4

fluorescence intensity increases and fura red intensity

decreases (Molecular Probes; Carlsbad, CA, USA).

Dyes were added to 20% pluronic solution (Molecular

Probes and resuspended in nominally calcium free

incubation buffer (1.06 mmol/L KH2PO4, 2.97 mmol/L

NaHPO4, 155 mmol/L NaCl, 20 mmol/L Hepes,

25 mmol/L glucose, 5.3 mmol/L KCl, 1 mmol/L sodium

pyruvate, 0.8 mmol/L magnesium sulfate, 100 mmol/L

EGTA, 1.5 mg/ml BSA, pH 7.3) (Holtzclaw et al 1995)

with 0.08 mg/ml sulfinpyrazone to inhibit organic

anion transport activity. To control for potential minor

variations in buffer or dye prepared each day, a Lowe

and control culture were run together as a pair. Seven

different pairs of Lowe and control cultures were

matched for passage number from four Lowe and four

control cultures from different individuals. Each pair

of cultures was plated two days prior to imaging,

washed, and loaded into confocal chambers for a

20-min incubation with dyes at room temperature.

Cultures were used at approximately 70% confluency.
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Cells were rinsed three times, washed 20 min in incuba-

tion buffer, rinsed and loaded onto the confocal stage.

A baseline calcium concentration was recorded for 5–10

frames, followed by stimulation with bradykinin

(100 nmol/L), histamine (100 mmol/L) (Calbiochem,

San Diego, CA, USA), or 50 ng/ml PDGF (platelet-

derived growth factor; Sigma; St Louis, MO, USA). In

other experiments, the cells were treated with the

calcium ionophore A23187 (20 mmol/L) (Calbiochem)

in order to measure stored calcium. Cells were imaged

with a Zeiss Axiovert 100 M confocal microscope with

LSM 510 software, using a Zeiss 20�/0.75 planapochro-

mat objective. An excitation wavelength of 488 nm was

used and images were collected with a 505–550 nm

bandpass filter and a 650 nm long-pass filter, at a maxi-

mum pinhole setting, every 1–2 s for 3 min (for bradyki-

nin, histamine and A23187) or 5 min (for PDGF and

EGF). Data analysis was performed with the Kaleida-

Graph software (Synergy Software, Reading, PA, USA).

IP3 receptor inhibition

Cells were incubated with the [Ca2+]-sensitive dyes,

as described above, washed and incubated for the

final 5 min of the wash with 20–100 mmol/L 2-amino-

ethoxydiphenylborate (2-APB) (Calbiochem/ EMD

Biosciences, La Jolla, CA, USA), and maintained in

the presence of 2-APB during imaging. Cells were

stimulated with 100 nmol/L bradykinin and imaged as

described above.

Western blotting

Fibroblasts from four different Lowe patients and four

controls were harvested and 20 mg of total cell protein

was loaded on 10% polyacrylamide gels. Proteins were

separated by electrophoresis and transferred to a

PDVF membrane (Immobilon P, Millipore Corpora-

tion, Bedford, MA, USA). The membrane was

blocked for 30 min at 37-C in 5% non-fat dry milk,

TBST buffer (50 mM Tris, 150 mM NaCl, 0.1% Tween

20), before overnight incubation with monoclonal anti-

B2 bradykinin receptor antibodies (1/1000) (BD Bio-

sciences, Pharmingen, San Jose, CA, USA). The

membranes were washed, incubated for 1 h with

peroxidase-conjugated anti-mouse IgG antibody,

washed again, and detected by chemiluminescence

(ECL, Amersham Biosciences, Piscataway, NJ,

USA). The membranes were stripped and reprobed

with a monoclonal anti-b-tubulin antibody (1/200),

AB3194 (Abcam, Inc., Cambridge, MA, USA), and

the receptor protein was quantified by densitometry

using b-tubulin as a control.

Results

Lowe fibroblasts show increased response

to bradykinin

Agonist-induced intracellular calcium release was

measured in primary cultures of Lowe and control

fibroblasts. The studies were performed with the cells

in calcium-free buffer in order to focus on the release

of calcium from internal stores without having the

results confounded by agonist-induced influx of extra-

cellular calcium. Two cell-permeant calcium-sensitive

fluorescent indicator dyes, fluo-4 and fura red, were

used for ratiometric assessment of calcium release.

Fluo-4 fluorescence increases upon binding of free

calcium, whereas fura-red fluorescence decreases on

free calcium binding. Following a baseline assessment

in untreated cells, fibroblasts were stimulated with

bradykinin, resulting in increased ratio of fluo 4/fura

red that peaked approximately 15 s after stimulation

(Table 1), then declined to baseline levels. Bradykinin

was used to stimulate seven pairs of cultures of Lowe

and control fibroblasts. The response was assessed by

measurement of the peak calcium release in an

average of 34 cells per genotype. In all seven pairs of

cultures, Lowe cells had a higher mean calcium release

than control (Table 1). This difference was statistically

significant in six of seven pairs. Overall, Lowe cells

showed a 26% increase in calcium release over

controls. Lowe cells also tended to reach peak calcium

concentrations faster than controls; the mean time to

peak calcium in Lowe cells 12.4 seconds versus 18.3

seconds in control fibroblasts, although this was not

statistically significant (paired t-test, t= 2.10, p= 0.08).

The ratiometric method employed was not sensitive

enough to detect baseline differences in intracellular

free calcium between Lowe and control fibroblasts in

the absence of agonist stimulation.

It is well established that bradykinin signalling

occurs via the IP3 receptor. We confirmed the calcium

release we observed in response to bradykinin was IP3

receptor-mediated by using 2-APB, a non-competitive

inhibitor of the IP3 receptor (Maruyama et al 1997;

Missiaen et al 2001). Cells were preincubated with

increasing concentrations of 2-APB (20–100 mmol/L)

and then stimulated with 100 nmol/L bradykinin. We

found that 2-APB inhibited agonist-stimulated calcium

release in a dose-dependent manner (Fig. 1). At lower

doses of 2-APB, there was a reduced peak response to

bradykinin stimulation, as well as a reduction in the

number of cells that responded to the agonist. Increas-

ing concentrations of 2-APB diminished both the level

of response and the number of cells that responded. At
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the lowest dose of 2-APB tested, the peak calcium

release in response to bradykinin was reduced to 59.3%

and 88.3% of that observed in untreated fibroblasts in

Lowe and control cells, respectively. At higher doses of

the compound very few cells responded to bradykinin, so

we measured the dose-response of 2-APB inhibition by

the number of cells that responded to bradykinin

stimulation after treatment with the inhibitor. In the

present study, concentrations of 2-APB e100 mmol/L

were used to avoid additional effects beyond inhibition

of the IP3 receptor, which have previously been

reported to occur at higher 2-APB concentrations

(Missiaen et al 2001).

Many cells have two major types of intracellular

calcium release channels: those gated by the IP3

receptor and those gated by the ryanodine receptor.

Ryanodine receptor activation requires a higher base-

line calcium level than that present in the calcium free

media in experiments reported here. To confirm that

we were measuring IP3 receptor-mediated Ca2+ re-

lease, we tested whether we could observe ryanodine

receptor activity in fibroblasts under the same con-

ditions (nominally calcium-free medium) used here for

measuring the IP3-receptor-mediated responses. We

stimulated cells with caffeine, an activator of the

ryanodine receptor. We found no detectable calcium

release in these fibroblasts even after stimulation with

100 mmol/L caffeine, confirming that the calcium

release we were measuring in our experiments was

IP3-mediated.

Calcium stores are not abnormal

in Lowe fibroblasts

To determine whether there was an increase in calcium

stores in Lowe fibroblasts that might account for the

increased response in Lowe cells, a calcium ionophore,

A23187, was used to empty calcium stores. The

relative total calcium released from the stores was

measured as described above for agonist stimulation,

and total stored calcium was assessed from the

integrated area under the calcium release curve. Using
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Fig. 1 Bradykinin stimulation caused an IP3 receptor-dependent
release of stored calcium. 2-Aminoethoxydiphenyl borate (2-
APB), 20–100 mmol/L, a non-competitive inhibitor of the IP3

receptor, reduced the response to 100 nmol/L bradykinin in both
Lowe (solid line, squares) and control fibroblasts (broken line,
circles) in a dose-dependent manner. The standard error of each
data point is displayed as a vertical line, thick solid line for the
standard error of measurement of the Lowe cells, thin line for
the standard error of measurement of the control cells

Table 1 Release of calcium from internal stores in lowe and control fibroblasts in response to 100 nmol/L bradykinin

Experimenta Number of cells analysed Peak Ca2+ released (Fluo 4 / Fura red) tb pc

Lowe Control Lowe Control

Mean SEd Mean SE

1 29 24 2.37 0.09 1.69 0.08 5.76 <0.0001

2 28 22 2.15 0.07 1.87 0.05 3.35 0.002

3 48 48 1.44 0.04 0.92 0.04 8.57 <0.0001

4 39 49 1.49 0.03 1.40 0.05 1.73 0.087

5 26 15 2.84 0.16 2.26 0.15 2.67 <0.020

6 41 30 2.00 0.04 1.50 0.07 5.86 <0.0001

7 34 41 2.23 0.13 1.94 0.05 4.58 <0.0001

aPairs of Lowe and control fibroblast cultures derived from different individuals.
bt, t-test.
cp, significance level.
dSE, standard error.
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four pairs of cell cultures, we found no elevation in the

total stored calcium in Lowe cells (Table 2). In fact,

there was a trend for lower stored calcium in Lowe

fibroblasts, with three of the four experiments showing

a statistically significant reduction in stored calcium

in Lowe fibroblasts. Therefore, higher calcium stores in

Lowe cells is not the explanation for the increase in

calcium release in response to bradykinin.

Table 2 Total Ca2+ released from internal stores in response to the calcium ionophore, A23187 (20 mmol/L)

Experimenta Number of cells analysed Total Ca2+ released tb pc

Lowe Control Lowe Control

Mean SEd Mean SE

1 38 34 52.82 1.66 59.13 2.62 2.03 <0.05

2 36 41 92.27 3.92 93.76 3.51 0.28 0.78

3 30 30 47.63 2.00 63.11 3.52 3.82 <0.001

4 32 37 79.52 4.30 96.21 3.56 3.02 <0.005

aPairs of Lowe and control fibroblast cultures derived from different individuals.
bt, t-test.
cp, significance level.
dSE, standard error.

Fig. 2 The total cellular bradykinin receptor concentration was
not increased in Lowe fibroblasts. Shown are the results of
quantitative western analysis of two experiments, the first showing
four different Lowe patient fibroblast cultures and four controls
(experiment 1; panels a, c). Proteins were separated by electro-
phoresis and western blotting was performed using a monoclonal
antibody to the bradykinin receptor and to b-tubulin protein, used
as a loading control (panel a). The concentrations of receptor
protein and b-tubulin protein were quantified by densitometry and

the concentration of receptor protein was expressed relative to the
b-tubulin protein. The mean and standard error of the relative
bradykinin concentrations are shown in the histogram in panel b;
the standard error is represented by the vertical bar. There was no
significant difference in bradykinin receptor concentration ob-
served between Lowe and control cells (t=0.249, p=0.81). These
results were replicated in experiment 2 (panels b, d) using three
different Lowe and control cell cultures, with similar results
(t=1.04, p=0.36)
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The concentration of bradykinin receptor

is not increased in Lowe fibroblasts

We next investigated the possible cause for the

abnormal bradykinin-induced calcium release in Lowe

cells. The total bradykinin receptor expression was

measured in four different Lowe patient fibroblast

cultures and four control fibroblast cultures (Fig. 2a).

Western analysis of total cell lysates, and quantifica-

tion by densitometry relative to a b-tubulin control,

revealed no difference in the total number of brady-

kinin receptors present in Lowe and control cells

(t=0.249, p= 0.81) (Fig. 2a and c). The results of a

second set of experiments using three pairs of Lowe

and control fibroblast cultures provided similar results

(Fig. 2b and d).

Increased signalling in Lowe cells was not generalized

Our hypothesis was that the elevated calcium response

to IP3 was the result of elevated levels of PIP2, the

metabolic precursor of IP3. This would imply that

stimulation with other agonists that activate the

phospholipase C-mediated hydrolysis of PIP2 would

also result in an increased response in Lowe cells. We

therefore tested the response of Lowe and control cells

to stimulation with a number of additional agonists.

Histamine, like bradykinin, signals through a G-

protein-coupled receptor (GPCR). PDGF signals

through a tyrosine–kinase coupled receptor. We ob-

served that, unlike the response to bradykinin, the

response of Lowe fibroblasts to histamine was not

increased over that of controls. Instead, Lowe fibro-

blasts tended to show a decreased response to hista-

mine. In two experiments this decreased response to

histamine was statistically significant (Table 3). The

time to peak calcium concentration after histamine

stimulation was 19 s in Lowe cells and 15 s in control

cells, which was not significantly different (t= 0.384,

p=0.72). Thus, we found no evidence for an increase

in response to histamine stimulation in Lowe cells.

Furthermore, the response of Lowe fibroblasts to

PDGF stimulation was not significantly different from

controls in four experiments (Table 4). Nor did we

Table 3 Release of Ca2+ from internal stores upon stimulation with histamine (100 mmol/L)

Experimenta Number of cells analysed Peak Ca2+ released (Fluo 4 / Fura red) tb pc

Lowe Control Lowe Control

Mean SEd Mean SE

1 22 50 0.89 0.06 0.85 0.06 1.14 0.25

2 32 42 1.46 0.10 1.86 0.08 3.13 0.003

3 40 42 1.40 0.04 1.48 0.06 1.16 0.25

4 48 50 1.41 0.06 1.98 0.06 8.18 <0.0001

aPairs of Lowe and control fibroblast cultures derived from different individuals.
bt, t-test.
cp, significance level.
dSE, standard error.

Table 4 Released of Ca2+ from internal stores upon stimulation with PDGF (50 ng/ml)

Experimenta Number of cells analysed Peak Ca2+ released (Fluo 4 / Fura red) tb pc

Lowe Control Lowe Control

Mean SEd Mean SE

1 29 29 1.08 0.07 1.12 0.04 0.58 0.56

2 17 32 0.93 0.08 0.80 0.05 1.39 0.17

3 32 32 0.83 0.07 0.81 0.05 0.20 0.85

4 35 41 0.79 0.09 0.80 0.05 0.06 0.95

aPairs of Lowe and control fibroblast cultures derived from different individuals.
bt, t-test.
cp, significance level.
dSE, standard error.
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observe a difference in time to peak calcium in PDGF

stimulated cells; the mean time to peak calcium con-

centration was 111 s in Lowe cells and 112 s in controls

(t=0.055, p= 0.96). We also tested the response of

Lowe and control fibroblasts to bombesin (signalling

through a GPCR) and epidermal growth factor (sig-

nalling via a tyrosine-kinase coupled receptor) in

several pairs of Lowe and control fibroblast cultures.

Although only 50–70% of the fibroblasts responded to

EGF or bombesin stimulation, compared with 92–

100% with bradykinin or histamine and greater than

90% after PDGF stimulation, we observed no evidence

for a consistent difference in the peak response of Lowe

versus control cells (data not shown). These results

indicate that the observed increased response to brady-

kinin stimulation in Lowe fibroblasts was not indicative

of a generalized increase in the cell signalling response.

Discussion

We show here that Lowe patient fibroblasts have

increased intracellular [Ca+2] mobilization in response

to bradykinin stimulation. This indicates that PIP2

5-phosphatases can play a role in [Ca+2] signalling and

that abnormal [Ca+2] signalling may contribute to the

phenotype in Lowe syndrome. Bradykinin and the

other agonists used in this study trigger calcium

release from internal stores by the rapid phospholi-

pase C-stimulated hydrolysis of PIP2, producing IP3

(Cruzblanca et al 1998). IP3 binds to IP3 receptors on

several intracellular organelles, most notably the en-

doplasmic reticulum. A subsequent wave of calcium

release that occurs by the parallel production of

diacylglycerol, which activates protein kinase C and

stimulates the influx of extracellular calcium, was not

considered here, as the cells were incubated in nom-

inally calcium free medium.

We predicted a generalized increase in calcium

signalling in Lowe cells due to increased PIP2 substrate

availability for IP3 production. However, the defect in

signalling was observed only with bradykinin and not

with any of the other G-protein-coupled receptors or

the tyrosine kinase-coupled receptor agonists that we

tested. Furthermore, we found no increase in stored

calcium in Lowe cells. We conclude that the increased

bradykinin-stimulated [Ca+2] mobilization in Lowe

syndrome fibroblasts must occur by a mechanism in

addition to simply increasing the availability of PIP2

substrate for IP3 production and is specific to brady-

kinin signalling per se. We show here that the

augmented response to bradykinin stimulation in Lowe

cells was not due to a change in the total receptor content

or to an increase in calcium stores. We hypothesize,

therefore, that the observed response may be due to

disrupted endocytosis/trafficking of the bradykinin

receptors. Bradykinin receptors are trafficked by cav-

eolae- or non-clathrin-mediated mechanisms (DeWeerd

and Leeb-Lundberg 1997; Haasemann et al 1998; Lamb

et al 2002), whereas the other receptors tested here,

PDGF and histamine, are not (Sato et al 2003; Self et al

2005; Newton et al 2005). The caveolin-1 binding

motifs, FXF(X)4F and F(X)4FXF, (where F is an

aromatic amino acid (W,Y,F) and X is any amino acid)

(Couet et al 1997) are present in ocrl1 at amino acids

223–230, 345–352, 555–562 of the ocrl1 protein se-

quence, U57627 (numbering from the putative OCRL1

start site, corresponding to the second methionine in the

reference sequence) (Suchy et al 1995). Overexpression

of ocrl1 has been reported to block Shigatoxin b

trafficking (Choudhury et al 2005), a process mediated

by caveolae (Nichols and Lippincott-Schwartz 2001).

Furthermore, the cellular localization of ocrl1 has

implicated it in protein trafficking. Thus, an investiga-

tion of abnormalities in caveolar trafficking would be a

logical next step in attempting to understand the

cellular abnormalities caused by a deficiency in ocrl1.

How might defective bradykinin signalling contrib-

ute to the Lowe syndrome phenotype? The peptide

hormone bradykinin is a common cellular agonist and

the bradykinin receptor is expressed in most tissues,

including the lens, kidney and brain (Vio et al 1996),

the tissues primarily affected in Lowe syndrome. Dis-

ruptions in calcium signalling can affect cells and

tissues in a way that can resemble the Lowe syndrome

pathology. Abnormal calcium signalling has been

shown to alter cell adhesion in polarized renal epithe-

lial cells (De Blasio et al 2004; Stuart et al 1996) and

appears to play a role in the development of lens

cataracts including posterior subcapsular cataracts that

occur in Lowe patients (Churchill and Louis 2002;

Gupta et al 2004). Calcium is also critical in regulating

the release of neurotransmitters and has been shown

to play a role in initiating seizures, which occur in 50%

of Lowe syndrome patients (Fletcher et al 1996; Pal

et al 2001).

While abnormal bradykinin signalling may contrib-

ute to the phenotype in susceptible tissues, we suspect

that the signalling defect may be one facet of a broader

problem in actin reorganization and/or endocytosis in

Lowe cells. PIP2 is a second messenger affecting the

reorganization of the actin cytoskeleton (Raucher et al

2000) and has a direct effect on endocytosis (Martin

2001; Cremona and De Camilli 2001). The phenotype

of Lowe syndrome points strongly to a defect in

epithelial tight junction formation that requires actin
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polymerization. Interestingly, it has recently been

reported that caveolae-mediated endocytosis is re-

quired for the formation of tight junctions and that

the mechanism by which actin depolymerization dis-

rupts tight junctions is by inhibiting caveolae-mediated

endocytosis (Shen and Turner 2005). Caveolae are

present in most tissues, including lens epithelial and

fiber cells, and participate in signalling and endocytosis

(Hnasko and Lisanti 2003; Lo et al 2004). Not all

epithelial cells are affected in Lowe syndrome, indi-

cating that some types of epithelial cells are more

susceptible than others to the effects of ocrl1 deficien-

cy. Ultimately, the explanation for how a deficiency of

ocrl1 leads to the Lowe syndrome phenotype must

elucidate both why the target tissues are affected and

why other tissues are not. The explanation may lie in

the differential concentration of PIP2 and PIP3 in the

apical or basolateral membranes of epithelial cells

(Gassama-Diagne et al 2006; Pilot et al 2006), in the

differential organization of the actin cytoskeleton in

different cell types (Lee et al 2000; Yonemura et al

2004), or in the selective expression and trafficking of

endocytic proteins in different tissues (Lutcke et al

1994). Further studies on the role of ocrl1 in various

epithelial cell types may lead to a better understanding

of the complex phenotype of Lowe syndrome.
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