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Abstract Multidrug resistance is a major obstacle to
successful cancer treatment. One mechanism by which
cells can become resistant to chemotherapy is the expres-
sion of ABC transporters that use the energy of ATP
hydrolysis to transport a wide variety of substrates across
the cell membrane. There are three human ABC trans-
porters primarily associated with the multidrug resistance
phenomenon, namely Pgp, MRP1, and ABCG2. All three
have broad and, to a certain extent, overlapping substrate
specificities, transporting the major drugs currently used in
cancer chemotherapy. ABCG2 is the most recently de-
scribed of the three major multidrug-resistance pumps, and
its substrates include mitoxantrone, topotecan, irinotecan,
flavopiridol, and methotrexate. Despite several studies
reporting ABCG2 expression in normal and malignant
tissues, no trials have thus far addressed the role of ABCG2
in clinical drug resistance. This gives us an opportunity to
critically review the disappointing results of past clinical
trials targeting Pgp and to propose strategies for ABCG2.
We need to know in which tumor types ABCG2 contributes
to the resistance phenotype. We also need to develop
standardized assays to detect ABCG2 expression in vivo
and to carefully select the chemotherapeutic agents and
clinical trial designs. This review focuses on our current
knowledge about normal tissue distrubution, tumor expres-
sion profiles, and substrates and inhibitors of ABCG2,
together with lessons learned from clinical trials with Pgp
inhibitors. Implications of SNPs in the ABCG2 gene
affecting the pharmacokinetics of substrate drugs, including

many non-chemotherapy agents and ABCG2 expression in
the SP population of stem cells are also discussed.
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1 Introduction

Clinical drug resistance remains a significant impediment to
the successful treatment of cancer. The multidrug resistance
phenotype is often associated with increased expression of
ATP-binding cassette (ABC) transporters that mediate
energy-dependent transport of substrate drugs out of the
cell against a concentration gradient [1]. The discovery of
the MDR1 (ABCB1) gene 20 years ago [2, 3] ignited a
fervent study of drug resistance in cancer. As a result, the
protein encoded by MDR1, P-glycoprotein (Pgp), is by far
the most intensely studied ABC transporter. Pgp is known
to transport a wide range of chemotherapeutic agents
including the anthracyclines, vincas, taxanes, etoposide,
and mitoxantrone [1]. Despite strong evidence linking Pgp
expression to poor prognosis in diseases such as leukemia,
early clinical trials aimed at inhibiting Pgp were poorly
designed and unsuccessful [4], leading many to abandon
the idea of reversing Pgp-mediated resistance. Most later
trials utilizing “second generation” inhibitors were equally
unsuccessful. Several explanations for the difficulty in
confirming the MDR hypothesis at the level of the clinical
trial can be invoked [4].

In 1993, Cole and colleagues cloned a gene encoding
another energy-dependent transporter, the multidrug resis-
tance-associated protein, or MRP1 (ABCC1) [5]. Conferring
resistance to a somewhat narrower range of chemotherapy
agents, namely the anthracyclines, vincas, etoposide and
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teniposide, MRP1 renewed interest in ABC transporters,
especially since MRP1 expression is frequently observed in
non-small cell lung cancer [6, 7]. However, few MRP1-
specific inhibitors were developed and the lack of success
of clinical trials attempting to reverse Pgp-mediated drug
resistance left many hesitant to attempt studies to inhibit
MRP1 clinically.

In the early 1990s, several groups began reporting non-
Pgp, non-MRP1-mediated drug resistance in a variety of
drug-selected cell lines [8–12]. The resistant cell lines
exhibited resistance to doxorubicin and etoposide in
addition to high mitoxantrone resistance, but lacked
resistance to vinblastine or cisplatin. In one drug-selected
cell line, high levels of cross-resistance to the camptothecin
analogs topotecan, 9-aminocamptothecin, CPT-11, and SN-
38, the active metabolite of CPT-11, were also found [13].

The gene responsible for the novel cross-resistance
phenotype was first cloned by Doyle and colleagues from
the MCF-7 AdrVp breast cancer cell line developed in the
Fojo laboratory [14] and was called BCRP for breast cancer
resistance protein [15]. Shortly thereafter, Allikmets and
colleagues reported a nearly identical gene termed ABCP
for ATP-binding cassette transporter expressed in placenta
[16]; and our laboratory reported a cDNA cloned from the
mitoxantrone-selected colon carcinoma cell line S1-M1-80
and termed the gene MXR, or mitoxantrone resistance gene
[17]. When the sequences were eventually compared, they
were recognized as essentially identical and belonging to a
subfamily of ABC transporters not previously associated
with drug resistance in humans.

Subsequent to the cloning of BCRP/ABCP/MXR, the
Human Genome Nomenclature Committee assigned the
gene the name ABCG2, making it the second gene in the G
subfamily of ABC transporters that is made up of only half-
transporters. This terminology will be used throughout this
review. The G subfamily of transporters contains five other
members in addition to ABCG2 [18]: two involved in
cholesterol transport, ABCG4 and ABCG1, the human
homologue of the Drosophila white protein [19]; one
currently found only in rodents, Abcg3, which appears to
have an aberrant ATP-binding domain [20]; and two that
heterodimerize with each other to form a functional sterol
transporter, ABCG5 and ABCG8 [21].

Eight years after the discovery of ABCG2, we still have
no clear idea what role ABCG2 plays in clinical drug
resistance. Determining this role will be critical in plan-
ning future clinical trials. In this review, we will char-
acterize the resistant phenotype conferred by ABCG2,
present reports of normal tissue distribution and discuss
studies directed at determining the contribution of ABCG2
to drug resistance in cancer. A summary of the current
methods used to measure the levels of ABCG2 in patient
samples will be provided and we will make recommenda-

tions on how to improve the reliability of data generated in
future studies.

2 Chromosomal localization and mechanisms
controlling expression

The ABCG2 gene spans over 66 kb and is made up 16
exons and 15 introns; the resulting protein is 655 amino
acids long and runs as a 72 kDa protein on an SDS gel
under reducing conditions [22]. Fluorescence in situ
hybridization studies with a bacterial artificial chromosome
probe containing ABCG2 localized the gene to 4q21-4q22
in cells with a normal chromosome 4 [23].

Few data are available regarding molecular mecha-
nisms controlling ABCG2 expression, but recent studies
suggest that, in different systems, expression may be
controlled at the promoter level by sex hormones, hypoxia
and methylation status. Conflicting data exist with regard to
the effect of the sex hormones estrogen, progesterone, and
testosterone on ABCG2 expression [24–27], but all reports
note some effect. Additionally, ABCG2 expression is
upregulated in the mammary gland during lactation [28].
Krishnamurthy and colleagues were the first to demonstrate
that hypoxia regulates ABCG2 expression [29]. They posit
that stem cells or tumor cells in hypoxic environments may
be protected from chemotherapeutic agents due to the
increased levels of ABCG2 induced by hypoxia [29]. In a
multiple myeloma system as well as a renal carcinoma
system, ABCG2 promoter hypermethylation was linked to
a decrease in ABCG2 expression [30, 31]. Further research
is still needed to accurately characterize the mechanisms
controlling ABCG2 expression.

3 ABCG2 expression in normal tissues

The discovery of ABCG2 led to several subsequent reports
investigating expression in normal tissues. The initial report of
Doyle and colleagues noted the highest level of ABCG2
expression in the placenta, with lower levels in the brain,
prostate, small intestine, testis, ovary, colon and liver, as
determined with a cDNA probe [15]. The development of
antibodies to ABCG2 enabled the detection of ABCG2 in
formalin-fixed, paraffin-embedded tissues. Maliepaard et al
examined ABCG2 expression in normal tissues and cancer
cell lines using the BXP-21 and BXP-34 monoclonal
antibodies. ABCG2 expression was found in the placenta,
particularly in the synctiotrophoblastic cells, as well as in
the colon, small intestine, biliary canaliculi, breast tissue,
venous endothelium, and in capillaries [32]. Our laboratory
subsequently developed a polyclonal anti-ABCG2 antibody
(termed 87405 or 405) [33] and observed high ABCG2
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expression in the alveolar pneumocytes, sebaceous glands,
small and large intestine, islet and acinar cells of the pancreas,
zona reticularis of the adrenal gland, hepatocytes, cortical
tubules of the kidney, and prostate epithelium in addition to
previously reported sites [34]. These tissue localization
studies suggested a protective role for ABCG2, and for
some tissues, further work has supported this theory.

3.1 Placenta

Since high levels of ABCG2 have been observed in
synctiotrophoblasts at the chorionic villus [32, 34], it has
been postulated that ABCG2 forms part of the maternal–
fetal barrier, serving to protect the fetus from endogenous
and exogenous toxins. Jonker and colleagues demonstrat-
ed that, when the dual Pgp and ABCG2 inhibitor
elacridar (GF120918) was administered with topotecan
to Abcb1/2-deficient pregnant mice, fetal plasma topotecan
levels were twice those of mice treated with topotecan
alone, supporting a protective role for ABCG2 in the
placenta [35]. The use of Abcb1/2-deficient, thus Pgp-
deficient, mice in these studies allowed the authors to
isolate the ABCG2 transporter for study; as topotecan is a
substrate for both Pgp and ABCG2, and elacridar is an
inhibitor of Pgp as well as ABCG2. In placenta perfusion
studies, Staud et al demonstrated transport of the ABCG2
substrate cimetidine from the fetal to the maternal space
against a concentration gradient [36]. They suggest that
ABCG2 in the placenta serves to reduce passage of
substrates from mother to fetus as well as to reduce
substrates in the fetal circulation [36].

3.2 Mammary gland

Surprisingly, ABCG2 expression in the mammary gland has
been found to concentrate substrates, including toxins, into
breast milk. Jonker et al found ABCG2 expression was
induced in the lactating mammary glands of mice, cows and
humans, and reported higher levels of topotecan and the
carcinogen 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyri-
dine (PhIP) in the milk of lactating wild-type mice compared
to Abcg2-deficient mice [28]. ABCG2 has also been shown
to concentrate the carcinogen aflatoxin B1 [37] as well as
antibiotics [38] into breast milk. The reason why ABCG2 is
induced in the lactating mammary gland has yet to be
elucidated.

3.3 Testis

We have reported high levels of ABCG2 in the interstitial
cells of the normal testis as well as in Sertoli/Leydig cells
[34]. Bart and colleagues have also reported high ABCG2
expression by myoid cells and cells of the luminal capillary

endothelial wall of the normal testis [39]. Lasalle and
colleagues have reported ABCG2 expression in germinal
stem cells, again suggesting a role in protection against
genotoxic mutagens [40].

3.4 Blood-brain barrier

ABCG2 appears to form part of the blood-brain barrier along
with Pgp. Cooray et al found high ABCG2 expression at the
luminal surface of the microvessel endothelium, suggesting a
protective role, much like Pgp [41]. Brain vessels extracted
from nonmalignant human brain tissue have been shown to
have higher expression of ABCG2 compared to Pgp or
MRP1 [42]. Similarly, Cisternino et al reported 700-fold
higher Abcg2 expression in the mouse brain microvascula-
ture compared to the cortex in wild-type mice [43].
Additionally, they found brain microvasculature Abcg2
expression to be 3-fold higher in Abcb1-deficient mice
compared to wild-type, suggesting that ABCG2 upregula-
tion may occur as a compensatory mechanism [43].
Preliminary studies have shown that inhibition of ABCG2
in addition to Pgp may improve brain penetration of some
drugs [44]. However, the multifaceted, complex nature of
the blood-brain barrier will probably limit the uptake of
most, if not all, substrates [45] and the CNS will remain a
sanctuary site. This is a strategy desperately in need of
development, as a number of important substrates are
limited in their CNS uptake. These include some HIV
protease inhibitors and numerous anticancer agents known
to be substrates for both Pgp and ABCG2 [45].

3.5 Gastrointestinal tract

Initial studies reporting the presence of ABCG2 in the small
intestine and subsequent immunohistochemical studies
localizing ABCG2 to the epithelium of the small intestine
implied a potential role for ABCG2 in substrate absorption
[15, 32]. Jonker and colleagues were the first to confirm a
role for ABCG2 in the oral absorption of substrate drugs.
They administered oral topotecan in the presence or
absence of elacridar and found significantly higher plasma
drug levels in mice receiving elacridar [35]. Additionally,
elacridar decreased plasma drug clearance, decreased
hepatobiliary excretion and increased re-uptake in the small
intestine [35]. Again, Abcb1/2-deficient mice were used in
the study. A subsequent clinical trial confirmed the ability
of elacridar to increase oral bioavailability of topotecan in
humans [46]. Inhibition of ABCG2 by coadministration of
gefitinib, known to inhibit ABCG2, with irinotecan resulted
in a 63% increase in the oral bioavailability of irinotecan in
mice [47]. The area under the concentration curve for the
orally administered ABCG2 substrate PhIP was found to be
nearly 3-fold higher in Abcg2-deficient mice compared to
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wild-type mice, suggesting that ABCG2 limits exposure to
this dietary carcinogen [48].

Taken together, these studies suggest a major role for
ABCG2 in limiting the oral absorption of drugs. In fact, the
expression of Pgp in the gut has long been appreciated and
studies have attempted to discover the impact of inhibiting
Pgp on the oral bioavailability of drugs; however, expres-
sion of other transporters or detoxifying enzymes has
sometimes led investigators to question the effect of Pgp
on bioavailability [49, 50]. Further, studies correlating drug
absorption with single nucleotide polymorphisms thought
to alter Pgp expression levels in the gut have not yielded
consistent results [51]. If the data emerging from ABCG2
studies do not reflect early publication bias, but rather an
actual clinical impact of ABCG2 on drug absorption, the
results are remarkable.

3.6 Hematopoietic stem cells

Hematopoietic stem cells had previously been characterized
by transport of the fluorescent compound Hoechst 33342,
recognized as the “side population” or SP when isolated by
flow cytometry [52]. Zhou et al were the first to report
Abcg2 to be responsible for the transport of Hoechst dye in
murine hematopoietic stem cells [53] and Scharenberg and
colleagues showed ABCG2 to be responsible in human
cells [54]. Interestingly, ABCG2 is not required for normal
hematopoiesis, as Abcg2-deficient mice are viable and have
no hematologic abnormalities; however, Abcg2-deficient
mice no longer display a SP phenotype [55, 56]. Zhou and
colleagues have shown that Abcg2-expression does serve to
protect the bone marrow from toxins using a competitive
repopulation assay [56].

Subsequent to studies in the bone marrow, a side-
population has been described for many normal tissues
[57–61], although its role in these tissues has yet to be
elucidated. Side population cells have also been identified
in several cancer cell lines and primary tumor samples and
have been shown to be resistant to ABCG2 substrates [62–
65]. This finding has led to the idea of an intrinsically
resistant cancer stem cell (see below) that has been
postulated to account for the resistance of cancer to
chemotherapy.

4 Substrates of ABCG2

Since ABCG2 was first described in drug-resistant cell
lines, a number of chemotherapeutic agents have been
shown to be transported by the protein. Resistance to
mitoxantrone is the hallmark of the phenotype conferred by

ABCG2 expression as is resistance to the camptothecin
derivatives 9-aminocamptothecin, topotecan, irinotecan,
and SN-38 (the active metabolite of irinotecan) [66, 67].
Selection with mitoxantrone [68], topotecan [69, 70] or SN-
38 [71] results in ABCG2 overexpression as does selection
with flavopiridol [72]. Even selection with DX-8951f or
BNP-1350, camptothecins that are relatively poor ABCG2
substrates, results in ABCG2 upregulation [73, 74].
Indolocarbazole topoisomerase I inhibitors J-107088 and
NB-506 [75] have been shown to be transported by
ABCG2, as have the tyrosine kinase inhibitors CI1033
[76], gefitinib [77], and imatinib [78]. Overexpression of
ABCG2 has also been shown to confer resistance to
methotrexate and, to a lesser extent, methotrexate di- and
triglutamate [79, 80]. The antifolates Tomudex and
GW1843 are also substrates of ABCG2 [81]. A summary
of chemotherapeutic agents transported by ABCG2 is
provided in Table 1.

One early mystery surrounding the cross-resistance profile
conferred by ABCG2 overexpression concerned the transport
of anthracyclines and the fluorescent compound rhodamine
123. In addition to high levels of cross-resistance to
mitoxantrone, the drug-selected cell lines MCF-7 AdVp3000
and S1-M1-3.2 exhibited high levels of resistance to
doxorubicin and transport of rhodamine was readily observed
[82, 83]. However, MCF-7 MX cells did not display equally
high levels of cross-resistance to doxorubicin despite very
high levels of resistance to mitoxantrone and high levels of
ABCG2 protein expression [84]. In addition, we found that
the MCF-7 MX cell line did not transport rhodamine 123
[84]. Upon sequencing the ABCG2 gene in a series of
parental and ABCG2-overexpressing cell lines, we found
that cells with a glycine or threonine at amino acid 482
readily transported doxorubicin and rhodamine 123 in
addition to mitoxantrone while cells that expressed wild-
type ABCG2 with an arginine at position 482 only trans-
ported mitoxantrone [85]. Allen and colleagues reported
mutation of the arginine at position 482 in mouse Abcg2 to a
methionine or serine, suggesting it to be a “hot spot” for
mutation [86]. Substitution of the various amino acids by
site-directed mutagenesis at position 482 has shown that
mutation of the wild-type arginine to almost any other amino
acid results in this gain-of-function phenotype [87–89].
Mutations at amino acid 482 have also been shown to affect
the potency of ABCG2 inhibitors [90, 91] as shown in
Fig. 1. While it is possible that tumors harboring mutations
in ABCG2 may turn out to be cross-resistant to a wider
variety of chemotherapeutic agents than tumors that express
wild-type ABCG2, amino acid 482 mutations have yet to be
found in clinical samples, suggesting that this observation
has limited clinical relevance.
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ABCG2 has also been shown to play a role in the
transport of non-chemotherapeutic agents. It has been
observed to be a factor in the biliary excretion of HMG-
CoA reductase inhibitors such as rosuvastatin [92],
pitavastatin [93, 94], pravastatin [95] and cerivastatin
[95]. The flavonoids genestein and quercetin have been
shown to be transported by ABCG2 [96–98] as have
several antibiotics [38, 99, 100]. Anthelmintic benzimida-
zoles have also been demonstrated to be ABCG2 substrates
[101]. The expanding list of ABCG2 substrates highlights
the fact that ABCG2 may play a significant role in
pharmacology and points to a need for systematic studies
aimed at identifying drugs that have ABCG2 as a principal
modulator of oral absorption. The identification of SNPs, as
outlined below, that reduce ABCG2 function makes this

area of study a high priority in the effort to determine
sources of interpatient variability in drug disposition.

5 Inhibitors of ABCG2

Interestingly, the first reported inhibitor of ABCG2,
fumitremorgin C (FTC), was described before the gene
had been cloned [83]. FTC, a diketopiperazine isolated
from the fermentation broth of Aspergillus fumigatis, was
first shown by Rabindran and colleagues to inhibit
resistance in the mitoxantrone-selected S1-M1-3.2 colon
cancer cell line [83]. Subsequently, FTC was shown to
inhibit ABCG2-mediated transport of antineoplastics in
stably-transfected MCF-7 cells [102]. The neurotoxicity of
FTC prevented its clinical use, thus prompting the
discovery of the FTC analogue Ko143 [103]. Other
diketopiperazine inhibitors, including the indolyl diketopi-
perazines [104] and tryprostatin a [105], have also been
described.

Several Pgp inhibitors have also been reported to inhibit
ABCG2. We demonstrated that elacridar (GF120918) acts
as an ABCG2 inhibitor [106], as does the potent Pgp
inhibitor tariquidar (XR9576) [107]. As noted earlier, the
ability of elacridar to inhibit ABCG2 in vivo was
independently confirmed in studies with topotecan in
Abcb1/2-deficient mice [35]. Reserpine has also been
shown to inhibit ABCG2-mediated Hoechst 33342 trans-
port in SP cells [53]. Minderman and colleagues have
observed that biricodar (VX-710) is able to inhibit Pgp-,
MRP1- and ABCG2-mediated transport [91].

The list of reported ABCG2 inhibitors has been
growing rapidly. Novobiocin was identified early on as
an ABCG2 inhibitor [108, 109]. Tyrosine kinase inhibitors
have been shown to inhibit ABCG2, most likely as
competitive inhibitors, since ABCG2 has been shown to
directly transport or confer resistance to CI1033, gefitinib
and imatinib [76–78, 110]. The flavonoids silymarin,
hesperetin, quercetin and daidzein, as well as the stilbene
resveratrol, were shown to increase intracellular accumula-
tion of mitoxantrone and BODIPY-prazosin in ABCG2-
expressing cells [111]. Chrysin and biochanin a have also
been shown to inhibit ABCG2 [112], in addition to [113]
genestein, naringenin, acacetin and kaempferol [96]. Struc-
ture activity studies have also identified 6-prenylchrysin
and tectochrysin as ABCG2 inhibitors [114, 115]. Dihy-
dropyridines and pyridines have been shown by several
groups to interact with ABCG2 [116, 117]. A summary of
selected ABCG2 inhibitors is provided in Table 1. Despite
the explosion of publications identifying ABCG2 inhib-
itors, none have been used in the clinical setting.

Table 1 Selected substrates and inhibitors of ABCG2

Substrates Inhibitors

Mitoxantrone [66] Fumitremorgin C [83, 102]
Daunorubicina [14, 86, 90, 169] Ko143 [103]
Doxorubicina [14, 83, 86, 90, 169] Cyclosporin A [82, 187, 188]
Epirubicina [90] Tacrolimus [187]
Bisantrenea [83, 90] Sirolimus [187]
Flavopiridol [72, 170] Gefitinib [110, 189–191]
Etoposide [10, 11, 14, 171] Imatinib [191, 192]
Teniposide [171] Elacridar (GF120918) [106, 175]
9-aminocamptothecin [13, 172–175] Tariquidar (XR9576) [107]
Topotecan [13, 69, 70, 173,
175–177]

Biricodara (VX-710) [91]

Irinotecan [13, 175, 178, 179] Chrysin [113]
SN-38 [13, 71, 172,
175, 180, 181]

6-prenylchrysina [115]

Diflomotecana [182] Tectochrysina [115]
Homocamptothecina [182] Naringenin [96]
DX-8951f [73, 178] Quercetin[111, 181]
BNP1350 [74] Acacetin [96]
J-107088 [75] Silymarin [111]
NB-506 [75] Genistein [96]
UCN-01 [107] 17{beta}-estradiol [193]
Methotrexatea, methotrexate dia- and
triglutamatea [79–81, 100, 183, 184]

Estrone [193]
Tamoxifen [194]

GW1843a [81] Ortataxel [165]
Tomudexa [81] Novobiocina [108, 109]
Imatinib [78] Reserpine [53]
Gefitinib [77, 110] WK-X-34 [195]
CI1033 [76] Curcumin [196, 197]
Pheophorbide a [107, 185] Dipyridamole [198]
Pyropheophorbide a methyl ester
[186]

Nicardipene [116, 117, 198]

Chlorin e6 [186] Nitrendipene [116, 117, 198]
Protoporphyrin IX [29, 186] Nimodipene [198]

a Designates compounds known to be affected by the amino acid at
position 482.
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6 Single nucleotide polymorphisms (SNPs)

Given the putative role of ABCG2 in pharmacology, SNPs
and their impact on protein expression and function may
have a direct impact on drug dosing and may play a role in
response to treatment. While a number of SNPs have been
reported, a nonsynonymous SNP at amino acid 141
resulting in a glutamine to lysine amino acid change has
been studied extensively [118]. Various researchers have
found that this SNP can lead to lower plasma membrane
expression [119–122], reduced drug efflux [123, 124], and/
or reduced ATPase activity [122, 123]. Expression of the
Q141K SNP in cell lines has been shown to lead to
significantly lower IC50 values for ABCG2 substrates,
including mitoxantrone, irinotecan, and SN-38 [119, 122].
The Q141K SNP has been shown to influence the
pharmacokinetics of orally administered drugs, including
topotecan [125], diflomotecan [126] and 9-aminocampto-
thecin [127]. As noted earlier, the higher plasma drug levels

due to the Q141K SNP may result in exquisite sensitivity to
certain orally administered chemotherapy drugs. While this
could result in tumors being exposed to higher drug levels,
eliciting a greater response to treatment, it could also cause
increased toxicity. Which outcome prevails depends upon
individual drug pharmacodynamics.

7 Expression of ABCG2 in clinical samples

In view of the fact that chemotherapeutic agents are readily
transported by ABCG2, determining its relevance in drug
resistance has become an important goal. Since leukemia
samples are ideal for flow cytometric as well as PCR-based
studies, several reports have surfaced that examine expres-
sion of ABCG2 in leukemic blasts. Ross and colleagues
were the first to report on ABCG2 expression in a series of
leukemia samples. They examined 20 acute myelogenous
leukemia (AML) samples and one acute lymphocytic
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Fig. 1 Mutations at amino acid 482 of ABCG2 affect inhibitor
efficacy. Human embryonic kidney cells (HEK-293) stably expressing
wild-type (482R) or mutant (482G, 482T) were incubated with 1 μM
PhA in the presence of absence of 10 μM FTC, 10 μM tariquidar or
50 μM novobiocin for 30 min. Cells were then washed then allowed

to incubate for 1 h in PhA-free medium continuing with (dashed line)
or without (solid line) inhibitor. Note that, while FTC and tariquidar
completely inhibited all forms of the protein, denoted by the difference
between the solid and dashed histograms, novobiocin was only able to
completely inhibit wild-type (482R) protein

44 Cancer Metastasis Rev (2007) 26:39–57



leukemia (ALL) sample, finding relatively high expression
in seven samples and a 1,000-fold variation in expression
[128]. This early report seemed to suggest that ABCG2
expression might be a significant prognostic factor in
leukemia. Since this initial report; however, results have
varied widely, with relatively high ABCG2 expression in
AML reported by some groups [129] and low levels
reported by others [130–132]. Similarly, some groups
reported ABCG2 expression was associated with response
[133, 134] while others found no correlation [131]. In the
largest study reported to date, with 149 patient samples,
Benderra and colleagues reported that ABCG2 expression
was predictive of complete remission 4-year disease-free
survival, and 4-year overall survival in patients receiving
daunorubicin or mitoxantrone [133].

It has also been suggested that ABCG2 might play a role
in drug resistance in acute lymphoblastic leukemia (ALL).
Steinbach et al reported a correlation between ABCG2
expression and prognosis [136]. Similarly, Stam et al
reported ABCG2 expression correlated with resistance to
Ara-C despite the fact that the drug is not an ABCG2
substrate [137]. In contrast, Sauerbrey and colleagues did
not find a correlation between ABCG2 expression and
response in childhood ALL [138].

To clearly delineate the role of ABCG2 in drug
resistance in leukemia, larger studies of ABCG2 expression
in clinical samples are necessary. Results available to date
for studies in leukemic samples are reported in Table 2.
Such studies have repeatedly shown over the past two
decades that Pgp expression is important in leukemia [4].
While the precise clinical endpoint was not always the
same, the conclusion was—Pgp impacted negatively on
treatment outcome in AML. Fewer data exist for ALL. It
would be a mistake to carry out further studies of ABCG2
in AML and ALL without also assessing Pgp expression.
Methods for evaluating the impact of each transporter alone
and together are needed. A recent cDNA array analysis of
AML samples identified six subsets of AML based on their
gene expression profile [139]. One of these subsets had
notably higher Pgp and ABCG2 expression and was
associated with the highest rate of resistant disease [139].

Reports of ABCG2 expression in solid tumors have
begun to appear in the literature and Table 3 presents a
summary of the clinical findings. The report of Diestra et al,
examining ABCG2 expression in 150 paraffin-embedded,
untreated tumor samples from various origins is by far the
most extensive. They found frequent expression of
ABCG2, especially in tumors from the digestive tract,
endometrium, lung and melanoma [140]. Before a defini-
tive answer can be reached regarding the contribution of
ABCG2 to cancer drug resistance, larger studies such as
these will be needed.

In breast cancer, the most widely studied tumor type,
ABCG2 expression was relatively low and did not appear
to correlate with clinical outcome in the studies of Kanzak
et al [141] or Faneyte et al [142], but was correlated with
response in patients treated with anthracyclines in the study
by Burger et al [143]. This is a somewhat surprising result,
as anthracyclines do not appear to be transported by
ABCG2 [90]. Yoh et al reported that ABCG2 expression
in non-small cell lung cancer was predictive of a lower
response rate in patients receiving platinum-based chemo-
therapy [144], but, again, this is an unexpected result, since
platinum compounds are not transported by ABCG2.
Friedrich et al found that increased ABCG2 expression
correlated with loss of differentiation and shorter survival in
oral squamous cell carcinoma [145]. In studies of testicular
tumors, Zurita et al and Diestra et al found no correlation
between ABCG2 expression and response despite positive
immunohistochemical staining in some samples [146, 147].

The finding that ABCG2 expression could correlate with
clinical outcome when a non-ABCG2 substrate is being
used is intriguing. At first glance, this might appear to be
publication bias, wherein those of us interested in clinical
correlates only follow up results that are statistically
significant. Such early correlates often prove incorrect in
followup studies. However, alternate explanations can be
posed. For one, ABCG2 may be transporting a substrate
that is necessary for cell death, thus mediating resistance
without actually transporting the drug with which the tumor
is treated. Alternatively, whatever the treating drug, the
most sensitive cells in the tumor are eliminated leaving
behind drug resistant cells. Tumors with higher levels of
drug resistant cells will be more refractory, resulting in poor
treatment outcome. What cells would be both ABCG2
expressing and drug resistant?

8 Cancer stem cells

The cancer stem cell theory is based on the idea that only a
small fraction of tumor cells is capable of repopulating a
tumor, much like hematopoietic stem cells found in bone
marrow from which all blood cells differentiate. These cells
are capable of long-term self renewal, divide slowly, are
drug resistant, and express ABCG2 [148, 149]. The “side
population” or “SP” phenotype has been used to identify
bone marrow stem cells based on their ability to transport
the fluorescent compound Hoechst 33342 [52]. As men-
tioned earlier, SP cells express high levels of ABCG2 and
they thus appear dimmer than the rest of the cell population
due to transport of Hoechst 33342 out of the cell [53].
Using Hoechst 33342 as a probe, SP cells have been found
in normal breast, lung, and liver tissue [58, 59, 150] as well
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as in the corneal stroma [61]. SP cells have been found in a
number of established tumor cell lines as well as tumor
samples and have been shown to have stem cell-like
qualities, overexpress ABCG2, and possess inherent drug-
resistance [62–65].

While some reports seem to suggest ABCG2 to be a
marker of stem cells, several pieces of evidence suggest that
ABCG2 expression alone does not define the stem cell
population. First, ABCG2 expression is not an absolute
requirement for stem cells. Abcg2-deficient mice are viable
and demonstrate no defect in steady state hematopoiesis,
although the bone marrow of Abcg2-deficient mice does
lack an SP [56, 151]. Second, the SP fraction is not known
to be a pure stem-cell population and the method used for
generating SP cells greatly affects the cells included in it
[152]. In some cases, ABCG2 expression is part of the
normal differentiated phenotype; A549 cells have been
shown to express ABCG2 and transport Hoechst 33342
[54] but the A549 cell line is not considered a “stem cell”
line. Finally, drug-resistant cells that overexpress ABCG2
in response to selection pressure are not necessarily
believed to be stem cells and ABCG2-positive and negative
tumor cells have been reported to be similarly tumorigenic
[153].

If an ABCG2-positive population of stem cells is, in fact,
a characteristic of tumors, then they will most likely be a
drug-resistant population of cells. Haraguchi and colleagues
have shown SP cells to be more resistant to chemothera-
peutic agents than non-SP cells in gastrointestinal cancer
cell lines [65]. Similarly, Hirschmann-Jax et al. demon-
strated increased mitoxantrone transport in SP cells
obtained from neuroblastoma tumors as well as an increase
in the SP fraction when neuroblastoma cell lines were
treated with increasing concentrations of mitoxantrone [63].
Thus, the development of potent, specific inhibitors to
target ABCG2-mediated transport may hold the key to
eliminating this stem cell population.

9 Avoiding mistakes of the past

Two decades of Pgp research have not yet clarified the role
of Pgp in drug resistance in the clinical setting. Reasons for
this include the lack of validated assay methods, reliance on
the clinical trial process to define the role of Pgp, and the
possibility that other ABC transporters may be present,
confounding clinical trial results. A major problem in
assessing the significance of Pgp expression in clinical
drug resistance has been the variability in measuring Pgp
expression [154]. Despite the existence of several reliable
methods to detect Pgp, findings often vary across labora-
tories, as evidenced by the results of a Pgp detection
workshop [154]. Established, validated, widely-available,

and consistent methods are still needed to further confirm
the contribution of Pgp to clinical drug resistance. As the
idea of ABCG2 as a mediator of drug-resistance is in its
infancy, it is important that the same mistakes made with
Pgp are avoided with ABCG2. Validated, standard, repro-
ducible, and sensitive methodologies for detecting ABCG2
must be developed in order to characterize the role of
ABCG2 in drug resistance.

9.1 PCR

PCR assays for ABCG2 detection have been carried out by
several groups; however, there is no consistent cell line
used as a reference. Comparing ABCG2 expression in
patient samples to that of a well-characterized, stable cell
line with low but detectable ABCG2 expression becomes
important when trying to understand resistance conferred
by ABCG2. Otherwise, the numbers generated by PCR
analyses have no real meaning. While some PCR studies
have included a low level ABCG2-expressing cell line such
as MCF-7 [129, 131, 134, 136, 142], many do not include a
reference at all [135, 155–157]. While highly ABCG2-
positive cell lines can be included in the assay as a
positive control, they should not be a substitute for cells
expressing low levels. We recommend that the MCF-7 cell
line, at the very least, be included in the analysis and,
preferably, that more than one reference cell line be used
as a control.

It is tempting to use highly drug-resistant cells as positive
controls for an assay, but expression is usually so high that
the levels are often not clinically relevant. Faneyte et al
presented an elegant study of the breast cancer resistance
profile in breast cancer by PCR analysis. Although the PCR
assay was standardized to a drug-resistant cell line, several
unselected cell lines were included. By PCR, the drug-
resistant cell line Igrov/T8 was assigned a value of 4.0 units
and MCF-7 cells had a value of 0.48 units [142]. ABCG2
expression in the breast cancer samples examined averaged
0.18 units [142]. Furthermore, immunochemistry showed
staining in normal duct cells, but not in breast cancer cells
[142]. This result is reminiscent of the observations with Pgp
in that normal cell expression exceeds that of the de-
differentiated cancer cell [158]. Taken together, Faneyte
concluded that ABCG2 would not play a major role in drug
resistance in breast cancer [142].

Present day studies of ABC transporters in drug
resistance should also examine expression of multiple
ABC transporters. Several excellent examples of such an
effort to detect multiple transporter proteins have been
reported [143, 157]. When Burger et al examined MDR-1,
BCRP, LRP, MRP1, and MRP2 expression in 59 primary
breast cancer samples by PCR, they concluded that MDR-1
expression was most closely associated with poor progres-
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sion-free survival [143]. These results supported the
findings of a meta-analysis that concluded that Pgp was
important in breast cancer outcome [159] and affirmed the
results of Faneyte et al. A new marker of drug resistance
apparently is not always better.

9.2 Immunohistochemistry

Several antibodies are available for detection of ABCG2
by immunohistochemistry. Maliepaard and colleagues
developed the BXP-21 antibody that is able to detect
ABCG2 by immunoblot and in formalin-fixed, paraffin-
embedded tissue samples [70]. The monoclonal 5D3
antibody, reported by Zhou and colleagues [53], recognizes
an external epitope of ABCG2 and our laboratory has
successfully used it to detect ABCG2 on formalin-fixed,
paraffin-embedded tissue samples [34]. The polyclonal
antibody 87405 (or 405) was developed in our laboratory
using an immunizing peptide [33]. The antibody detects
ABCG2 by immunoblot as well as in formalin-fixed,
paraffin embedded tissues [33, 34], but is unable to detect
ABCG2 by flow cytometry. Additionally, 87405 can detect
ABCG2 in humans as well in mice, pigs, cows, and sheep
[160, 161].

As suggested for PCR studies, several cell lines that
express low but detectable levels of ABCG2 should be
used to assess the sensitivity of the antibodies used. The
MCF-7 cell line is again an ideal choice, although levels
may be too low for reproducible detection, thus
rendering immunohistochemistry a rather insensitive
method. Tissues known to express ABCG2, such as
the placenta or skin (sebaceous glands), may be
included as positive controls. It will be interesting to
see whether ABCG2 parallels Pgp in being higher in
differentiated tissue. Pgp is higher in adjacent normal
tissue than in cancer tissue due to the dedifferentiation
that occurs in cancer [158]. So the inclusion of placenta
tissue as a positive control in PCR or immunoblot analyses
could result in setting up an assay to be relatively
insensitive [162]. Particularly for polyclonal antibodies,
the peptide used to generate the antibody should be used
to verify that the observed staining is not background.
Until the antibodies used for immunohistochemistry are
better characterized, at least two antibodies should be used
to ensure internal consistency of the results. It appears
BXP-34 is not as sensitive as BXP-21 in immunohisto-
chemical studies [140].

9.3 Flow cytometry

Functional assays for ABCG2 have been developed using
fluorescent ABCG2 substrates and an ABCG2 inhibitor.

While assaying transporter function by flow cytometry can
be quite reliable, and can in some ways be considered the
“gold standard” since it measures actual transporter function,
the assay has limitations, mostly due to the fact that the
fluorescent compounds used are substrates for multiple
transporters. Mitoxantrone and BODIPY-prazosin were
among the first substrates used in flow-cytometry based
assays for ABCG2 function [84, 163]. Transport of top-
otecan has also been shown to correlate with ABCG2
expression [164]. However, as mitoxantrone, BODIPY-
prazosin, and topotecan are also substrates of Pgp [84,
165], these substrates may not be useful in samples where
other transporters are expressed at high levels. The porphyrin
pheophorbide a (PhA) has been identified as an ABCG2-
specific substrate, as it was not found to be transported by
Pgp or MRP1 [107]; however, we have not examined
whether it is transported by other ABC transporters. If
confirmed, pheophorbide a would be an ideal substrate for

100 101 102 103 104

Pheophorbide a Fluorescence

0

20

40

60

80

100

C
ou

nt
s

100 101 102 103 104

Pheophorbide a Fluorescence

0

20

40

60

80

100

C
ou

nt
s

100 101 102 103 104

Pheophorbide a Fluorescence

0

20

40

60

80

100

C
ou

nt
s

100 101 102 103 104

Pheophorbide a Fluorescence

0

20

40

60

80

100

C
ou

nt
s

100 101 102 103 104

Pheophorbide a Fluorescence

0

20

40

60

80

100

C
ou

nt
s

100 101 102 103 104

Pheophorbide a Fluorescence

0

20

40

60

80

100

C
ou

nt
s

10 µM 1 µM

A549

NCI-H460

KM12

Fig. 2 Increasing sensitivity of the PhA flow assay. The A549, NCI-
H460 and KM12 cell lines which are known to express low but
detectable levels of ABCG2 were incubated with 1 μM (left column)
or 10 μM (right column) PhA in the presence of absence of 10 μM
FTC, for 30 min. Cells were then washed then allowed to incubate for
1 h in PhA-free medium continuing with (dashed line) or without
(solid line) FTC. ABCG2 expression, denoted by the difference
between the solid and dashed histograms, is more readily detected
when cells are incubated with 1 μM PhA
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studying ABCG2 function in clinical samples where multi-
ple drug transporters may be expressed.

When determining ABCG2 function in clinical samples,
we recommend that cells be incubated with pheophorbide a
in the presence or absence of an ABCG2 inhibitor such as
FTC for an initial 30 min period. Subsequently, cells should
be washed and allowed to incubate for an additional hour in
pheophorbide-free medium continuing with FTC to obtain
the mean value of the FTC/Efflux histogram, or without FTC
to obtain the mean value of the Efflux histogram [107].
Results can be presented as the difference in channel
number between the Efflux and FTC/Efflux histograms or
the Kolmogorov–Smirnov D value can be reported. In this
way, one can assess the ability of the protein to prevent
PhA accumulation, as well as the ability to extrude
intracellular PhA. This becomes especially important when
examining cells that express low levels of ABCG2. As
shown in Fig. 2, using PhA at a concentration of 1 μM
allows for greater sensitivity in detecting the low ABCG2
levels in MCF-7, A549, and H460 cells compared to using
PhA at a concentration of 10 μM. Use of several low-level
ABCG2-expressing cell lines is recommended, with MCF-7
included as a minimum.

Relatively few antibodies exist for detection of ABCG2
protein by flow cytometry. Minderman and colleagues have
developed methodologies to detect ABCG2 by flow cytom-
etry using the BXP-21 or BXP-34 antibodies [163] and the
5D3 antibody has been used extensively in flow cytometry-
based assays [90, 163, 166]. Recent studies have shown that
the binding of 5D3 is sensitive to conformational changes of
the ABCG2 protein, with 5D3 binding being highest in the
presence of the ABCG2 inhibitor Ko143 [166]. Compounds
that decreased the ATPase activity of ABCG2 were found
to increase 5D3 binding [166], much like what has been
reported for the UIC2 antibody that recognizes Pgp [167].
Results with the 5D3 antibody, therefore, may not be
entirely accurate unless conditions are carefully controlled.
Again, low level controls must be included in the analysis
and multiple antibodies should be used when possible.
Similar to functional assays, results can be quantitated as
the difference in channel number between the negative
control histogram and ABCG2 antibody histograms or the
Kolmogorov–Smirnov D value.

Clearly, sensitivity issues exist among the antibodies used
to measure ABCG2 expression by flow cytometry. This is
exemplified in the findings of Suvannasankha et al, where
ABCG2 expression was measured in pretreatment blasts
from 30 adult ALL patients [135]. Expression was deter-
mined by PCR analysis, immunophenotyping with the 5D3,
BXP-21 or BXP-34 antibodies, or by functional assay using
mitoxantrone as the substrate. While ABCG2 expression
measured by the BXP-21 antibody correlated with expres-
sion measured by the BXP-34 or 5D3 antibody, expression

measured by the BXP-34 antibody did not correlate with
expression measured by 5D3 antibody, nor did antibody
staining correlate with gene expression [135].

In contrast, van der Kolk et al reported a good correlation
between ABCG2 expression measured with BXP-21 or
BXP-34 and ABCG2 function assayed with mitoxantrone
[130], suggesting that differing methodologies, as well as
antibody sensitivities, may be the cause of discordant
results reported in patient samples. Development of
sensitive and specific antibodies to detect ABCG2 by flow
cytometry as well as use of consistent methodologies will
be crucial to determining ABCG2 expression in clinical
samples which usually express low levels. Additionally, as
the BXP-34 and BXP-21 antibodies require cell permeabi-
lization, these antibodies will most likely recognize
intracellular ABCG2 and it is not yet clear what the
relationship of total intracellular ABCG2 expression is to
drug transport capacity.

10 Conclusion

The challenges of translating ABCG2 into a target for
future clinical trials are daunting. Given the lack of success
of phase II and III trials with Pgp inhibitors [168], one may
argue that we still have not successfully translated Pgp into
a clinical target. With regard to ABCG2, we do not yet
know what cancers express ABCG2 as a mechanism of
resistance, we have not developed potent, selective inhib-
itors to target ABCG2 and we have no surrogate assay to
test for ABCG2 inhibition in vivo. However, if we make a
concerted effort now to avoid the mistakes made with Pgp
and instead develop sensitive, reproducible methods for
assessing ABCG2 expression in clinical samples, we will
be able to develop effective clinical trials aimed at
overcoming ABCG2-mediated drug resistance.
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