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Abstract. A direct comparison is made between two
recently proposed methods for linear scaling computa-
tion of the Hartree—Fock exchange matrix to investigate
the importance of exploiting two-electron integral per-
mutational symmetry. Calculations on three-dimension-
al water clusters and graphitic sheets with different basis
sets and levels of accuracy are presented to identify
specific cases where permutational symmetry may or
may not be useful. We conclude that a reduction in
integrals via permutational symmetry does not necessar-
ily translate into a reduction in computation times. For
large insulating systems and weakly contracted basis sets
the advantage of permutational symmetry is found to be
negligible, while for noninsulating systems and highly
contracted basis sets a fourfold speedup is approached.

Key words: Linear Scaling — Exact exchange —
Electron repulsion integrals — Gaussian basis functions —
Permutational symmetry

1 Introduction

Since the appearance of the first computer programs for
ab initio electronic structure theory more than 30 years
ago, considerable effort has been spent on developing
new computational methods to carry out the calcula-
tions efficiently. This effort has been driven to a large
extent by the desire to investigate the properties of
extended molecular systems. Recently, significant pro-
gress in this regard has come from the so-called linear
scaling methods. A variety of new linear scaling methods
now exist for computation of the Fock matrix [1-10], as
well as optimization of the density matrix [11-15] that is
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encountered in Hartree—Fock (HF) [16] and density
functional [17] theories. As with the introduction of any
radically new computational method it is often useful
to reexamine the preexisting algorithms and techniques
to determine if they should be retained or modified.

In part IT of this series, Order N eXchange (ONX)
was introduced, which is the first rigorous method for
linear scaling computation of the HF exchange matrix
[9]. ONX achieves linear scaling by adopting a novel
loop structure that avoids potentially quadratic presc-
reening of small interactions, but does not employ
two-electron integral permutational symmetry as is
traditional [18-24]. Despite the fact that permutational
symmetry can potentially save a factor of 4 in the
construction of the exchange matrix, ONX is highly
competitive with standard direct self-consistent-field
(SCF) methods and has been used in the largest HF
calculations reported to date [9, 15]; however, Ochenfeld
et al. [10] introduced a modification of ONX (LinK) that
retains full integral permutational symmetry. Unfortu-
nately, differences between the integral evaluation
routines prevented a direct comparison between ONX
and LinK. Nevertheless, Ochenfeld et al. claim an ap-
proximately threefold speedup of LinK over ONX for
large water clusters.

In order to actually measure the importance of inte-
gral permutational symmetry in linear scaling methods
for construction of the HF exchange matrix, we have
incorporated the methods discussed in Ref. [10] into
ONX, which we refer to here as symmeterized ONX
(SONX). By developing ONX and SONX on identical
integral evaluation routines, an analysis of the reduction
in computed integrals as well as the corresponding
reduction in computation times is possible.

This article is organized as follows. In the next section
the permutational symmetry of electron repulsion inte-
grals over Cartesian Gaussian basis functions is dis-
cussed and several issues that may affect the observed
computational savings in large-scale calculations are
mentioned. In Sect. 3, our implementation of integral
permutational symmetry in SONX is described. Then in
Sect. 4, a direct comparison between ONX and SONX is



made and differences are given in terms of both the
reduction in the number of evaluated integrals as well
as in the reduction in computation time.

2 Permutational symmetry

It is common in modern electronic structure theory to
use basis functions formed by a contraction of primitive
functions,

0= Curulr) | ()

where C,; are contraction coefficients, ¢, are primitive
basis functions, and K, is the contraction length. For
molecular computations, the primitive functions of
choice are the Cartesian Gaussian-type functions

(CGTFs),
0u(r) = (x = 4) (y = 4,)"(z = 4)"
x exp| = Lu(r — A)’] 2)

first proposed by Boys [25]. Primitive CGTFs are
preferred because, as stated by the Gaussian product
theorem (GPT), a product of CGTFs can be expressed
exactly as a one-center finite sum of CGTFs. For
example, the product of two s-type (I=m=n=0)
primitive CGTFs is

@ai(1) @y (r) =exp| — Li(r — A)’] x exp [ — {(r — B)’]
=exp[ — Lulyj/ (Lui + (1)) (A — B)’]
x exp[ — (p(r = P)’] (3)
where {, = {,; +{;; and P = ({4A +{;;B)/{,. Because

of the GPT, it follows that the four-center eclectron
repulsion integrals (ERIs),
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can be reduced to two-center integrals, which may be
readily evaluated with a variety of analytic methods
[25-28].

In addition to the GPT, since CGTFs are real, there
is an eightfold permutational symmetry between the
indices a;, bj, ¢, and d; in Eq. (4), and the following
integrals are equal [18]:

[aibj|ckd/] = [bja,'|ckd[} = [ab |dlck]
= [bjaildicr] = [cxd)|aib]
[d;ck|a b } [cka’1|bja,»]

= [dlck|bja,} . (5)

Equation (5) is also true for contracted ERIs,
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In formation of the HF exchange matrix,

(ablcd) =
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Kab = ZDCd(ClC|bd) s (7)

cd

rather than compute all possible ERIs, it is common
practice to loop over just the unique ERIs [19] and to use
the equalities shown in Eq. (5) to form the exchange
matrix as

Kue = Kue + Dpg (ablcd)
Kuq = Kaa + Dy (ablcd)
Kpe = Kpe + Dyg (abled)
Kpg = Kpg + Dy (ablcd), ! (8)

The subscript s in Eq. (8) indicates that the ERI is scaled
by a factor of 1,1/2,1/4, or 1/8 depending on the
possible coincidence of basis function indices [20]. Since
the majority of the ERIs involve unique indices, i.e. the
ERI is scaled by 1, the use of Eq. (8) offers the possibility
of saving a factor of 4 in the computation of K.

In the original formulation of ONX presented in Ref.
[9], this permutational symmetry of ERI indices was
foregone in favor of a novel loop structure that enables
loop skip-out statements. These loop skip-out state-
ments are crucial for avoiding quadratically scaling
prescreening of small ERIs and enable linear scaling
computation of K for insulating systems; however, the
recently developed LinK algorithm [10] demonstrates
that it is possible to use the loop skip-out statements of
ONX while at the same time taking advantage of ERI
permutational symmetry. Although the advantage of
exploiting ERI permutational symmetry has been well
established in more traditional electronic structure
methods [18-23], the situation is unclear for large-scale
calculations of K with new linear scaling methods.

One requirement that needs to be met for ERI per-
mutational symmetry to be useful is that the contribu-
tions an ERI makes to K should decay at a similar rate,
which depends solely on the structure of D as seen in
Eq. (8). Specifically, this requirement is due to the dif-
ferent ways small contributions to K are avoided in
methods that do not use permutational symmetry as
compared to those that do use symmetry. For example,
in ONX small contributions to K are avoided with the
criterion

s

s

.~ and

ID.al|(aclac)|?|(bd|bd)|'* > TwoENeglect | (9)

where the Schwartz inequality has been used [24];
however, in methods that exploit permutational symme-
try all four contributions in Eq. (8) are considered
together and a criterion such as

MaXHDde |Db0|’ |Dad|v |Dac”
x |(ablab)|"?|(cd|cd)|"/* > TwoENeglect

(10)

must be satisfied instead.
In Ref. [10], it is argued that in order for a given ERI,
(ablcd), to be considered significant it is necessary that

I For example, the indices can be restricted to @ > b, ¢ > d, and
ala—1)/2+b>clc—1)/2+d
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¢, and ¢, (and likewise ¢, and ¢,) have significant
overlap. This implies that the basis function pair ¢, and
¢, are spatially close. Since the ERI is contracted with
Dy, Dpe, Dyg, and D, in Eq. (8), this also implies that
the index pairs of these four density matrix elements
share similar (but not necessarily small) spatial separa-
tions. A central premise of Ref. [10] is that since the four
elements of D in Eq. (8) involve similar separations, it is
not unreasonable to assume that they also have similar
magnitudes; however, this assumption is contradicted by
Figs. 1 and 2 of Ref. [9], which demonstrate that ele-
ments of D sharing identical spatial separations can vary
in magnitude by up to 5 orders.

Although the evaluation of ERIs dominates the for-
mation of K, there are additional steps that have a sig-
nificant computational expense. For instance, once an
ERTI has been calculated it is necessary to contract it with
the appropriate elements of D and accumulate the con-
tributions to form K. In some cases these steps, referred
to here as integral digestion, can represent up to 20% of
the total time needed to form K [29]. This is important
because if the observed permutational symmetry factor
is less than 4, then in methods that use permutational
symmetry there will be extra integral digestions that do
not occur in methods such as ONX. For example, if a
given calculation reveals that using permutational sym-

doa=1,N
Ntis = o
a
dob=1,N

if (overlap of ¢, with ¢, > TwoENeglect) then
Ngis = Ngis 4+ 1
add ¢ to distribution list {(ab|},
endif
enddo b
sort distribution list {(ab|}, by decreasing overlap

enddo a

Fig. 1. Ordering the list of significant distributions

doa=1,N
Non = ¢
a
doc= 1,N

1 (| Dool * | (aajaa)lf3, = [(cclec) |2,
> TwoENeglect) then
Ngern = Nden 4 1
add ¢, to density list {D,.}q
endif
enddo ¢
sort density list {D,.}q by

1/2

decreasing | Dqc| * |(cc|cc) |2,

enddo a
Fig. 2. Ordering the list of significant density matrix elements. The

subscript max indicates the maximum taken over the distribution’s
angular symmetry components

metry only reduces the number of calculated ERIs by
one half rather than the full factor of 4, then there will
also be a twofold increase in the number of integral di-
gestions. We also note that when sparse matrix storage
routines are used to represent D and K, which is a
necessity for large-scale calculations, the relative cost
of extra integral digestions increases because accessing
elements of a sparse matrix is less efficient than for a
dense matrix.

3 Methods

In order to investigate the importance of exploiting ERI permu-
tational symmetry in formation of the HF exchange matrix, we
incorporated ERI permutational symmetry as described in Ref. [10]
into ONX, which we will refer to here as SONX to indicate that we
have used the same ERI routines as in ONX. The integral evalu-
ation routines in both ONX and SONX are based on the Head-
Gordon Pople (HGP) method [27] and have been significantly
improved over our previous implementations [9, 30]. In the fol-
lowing, we briefly outline the main components of the method as it
is implemented in SONX.

The loop skip-out statements of ONX can be combined with
ERI permutational symmetry through ordered distribution lists
in conjunction with ordered lists of density matrix elements. The
formation of these ordered density lists, which were first proposed
in Ref. [10], are repeated here in Figs. 1 and 2 for clarity.

As shown in Fig. 3, the construction of K begins with an outer
loop over the sorted distribution list {(ab|},, where the subscript
{...}, indicates the index that is held fixed. The density ordered list
{Dqc}, is then used to select an index ¢, for which the ordered
distribution list {|cd)}, is iterated over. Each distribution in the list
{led)}. that satisfies the criterion

|Dyc||(ablab)|?|(cd|cd)|'* > TwoENeglect (11)

is stored in a temporary ERI list specific to a. When Eq. (11) is no
longer satisfied, the innermost loop can be aborted safely because
the distribution list has been ordered as in ONX. Due to the sorted
density lists, the loop over index ¢ may also be aborted safely when
the inner loops do not alter the temporary ERI list. This process is
repeated in a second set of loops, except now the density-ordered
list corresponding to index b is used to select index d, and the
resulting distributions |cd) are stored in a temporary ERI list spe-
cific to b. As discussed in Ref. [10], since elements of D are pre-
sorted the use of Eq. (11), along with its analogous form involving
Dy, is exactly equivalent to Eq. (10).

Once the temporary ERI lists have been formed, they are sorted
and merged together so that all redundancies are removed. The
combined ERI list is then iterated over and the ERIs (ab|cd) are
computed and contracted with elements of D to form K.

In order to prevent memory requirements from increasing
quadratically with system size, it is necessary to avoid the storage of
insignificant elements of D and K. In ONX and SONX, an atom-
blocked sparse matrix representation is used, which enables the use
of a highly optimized library of sparse matrix algebra routines [15].
Small elements of D and K are removed when the Frobenius norm
of the corresponding atom block is less than TrixNeglect [15].
This sparse matrix representation greatly minimizes the cost of
accessing individual matrix elements because the ratio of matrix
elements to atom-block indices is large. Also, an efficient binary
search over column indices is used, where the search is performed
only over atom blocks rather than matrix elements.

4 Results and discussion

In the following sections we present several ONX and
SONX benchmark calculations, which illustrate the



doa=1,N

do b= 1,17V3i5

doc= 1,Ndn
dod=1,N%s
if (| Dol * |(ablab)|/? « |{cd|cd)|*/?
< TwoENeglect) then
goto 100
else
add |ed) to ERI list a
endif
enddo d
100 continue
if ( ERI list a has not changed ) goto 200
enddo ¢

200 continue

dod=1,Nge
doc= 1,N§®
if (| Dpa  |(ablab)|'/* = |(cd|ed)|'>
< TwoENeglect) then
goto 300
else
add |cd) to ERI list b
endif
enddo ¢

300 continue

if ( ERI list b has not changed ) goto 400
enddo d

400 continue

combine ERI list ¢ and b into single ERI list
sort and remove duplicates in ERI list
do ¢,d = 1, Length of ERI list
compute (ablcd)
contract (abled) with Dyg, Dye, Dag, and Dy,
add contributions to K., K,q, Ky, and Kpy

enddo c,d

enddo b

enddo a

Fig. 3. The LinK algorithm as implemented in SONX

speedups achieved by exploiting ERI permutational
symmetry in computation of the HF exchange matrix.
All calculations were carried out within the MoNDOSCF
[31] suite of programs using a single 332 MHz 604e
PowerPC processor. Unless otherwise stated, the calcu-
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lations were performed with TrixNeglect = 107°,
which results in errors in the total energy that are
less than those resulting from prescreening ERIs with
TwoENeglect = 107,

4.1 Reduction in ERIs

It is first of interest to determine to what extent utilizing
permutational symmetry actually reduces the number of
ERIs that need to be calculated. This can be determined
by taking the ratio of the number of ERIs that are
calculated by ONX versus the number calculated by
SONX for identical systems and levels of accuracy.

To examine this ratio in detail we performed a series
of restricted HF (RHF)/6-31G* calculations on a
three-dimensional cluster of 50 water molecules and
RHEF/6-31G calculations on circumcoronene (CpsHj») at
different levels of integral prescreening, denoted by
TwoENeglect.? Water clusters and graphitic sheets
represent two different computational regimes for both
ONX and SONX. As discussed in Ref. [9], linear scaling
formation of the exchange matrix is achieved in systems
such as water clusters, while quadratic scaling is ob-
served in systems that have long-range exchange inter-
actions, as is the case for graphitic sheets. Inspection of
Table 1 reveals that the actual reduction in the number
of ERIs for the water cluster with reasonable values of
TwoENeglect (107°-107'7) is somewhat less than the
full permutational factor of 4; however, for the results
of the circumcoronene calculation shown in Table 2,
the reduction in the number of ERIs is increased and
approaches the full permutational factor with similar
values of TwoENeglect.

The observed reductions in the number of ERIs for
the cluster of 50 water molecules and circumcoronene
differ substantially because the long-range behavior of D
is controlled by the system’s highest occupied molecular
orbital (HOMO)-lowest unoccupied molecular orbital
(LUMO) gap [32-34].> We note that the choice of basis
set can also have an effect on the HOMO-LUMO gap,
which in turn alters the long-range exchange interactions
[15]; however, similar calculations indicate that the
observed reduction in the number of ERIs is much
less dependent on the choice of basis sets than on the
physical properties of the system.

4.2 Reduction in computation time

Although ONX and SONX involve somewhat different
approaches in terms of how the ERIs are looped over,
both are based on the same implementation of the
HGP method for computing ERIs [27]. As a result,
a meaningful comparison can be made between the
computation times that each method requires.

2 Coordinate files available upon request

3 The difference between the eigenvalues of the HOMO and the
LUMO
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Table 1. The total number of electron repulsion integrals (ERIs)
calculated by Order N eXchange (ONX) and symmeterized ONX
(SONX) in a restricted Hartree—-Fock (RHF)/6-31G* calculation of
a cluster of 50 water molecules for different levels of TwoENeglect.
In each case, small elements in D and K are retained by setting
TrixtNeglect =0

TwoENeglect Number of ERIs Ratio
ONX SONX

1.0x 1073 1.8 x 10% 1.0 x 108 1.8

1.0 x 1077 9.2 x 108 4.4 % 10% 2.1

1.0x 107° 2.7 x 10° 1.1 x 10° 2.4

1.0 x 107! 6.0 x 10° 2.2 % 10° 2.7

1.0x 1071 1.1 x 10'° 3.6 x 10° 3.0

Table 2. The total number of ERIs calculated by ONX and SONX
in a RHF/6-31G calculation of circumcoronene, C,3Hi,, for
different levels of TwoENeglect. In each case, small elements in
D and K are retained by setting TrixtNeglect =0

TwoENeglect Number of ERIs Ratio
ONX SONX

1.0x 1073 2.7 x 10% 7.9 x 107 3.4

1.0 x 1077 4.7 % 10% 1.4 x 10% 3.5

1.0 x 107° 6.8 x 108 1.9 x 10® 3.6

1.0 x 107! 8.5x 108 2.3 x 10% 3.7

1.0x 10718 1.0 x 10° 2.6 x 10% 3.8

The total computation time incurred by ONX and
SONX to compute the RHF exchange matrix of a
cluster of 50 water molecules is shown in Table 3 for the
same series of basis sets as in Table 1. The correspond-
ing set of calculations for the circumcoronene system is
given in Table 4. A comparison of the observed speed-
ups obtained for these systems reveals that the reduction
in computation time is fairly dependent on the choice of
basis sets. Given that the ratio of the numbers of ERIs
does not change significantly between different basis sets,
this observation is somewhat surprising; however, it may
be explained by noting that when contracted basis func-
tions are used the computation of ERIs involves
a fourfold summation over K* primitive ERIs, where K
is the average basis set contraction length. K is less than
K in Eq. (6) because, in the methods used here, products
of primitive basis functions are discarded based on the
criterion [27]

Caiij/dl' (Pai(r)(ij(r)

where DistNeglect = TwoENeglect x 1072. For basis
sets that involve large values of K, the cost of evaluating
individual ERIs rapidly increases as (/(K*). This is in
contrast to other steps in the formation of the exchange
matrix, such as integral digestion, that do not depend on
K since they operate solely on ERIs that have already
been contracted. This is relevant to the comparison of
ONX to SONX because when K is large, any reduction
in the number of ERIs via permutational symmetry will

< DistNeglect , (12)

Table 3. The total computation time required to form one RHF
exchange matrix for a cluster of 50 water molecules by ONX and
SONX with different basis sets and with TwoENeglect = 1077,
Speedup is the ratio of the ONX and SONX computation times and
K is the average basis set contraction length of the ERIs

Basis set Computation time (s) Speedup K
ONX SONX
3-21G 91 86 1.1 1.4
6-31G** 979 854 1.1 1.4
6-31G* 599 491 1.2 1.5
Dunning 621 474 1.3 1.8
double zeta

6-31G 290 209 1.4 1.8
Dunning-Hay SV 697 462 1.5 1.9
STO-2G 20 13 1.5 1.9
STO-3G 90 50 1.8 2.6
STO-6G 1163 613 1.9 4.8

Table 4. The total computation time required to form one RHF
exchange matrix for circumcoronene by ONX and SONX with
different basis sets and with TwoENeglect = 10~7. Speedup is
the ratio of the ONX and SONX computation times and K is the
average basis set contraction length of the ERIs

Basis Set Computation time (s) Speedup K
ONX SONX
3-21G 144 72 2.0 1.4
6-31G** 1971 783 2.5 1.4
6-31G* 1838 706 2.6 1.4
Dunning 1316 588 2.2 1.9
double zeta

6-31G 350 148 24 1.9
Dunning-Hay SV 1415 550 2.6 2.0
STO-2G 24 9 2.7 1.9
STO-3G 94 30 3.1 2.6
STO-6G 1076 315 3.4 4.7

have a much larger effect on the total computation time
than when K is small. K for each basis set is shown in
Tables 3 and 4. Inspection of Tables 3 and 4 reveals that
the speedups obtained from using ERI permutational
symmetry correlate well with K.

5 Conclusions

The effect of ERI permutational symmetry on linear
scaling methods for construction of the HF exchange
matrix has been examined. By incorporating the use of
permutational symmetry in SONX, this effect has been
measured in terms of the number of computed ERIs
as well as the total computation time required. An
unexpected finding was that, depending on the basis-set
contraction length, a reduction in the number of ERIs
does not necessarily translate into a corresponding
reduction in computation time. A similar conclusion was
not reached in Ref. [10] because there the comparison
was based solely on the number of computed ERIs
rather than on the relative computation times. Such a



comparison cannot take into account other computa-
tional steps, such as integral digestion, which can
represent a significant expense.

In systems that involve long-range exchange interac-
tions, such as graphitic sheets, the reduction in the
number of ERIs readily approaches a full factor of 4.
Although the observed computation times remain basis-
set dependent, the use of permutational symmetry is
advantageous in the case of quadratic scaling due to a
vanishing HOMO-LUMO gap.

In systems such as three-dimensional clusters of
water molecules, permutational symmetry is shown to
reduce the number of ERIs computed by a factor of 2.
For basis sets that have long contraction lengths, a
factor of 2 reduction in the computation time can also
be approached; however, when basis sets involving low
levels of contraction are used any reduction in the
number of computed ERIs is masked by the increased
overhead needed to incorporate the permutational
symmetry. These results point out the importance of
comparing observed computation times. In particular,
for identical water clusters computed with the 3-21G
basis set, the factor of 3 difference claimed in Ref. [10] is
not observed, and in fact the two methods perform
equally well.

Although the use of a sparse matrix representation,
not employed in Ref. [10], may contribute to the differ-
ent conclusions reached here, a sparse matrix represen-
tation is a necessity for true linear scaling of the SCF
method. Furthermore, the overhead associated with
the sparse matrix representation has been minimized
through the use of an atom-block lookup [15]. Thus,
the conclusions reached here have been obtained with
the same integral code and within the context of an
optimized and fully linear scaling SCF program [31].

Finally, we conclude by noting that forgoing the use of
permutational symmetry may be preferred for a number
of additional reasons that have not been discussed here.
For example, even with highly contracted basis sets, use
of the multipole approximation to avoid contraction can
dramatically alter the balance between the cost of ERI
evaluation and digestion [35]. Moreover, parallel imple-
mentations of ONX are expected to preserve data locality
of D and K to a much higher extent than in SONX.
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