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Abstract The resurgence of interest in tumor metabolism

has led investigators to emphasize the metabolism of pro-

line as a ‘‘stress substrate’’ and to suggest this pathway as a

potential anti-tumor target. Proline oxidase, a.k.a. proline

dehydrogenase (POX/PRODH), catalyzes the first step in

proline degradation and uses proline to generate ATP for

survival or reactive oxygen species for programmed cell

death. POX/PRODH is induced by p53 under genotoxic

stress and initiates apoptosis by both mitochondrial and

death receptor pathways. Furthermore, POX/PRODH is

induced by PPARc and its pharmacologic ligands, the

thiazolidinediones. The anti-tumor effects of PPARc may

be critically dependent on POX/PRODH. In addition, it is

upregulated by nutrient stress through the mTOR pathway

to maintain ATP levels. We propose that proline is made

available as a stress substrate by the degradation of colla-

gen in the microenvironmental extracellular matrix by

matrix metalloproteinases. In a manner analogous to

autophagy, this proline-dependent process for bioenerget-

ics from collagen in extracellular matrix can be designated

‘‘ecophagy’’.
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Abbreviations

mTOR Mammalian target of rapamycin

NFAT Nuclear factor of activated T-cells

P5C D1-Pyrroline-5-carboxylic acid

POX Proline oxidase

PPARc Peroxisome proliferator-activated receptor

gamma

PRODH Proline dehydrogenase

ROS Reactive oxygen species

TZDs Thiazolidinediones

Introduction

The resurgence of interest in metabolism and bioenergetics

has focused mainly on glucose and on the pathways for

glycolysis and oxidative phosphorylation (Warburg 1930;

Dang and Semenza 1999; Fox et al. 2005; Pan and Mak

2007). Alternative substrates are also important, since they

can contribute to bioenergetics during nutrient stress. The

metabolism of proline has features which are unique

(Adams 1970; Phang 1985; Phang et al. 2001), and the

understanding of these features may elucidate poorly

understood regulatory mechanisms and contribute to the

design of novel therapeutic regimens and molecular targets

for human diseases.

Proline is the only secondary amino acid which is

proteogenic and it makes unique contributions to the

structure of proteins (Adams 1970; Phang 1985), in par-

ticular to the physical properties of tissues and

maintenance of organ architecture (Dixit et al. 1977).
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More recently, investigators have pointed out that pro-

tein–protein recognition is based primarily on the

structure provided by proline as a helix disruptor, e.g., in

SH2 and WW domains (Lu et al. 2003). On the other

hand, the special features of proline metabolism are not as

well known. With its alpha nitrogen contained within a

pyrrolidine ring, proline cannot be metabolized by generic

amino acid enzymes, i.e., racemases, aminotransferases,

and decarboxylases. Instead, a special family of enzymes

has evolved for proline metabolism (Adams and Frank

1980; Phang 1985), enzymes with special tissue and

subcellular localization and mechanisms of regulation.

With this metabolic paradigm distinct from that for other

amino acids, proline can respond to special bioenergetic

demands and/or regulatory mechanisms. The conse-

quences of this response have been the topic of recent

studies (Liu et al. 2005; Pandhare et al. 2006).

Although specialized metabolic and regulatory functions

for proline have been recognized in a variety of animal and

plant species, the mechanisms for these effects have not

been clearly elucidated. Nevertheless, it is worth men-

tioning that proline has been considered as an

osmoprotectant in bacteria and in plants and as a defense

against oxidative stress (Phang 1985). Of special interest is

the role of proline as a bioenergetic substrate for insects in

their initiation of flight (Micheu et al. 2000; Gade and

Auerswald 2002). Because of this requirement, certain

insects also developed the ability to taste proline (Carter

et al. 2006). Plants needing pollinators have high proline

content in floral nectar (Carter et al. 2006). Thus, proline is

the basis for an important co-evolution between plant and

animal species.

Historical background

From the work of Elijah Adams and Harold Strecker

during the late 1950s and early 1960s, the enzymes of

proline metabolism were described and characterized

(Adams 1970). The oxidized congener of proline, D1-

pyrroline-5-carboxylic acid (P5C), is in tautomeric

equilibrium with glutamic-c-semialdehyde (GSA). P5C is

at the center of intermediary metabolism (Phang 1985;

Phang et al. 2001) as the obligate intermediate in the

interconversions of glutamic acid and ornithine, and, in

fact, is the carbon bridge linking these two major met-

abolic cycles. P5C can be converted to glutamate by P5C

dehydrogenase, but the synthesis of P5C or GSA is by a

separate protein which incorporates two activities, an

ATP-dependent kinase and a NADPH-dependent reduc-

tase (see the article by C.A. Hu, this issue). The step

from ornithine is a reversible reaction catalyzed by

ornithine aminotransferase.

The proline cycle

We recognized that P5C is both the immediate precursor of

proline and also its degradative product. These reactions are

catalyzed by distinct enzymes with their characteristic

subcellular localizations. This relationship led us to for-

mulate and characterize the proline cycle. The main

participant in this cycle is proline oxidase, also known as

proline dehydrogenase, an enzyme bound to mitochondrial

inner membranes which donates electrons through an

intervening flavine adenine dinucleotide into site II of the

electron transport chain (Fig. 1) (Adams 1970; Adams and

Frank 1980). Cytochrome c is the electron acceptor, and

subsequent transfer of these electrons supports the genera-

tion of ATP. More recently, we showed that the electrons

from proline can reduce oxygen to yield superoxide (Liu

et al. 2005) (see below). P5C produced from the oxidation

(dehydrogenation) of proline, emerges from mitochondria

and is converted back to proline by cytosolic P5C reductase

with reduced pyridine nucleotide, either NADH or NADPH,

as cofactors. The higher affinity for NADPH suggests that it

is the preferred cofactor (Merrill et al. 1989). P5C reductase

participates in a metabolic interlock with glucose-6-phos-

phate dehydrogenase of the pentose phosphate pathway

(Phang et al. 1980) transferring reducing equivalents gen-

erated by the oxidation of glucose in the pentose phosphate

pathway into mitochondria to generate ATP (Hagedorn and

Fig. 1 The metabolic interlock between the proline cycle and pentose

phosphate pathway. The proline cycle acts as a redox shuttle

transferring reducing potential generated by the pentose phosphate

shunt into mitochondria for the production of either ATP or ROS.

Abbreviations for the pentose phosphate pathway: G-6-P glucose-6-

phosphate, 6-PG 6-phosphogluconate, Ru-5-P ribulose-5-phosphate,

R-5-P ribose-5-phosphate, F-6-P fructose-6-phosphate. Abbreviations

for the proline cycle: POX proline oxidase, ROS reactive oxygen

species, PRO proline, P5C pyrroline-5-carboxylate
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Phang 1983; Hagedorn and Phang 1986). Although, this

interconnection was recognized as novel, critics pointed out

that the magnitude of bioenergy contributed by the cycling

of proline is trivial compared to that from either tricar-

boxylic acid cycle or glycolytic pathway. Consequently, the

proline cycle was assigned little physiologic relevance.

POX/PRODH is p53-induced gene 6 (PIG6)

In a seminal work, Polyak et al. (1997) used serial analysis

of gene expression (SAGE) to identify the genes responding

to p53, considered among the most important cancer sup-

pressor proteins. Of 7202 genes monitored by this method,

the overexpression of p53 induced only 14 genes greater

than seven-fold, and these were designated as PIGs (p53-

induced genes). Proline oxidase/dehydrogenase was PIG6.

This serendipitous finding caused considerable excitement

for those of us working in the proline metabolism area, and

stimulated the collaborative effort between our laboratory

at the NCI-Frederick and the Valle laboratory at Johns

Hopkins. C. Andy Hu had arrived as a postdoctoral fellow

to work with David Valle in 1993 and had cloned several of

the genes for proline-metabolizing enzymes (Phang et al.

2001). The gene for human proline oxidase (POX) also

known as proline dehydrogenase (PRODH) was cloned in

the Valle lab and the full-length cDNA sequence of human

POX was submitted to Genebank in 1996. Subsequently in

1997, Campbell et al. (1997) identified POX as the human

homologue of the Drosophila melanogaster sluggish-A

(proline oxidase) gene that was mapped to 22q11.2. The

cDNA sequence encoding the murine counterpart was

published in 1999 by Gogos et al. (1999). We will refer to

this enzyme as POX/PRODH and to the gene as PRODH.

Jian Yu in the Vogelstein lab together with C. Andy Hu

made a PRODH expression construct controlled by a tet-off

promoter, and the overexpression of POX/PRODH was

documented by enzyme activity and protein. Steve Donald

and Xiao-Ya Sun soon showed that the overexpression of

POX/PRODH was accompanied by the production of pro-

line-dependent reactive oxygen species (Donald et al.

2001). Soon after, several laboratories independently

demonstrated that overexpression of POX/PRODH-medi-

ated proline-dependent apoptosis (Hu et al. 2001; Maxwell

and Rivera 2003). The proline-dependent generation of

ROS mediating the activation of the caspase cascade was

shown by Liu et al. (2005) and Hu et al. (2007).

POX/PRODH generates superoxide to initiate apoptosis

Using co-transfections of SOD2, SOD1 (coding for Mn

superoxide dismutase and CuZn superoxide dismutase,

respectively), and CAT (coding for catalase) individually or

in combination, superimposed on the overexpression of

POX/PRODH, Liu et al. (2005) showed that POX/PRODH

generates mitochondrial superoxide, and it is this step

which plays a critical role in initiating apoptosis. Apoptosis

was confirmed using TUNEL assays, DNA laddering, and

cell cytometry (Liu et al. 2005; Hu et al. 2007). Thus, it

was convincingly demonstrated that POX/PRODH medi-

ates the generation of mitochondrial superoxide and these

apoptotic effects can be blocked by forced expression of

SOD2 but not SOD1 or CAT. Thus, the intrinsic (mito-

chondrial) apoptosis pathway could be activated by POX/

PRODH activity downstream and independent of p53

(Fig. 2).

POX/PRODH also upregulates the death receptor

pathway

An alternative apoptotic pathway is mediated by the so-

called extrinsic or ‘‘death receptor’’ pathway (Liu et al.

2006). Ligands such as tumor necrosis factor (TNF), TNF-

related apoptosis inducing ligand (TRAIL) and Fas ligand

can bind to their respective membrane receptors and

through an adaptor molecule, the Fas-associated death

domain (FADD) activate caspase 8 and downstream

caspases. Liu et al. (2006) showed that overexpression of

Fig. 2 Schematic of POX-mediated induction of apoptosis by both

intrinsic (mitochondrial) and extrinsic (death receptor) pathways.

POX is upregulated by stress signaling (p53 or PPARc) which

activates intrinsic pathway by generating superoxide and releasing

cytochrome c into the cytosol. NFAT (nuclear factor of activated

t-cells) is also activated by and POX induces TRAIL (tumor necrosis

factor-related apoptosis inducing ligand) and DR5 (death receptor 5).

Both limbs activate caspase 3 as seen by increased PARP (poly

adenosylribose polymerase) cleavage. The MEK (mitogen-activated

protein kinase kinase) and ERK (extracellular-regulated kinase) are

downregulated by POX-generated ROS
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POX/PRODH also activates this pathway by upregulating

the nuclear factor of activated T-cells (NFAT) which

activates the promoter for TRAIL. The activation of NFAT

by POX/PRODH overexpression had been described by

Maxwell and Rivera (2003). Furthermore, POX/PRODH

overexpression downregulated the phosphorylation of

several MAPK components, specifically, MEK and ERK.

The decreased phosphorylation can be partially reversed by

co-expressing SOD2. Thus, ROS is the mediating mecha-

nism not only for apoptosis but also for the downregulation

of the MAP kinase pathway associated with apoptosis

(Fig. 2). The translation of these tissue culture mechanistic

studies to effects in animals and human tumors has been

undertaken and the results are confirmatory and will be

published elsewhere.

POX/PRODH generates superoxide radicals

autogenously

Since POX/PRODH is induced by p53 and its activity plays

a critical role in the generation of superoxide to induce

programmed cell death, it is tempting to speculate that

POX/PRODH is structurally adapted to perform this task.

Although it can contribute proline-derived electrons to the

electron transport chain, it would offer no advantage over

other substrate sources such as succinate or NADH. The

work from Tanner’s laboratory may shed light on this issue.

Using the monofunctional proline oxidase/proline dehy-

drogenase from Thermus thermophilus, White et al. (2007)

demonstrated that the FAD at the active site is exposed to

solvent oxygen. The recombinant enzyme can indeed gen-

erate superoxide autogenously. In addition, an adjacent

alpha helix may have the structural flexibility to mask the

solvent-access site and thereby switch off superoxide gen-

eration. If the mammalian enzyme is structurally similar,

this model may provide an explanation for a controlled

generation of superoxide versus ATP using proline-derived

electrons. It is tempting to speculate that the aforemen-

tioned mechanism embodied in the intrinsic structure of the

enzyme may offer a special source of oxidizing signals.

PPARc and its ligands induce POX/PRODH

To discover additional mechanisms (Fig. 3) by which

POX/PRODH can be regulated, Jui Pandhare together with

Sandra Cooper developed a PRODH promoter luciferase

reporter construct which was efficiently transfected into

several colorectal cancer cell lines (Pandhare et al. 2006).

Transcription factors were co-transfected to screen for

activators of the PRODH promoter. They found a modest

effect with c-Jun, c-Fos, and P-65 of NF-kB. However,

none of these activated the PRODH promoter more than

two-fold. Surprisingly, peroxisomal proliferator activated

receptor gamma (PPARc) was the most potent activator of

the PRODH promoter. Together with a PPARc ligand,

troglitazone, a thiazolidinedione (TZD), the activation was

more than ten-fold. This was of interest because TZDs

modulate several important metabolic systems. Clinicians

have taken advantage of their effect on increasing insulin

sensitivity to treat type 2 diabetes mellitus (Natali and

Ferrannini 2006). In spite of recent concern over poorly

understood side effects, these pharmacologic ligands of

PPARc produce desirable therapeutic effects and have been

widely used (Strauss and Glass 2007). Also interesting are

their effects in decreasing the progression of atheroscle-

rosis (Van Wijk and Rabelink 2005). Presumably, the

mechanism is due to the inhibition of macrophages and

their inflammatory signaling. Importantly, PPARc and its

ligands have effects on cancer (McAlpine et al. 2006; Li

et al. 2006). Although there have been some contradictory

data, the majority of studies using tissue culture systems

have demonstrated that cancer cells treated with TZDs

markedly decrease their growth or, in fact, undergo

apoptosis (Hans and Roman 2007). Additionally, epide-

miologic studies based on the population of patients with

type 2 diabetes treated with TZDs suggest that the relative

risk for lung cancer, but not colorectal cancer or prostate

cancer, are significantly decreased with this drug

(Govindarajan et al. 2007).

In luciferase reporter studies, Pandhare et al. (2006)

found that the PRODH promoter is activated by co-trans-

fection with PPARc or by a treatment with several TZDs.

The mechanism of this effect was shown to be transacti-

vation, from electrophoretic mobility shift assays in which

the peroxisomal proliferator response element (PPRE) of

the PRODH promoter formed a complex with nuclear

proteins and the quantity of this complex was increased by

TZD and troglitazone. Additionally, the identity of the

nuclear protein binding to PPRE was directly shown

with chromosomal immunoprecipitation assays in which

Fig. 3 Proline oxidase (POX/PRODH) is upregulated by stress

signaling. Genotoxic stress, p53; inflammatory stress, PPARc; and

nutrient stress, rapamycin; all can upregulate POX to produce special
cellular responses
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anti-PPARc antibody was used to immunoprecipitate the

cross-linked histone-DNA complex. In this complex, the

PPRE sequence of the PRODH promoter was identified by

polymerase chain reaction. Thus, PPARc and its ligands

upregulate the expression of POX/PRODH through a

transactivation of its promoter.

POX/PRODH appears to play a critical role in the

apoptotic effects of PPARc. In normal medium conditions

(DMEM, 10% FBS, 2 mM glutamine), the stimulation of

ROS production by troglitazone in RKO (colorectal can-

cer) cells was markedly decreased by the knockdown of

POX/PRODH expression with its anti-sense RNA (Pand-

hare et al. 2006). This important finding suggests that the

anticancer effect of PPARc may be critically dependent on

a POX/PRODH induced, p53-independent, mechanism for

activating apoptosis by both mitochondrial and death

receptor pathways. Our finding in colorectal cancer cells

was corroborated by workers using a cultured cell line

derived from non-small cell lung cancer, the most common

lung cancer. They showed that the apoptotic effects of

pioglitazone, a commonly prescribed TZD, were com-

pletely blocked by knockdown of POX/PRODH with

siRNA (Kim et al. 2007). Additional observations are

required to generalize this very interesting effect linking

PPARc and apoptosis. Indeed, whether POX/PRODH plays

a role in mediating the diverse effects of PPARc ligands,

including their effects on blood glucose in type 2 diabetes,

is an important question.

POX and bioenergetics

Since PPARc is involved in regulating the use of proline

as metabolic substrate, we considered another regulatory

pathway responding to the availability of substrates and

nutrients, the mTOR pathway (Reiling and Sabatini

2006). This pathway integrates information from a

number of metabolic sensors including: (1) growth factor

signaling, (2) the availability of amino acids, and (3) the

status of bioenergetics. Signaling from this pathway

switches the cell from a biosynthetic, proliferating mode

to non-proliferating survival mode. mTOR is a serine/

threonine kinase which phosphorylates initiation factors

and ribosomal proteins to activate protein translation and

cell proliferation, respectively. The downregulation of

mTOR from substrate (glucose) deprivation was linked to

upregulation of POX/PRODH. This upregulation helped

to maintain cellular levels of ATP. The participation of

POX/PRODH in this bioenergetic response was corrob-

orated by the maintenance of ATP levels that was

blocked by POX/PRODH knockdown with siRNA or by

inhibition of enzymatic activity with dehydroproline.

This work was presented in an abstract (Pandhare et al.

2007; Pandhare et al. 2008) and will be published

elsewhere.

The upregulation of POX/PRODH could channel car-

bons sequentially yield glutamate and a-ketoglutarate,

thereby supplying substrate for the tricarboxylic acid cycle.

Since cancer cells primarily utilize glycolysis, the contri-

bution of carbons is not routed into the TCA cycle. In fact,

tissue culture cells primarily convert glutamine to lactate

(Mazurek et al. 2001). On the other hand, increased POX/

PRODH would increase P5C and activate the proline cycle.

Previous studies showed that the proline cycle participates

in a metabolic interlock with the pentose phosphate path-

way linked by NADPH/NADP+ at the level of glucose-6-

phosphate dehydrogenase (G6PDH). The flux through

G6PDH is regulated primarily by the availability of

NADP+ (Eggleston and Krebs 1974). In this context, the

enzyme P5C reductase can be considered a P5C-dependent

NADPH dehydrogenase, thereby linking the two pathways

(Merrill et al. 1989).

POX/PRODH and the pentose phosphate pathway

To test whether the activation of POX/PRODH not only

generated a-ketoglutarate as substrate for the TCA cycle,

but also activated the metabolism of glucose through the

pentose phosphate pathway, we measured glucose metab-

olized either via the glycolytic pathway or via the pentose

phosphate pathway in DLD-tet-off POX cells. To monitor

glycolysis, we quantitated the production of 3[H2O] from

5-3[H]-glucose (Liedtke et al. 1992; Bauer et al. 2004) and

for the pentose phosphate pathway, we recovered 14[CO2]

production from l-14[C]-glucose (Phang et al. 1980). In

DLD-tet-off POX cells which overexpressed POX/PRODH

when doxycycline is deleted from the medium, the

increased POX/PRODH activity had little effect on gly-

colysis (data not shown). By contrast, the activity of the

pentose phosphate pathway was increased more than five-

fold when POX/PRODH was induced by the deletion of

doxycycline, and an increase was seen over the entire range

of glucose concentration (Fig. 4).

The aforementioned findings showed that the pentose

phosphate pathway is linked with the proline cycle, but

additional evidence was necessary to show that glucose-

derived reducing potential in the form of NADPH affected

ATP levels via the cycling of proline. We first showed that

the expression of POX/PRODH increased cellular ATP

levels (Fig. 4), but this could have occurred by the con-

tribution of proline to the TCA cycle. To test whether

coupling with the pentose phosphate pathway was con-

tributing to an increase in ATP, we treated cells with

dehydroepiandrosterone (DHEA), a well-known inhibitor

of G6PDH (Gordon et al. 1995), the rate-limiting enzyme
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of the pentose phosphate pathway. We found that DHEA

significantly decreased the POX-dependent increase in

cellular ATP (Fig. 5). Thus, a significant amount of the

increase in ATP is linked to the generation of NADPH by

the pentose phosphate pathway.

Collagen as a microenvironmental source of proline

Although POX/PRODH can be activated by a variety of

mechanisms, the availability of proline in the microenvi-

ronment of cells with upregulated POX/PRODH may be

limited because of compromise of the blood supply, e.g.,

with wound healing following tissue damage, or with

tumor invasion (Laconi 2007). In this context, the degra-

dation of collagen provides an alternative source. Proline

and hydroxyproline are very abundant in collagen com-

prising 25% of the amino acid residues. Since collagen is

also the most abundant protein in the body (by mass), there

is a large reservoir of proline available (Dixit et al. 1977).

In a 70 kg human, the total body protein is 11.0 kg and the

total amount of proline and hydroxyproline can be calcu-

lated as 0.7 kg dry weight. Collagen makes up 80% of the

proteins in the extracellular matrix and the activation of

matrix metalloproteinases accompanying tumor invasion

and during inflammation and wound healing is well known.

Collagen is sequentially degraded first by MMPs and then

by various proteases into large and small peptides and

finally into imidodipeptides, dipeptides with proline or

hydroxyoproline in the carboxyl terminus. The final release

of proline or hydroxyproline is mediated by the activity of

prolidase which furnishes proline as substrate for POX/

PRODH (Fig. 6).

Whether the degradation of collagen actually occurs

under the conditions of inflammation and tumorigenesis

has been addressed (Malemud 2006; Page-McCaw et al.

2007). In a model of inflammatory bowel disease, Fries

et al. (1994) used trinitrobenzenesulphonic acid to induce

colitis in rats. These animals showed a marked (greater

than 2.5-fold) increase in their urinary excretion of

hydroxyproline, an indicator of collagen degradation.

Additionally, Reddy and Dhar (1989) produced an

inflammatory arthritis in rats using injections of Freund’s

adjuvant. These animals also increased more than two-fold

Fig. 4 The effect of POX induction on the pentose phosphate

pathway. DLD-POX cells were cultured without doxycycline to

induce POX. Control cells were cultured in the presence of

doxycycline (20 ng ml-1). Cells cultured under both conditions were

exposed to glucose-1-14[C] at concentrations of glucose shown and
14[CO2] collected by previously described methods (Phang et al.

1980). Activities are shown as micromoles C14[O2] recovered from

glucose-1-14[C] h-1 mg-1 cell protein

Fig. 5 Cellular ATP in DLD-POX cells. ATP was measured using

luciferase method. ATP levels were higher when DOX was absent

(POX-induced). The concentration of proline was 1 mM. However,

the addition of DHEA (dehydro-epiandrosterone) at 100 lM

decreased ATP levels under these conditions. Final concentration of

Dimethyl sulfoxide was 1% in control and treated preparations. Data

represent mean and SD of at least three determinations. (*difference

from control, + DOX, P \ 0.001; ** difference from control, without

DHEA, P \ 0.01)

Fig. 6 Schematic of ‘‘Ecophagy’’. Tumor cells together with stromal

cells activate matrix metalloproteinases to degrade collagen and other

proteins in extracellular matrix. Sequential cleavage of peptides by

proteases and peptidases terminate in imidodipeptides, i.e., dipeptides

with proline or hydroxyproline at the carboxyl terminus. Prolidase
releases proline (and hydroxyproline) as substrate for POX
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their excretion of hydroxyproline. Thus, accompanying

induction of inflammation with either colitis or arthritis, the

degradation of collagen was markedly increased.

Of special interest is the finding described by Marian

and Mazzucco (1985) in their skin tumorigenesis model. In

this model, shaved mice were painted first with an initia-

tion chemical, e.g., dimethylbenzanthracene, followed by

twice weekly paintings with a tumor promoter, i.e., 12-O-

tetradecanoyl-phorbol-13-acetate. Analysis of the dermal

collagen showed that there was a marked degradation of

collagen. Dermal hydroxyproline content decreased

beginning at 2 weeks and plateaued throughout the

15 week study at a level almost 30% less than that of

controls. Thus, the so-called tumor promoter which acti-

vated the ‘‘inflammatory paradigm’’ included a potent

collagenolytic mechanism (Fig. 7).

MMPs and proline

A considerable body of studies have emphasized the family

of metallo-enzymes involved in degrading collagen and

other collagen-like structural proteins (Parks et al. 2004).

Designated as matrix metalloproteinases (MMPs), their

function, regulation, and modulation of cell behavior have

been widely studied, especially as a component of

inflammation and carcinogenesis (Malemud 2006; Stal-

lings-Mann and Radisky 2007). These studies led to the

proposal that MMPs may be a promising target for the

prevention or treatment of cancer (Wang et al. 1994). But

the clinical trials with broad-spectrum MMP inhibitors

were generally disappointing and dampened the enthusi-

asm for targeting MMPs (Wagenaar-Miller et al. 2004).

However, the discovery of the multiplicity of MMPs with

their wide range of target substrates, and the finding that

they participate in multiple processes, i.e., cell prolifera-

tion, differentiation, angiogenesis, and apoptosis, etc., have

led to a resurgence of interest and research effort (Page-

McCaw et al. 2007).

To explain these effects of MMPs, investigators have

focused on the selective and limited cleavage of specific

substrates including growth factors and their receptors

thereby activating or releasing them to modify cell

behavior. Although, the degradation of collagens into free

amino acids and peptides is supported convincingly by the

aforementioned studies, their release of substrates for

metabolism, i.e., proline and hydroxyproline, has not been

considered. With the accumulating evidence that proline

oxidase is upregulated by p53 (Polyak et al. 1997; Donald

et al. 2001; Hu et al. 2001; Maxwell and Rivera 2003; Hu

et al. 2007), by PPARc, and its ligands (Pandhare et al.

2006; Kim et al. 2007) and by rapamycin and AICAR

(Pandhare et al. 2007) (Fig. 3), the possibility of a meta-

bolic endpoint for this regulation must be seriously

considered. Additionally, an endpoint for the regulation of

MMPs in cancer, arthritis, and cardiovascular disease

(Malemud 2006) may be to supply proline and hydroxy-

proline as stress substrates.

Prolidase and collagen degradation

An important link in the mobilization of proline from the

degradation of collagen by MMPs is the enzyme prolidase

which catalyzes an obligate step to release C-terminal

proline or hydroxyproline from imidodipeptides. An

important lead was provided by the inherited disorder of

prolidase deficiency. In these patients, a prominent feature

of the clinical phenotype is lower extremity ulcers due to

poor wound healing (Hechtman 2001; Lupi et al. 2006).

Postmortem histology of both ulcerated areas as well as

central organs, e.g., kidneys, revealed microangiopathy and

atretic capillaries. These previously reported studies and

our recent finding that proline from ECM degradation is

used as substrate under conditions of nutrient stress

prompted us to consider whether prolidase activity would

generate angiogenic signaling (Semenza 2007). To answer

this question, we made a prolidase expression construct and

obtained stable transfectants with prolidase activities

greater than ten-fold those of vector controls (Surazynski

et al. 2007). In cells overexpressing prolidase, VEGF and

Glut-1, two target genes of HIF-1, were upregulated, and

elevated levels of HIF-1a were demonstrated. The

Fig. 7 Data from skin tumor model showing degradation of dermal
collagen (adapted from Marian and Mazzucco 1985). Dermal
collagen content is shown as microgram hydroxyproline per gram

of dermis. Abscissa depicts number of paintings, i.e., topical

applications (two per week) with 12-O-tetradecanoylphorbol-13-

acetate. Open figures represent control animals, and closed figures
represent treated animals
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mechanism for the accumulation of HIF-1a was due to the

inhibition of VHL-dependent degradation. Whether the

products of prolidase or subsequent metabolic products

were inhibitors of HIF-1a prolylhydroxylase activity has

yet to be determined. Nevertheless, this signaling linkage,

like that of hypoxia, suggests that the metabolic system

senses ECM degradation as a stress condition which

requires neoangiogenesis.

Hydroxyproline degradation

Although the focus of this review is on proline metabolism,

the metabolism of hydroxyproline deserves mention.

Unlike proline, preformed hydroxyproline is not proteo-

genic. Instead, proline is hydroxylated after peptide linkage

(Adams 1970). In spite of these marked differences in

proteogenic utilization, degradative metabolism of

hydroxyproline, either from the diet or from protein turn-

over, parallels that for proline. The first degradative step,

however, is catalyzed by distinct oxidases (dehydrogen-

ases) encoded by different genes (Adams 1970; Adams and

Frank 1980; Phang 1985). The second step, the degradation

of P5C and OH-P5C, is catalyzed by a common enzyme,

P5C dehydrogenase (Valle et al. 1979). Interestingly,

OH-P5C is also a substrate for P5C reductase converting

OH-P5C back to OH-PRO (Adams and Goldstone 1960).

The recyling of P5C to proline is not only the final step for

de novo biosynthesis, but also recycles P5C to proline for

incorporation into protein. In contrast, OH-PRO recycled

from OH-P5C is not proteogenic. Adams and Goldstone

(1960) thought it remarkable that OH-P5C could be uti-

lized as substrate by P5C reductase with the generation

of non-proteogenic OH-PRO and earmarked this an aspect

of OH-PRO metabolism which required elucidation.

Recently, Cooper et al. (2008) found that OH-POX enco-

ded by PRODH2 was regulated by mechanisms similar to

those for POX/PRODH in that both are induced by p53 and

PPARc. The induction of OH-POX by p53 in the presence

of added medium OH-PRO generated ROS and initiated

apoptosis. Thus, it appears that OH-POX is a redundant

system which can back up the POX/PRODH apoptotic

pathway. The cycling of OH-P5C to OH-PRO by P5C

reductase comprises a hydroxyproline cycle which has no

function other than for redox transfer and bioenergetics.

Autophagy and ecophagy

The utilization of proline as a microenvironmental stress

substrate bears striking parallels to the process in which

cellular materials are degraded as a source of bioenergy for

either survival or programmed cell death. (Schwartz et al.

1993; Yorimatsu and Klonskyi 2005; Rubinsztein et al.

2005). Autophagy is the term used to denote this process.

In this context, the utilization of proline (and hydroxy-

proline) that we have described may be designated

‘‘ecophagy’’ (Greek: oikos, home; phagein, to eat). Before

a cell resorts to autophagy, i.e., consumes its own cellular

components to maintain bioenergy and vital processes, it

can activate ecophagy to mobilize constituents of its cel-

lular microenvironment (its home) without compromising

critical cellular functions.

In summary, since the proline cycle was formulated

some 25 years ago, when we proposed that the metabolism

of proline played a special role in redox transfers and bio-

energetics, a body of persuasive evidence has accumulated

defining the metabolic niche for its function. The screening

for p53 gene targets revealed that POX/PRODH was

encoded by a p53-induced gene (PIG6) and led to the elu-

cidation of its role in intrinsic and extrinsic apoptosis. This

effect was initiated by the generation of proline-dependent

superoxides. In addition to the response to genotoxic stress

(p53), POX/PRODH is also upregulated by PPARc and its

pharmacologic ligands, the thiazolidinediones. Importantly,

the thiazolidinedione-mediated ROS-generation and apop-

tosis could be blocked by knockdown of POX/PRODH by

siRNA, a finding suggesting that the anti-cancer effects of

PPARc and its ligands, at least in cultured cells, are criti-

cally dependent upon POX/PRODH. Finally, POX/PRODH

is also upregulated under conditions of nutrient stress and

the mTOR signaling system provides the mechanism. Thus,

proline metabolized by POX/PRODH serves as a mic-

roenvironmentally derived stress substrate which can be

used either for survival or for programmed cell death. This

sequential process beginning with activation of MMPs and

degradation of the collagen contained in ECM to furnish

proline for POX may be designated, ‘‘ecophagy’’.
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