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Abstract 

The eosinophil ribonucleases eosinophil-derived neurotoxin (EDN/ 
RNase 2) and eosinophil cationic protein (ECP/RNase 3) are among 
the major secretory effector proteins of human eosinophilic leuko- 
cytes, cells whose role in host defense remains controversial and 
poorly understood. We have recently described the unusual manner 
in which this ribonuclease lineage has evolved, with extraordinary 
diversification observed in primate as well as in rodent EDNs and 
ECPs. The results of our evolutionary studies suggest that the EDN/ 
ECP ribonucleases are in the process of being tailored for a specific, 
ribonuclease-related goal. With this in mind, we have begun to look 
carefully at some of the intriguing associations that link eosinophils 
and their ribonucleases to disease caused by the single-stranded 
RNA viral pathogen, respiratory syncytial virus (RSV). Recent 
work in our laboratory has demonstrated that eosinophils can 
mediate a direct, ribonuclease-dependent reduction in infectivity of 
RSV in vitro, and that EDN can function alone as an independent 
antiviral agent. The results of this work have led us to consider the 
possibility that the EDN/ECP ribonucleases represent a heretofore 
unrecognized element of innate and specific antiviral host defense. 
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Introduction 
Eosinophils, ribonucleases, and host defense, 

at first glance, seem to be an unlikely trio. Eosi- 
nophils are studied primarily by allergists and 
are best known for their role in promoting the 
tissue damage and bronchospasm characteris- 

tic of respiratory allergies and asthma. Ribo- 
nucleases, on the other hand, have up until 

recently been the property of  chemists, whose  
interests were focused on folding pathways 
and catalysis. Host  defense, a broad-based area 
of  immunology,  has concentrated on the func- 
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Fig. 1. (A) Light microscopic view of human eosinophilic leukocytes isolated from peripheral blood by 
anti-CD 16 negative selection. (B) Electron microscopic view of a single human eosinophil. The characteristic 
bilobed nucleus and the large specific granules with electron dense cores are prominent. Photograph courtesy 
of Dr. Arne Egesten, University of Lund, Malmo, Sweden. Photographs reprinted with permission from 
Rosenberg HF, Chapter 5: Eosinophils, in Inflammation: basic principles and clinical correlates, Gallin J1, 
Snyderman, R, eds., Lippincott Williams & Wilkins, Philadelphia, PA, 1999, pp. 61-76. 

tion of the better-known cellular components 
of the immune response, including lympho- 
cytes, neutrophils, and macrophages. What we 
intend to do here is to begin by discussing the 
history of eosinophils and their role in host 
defense, and then go on to highlight the find- 
ings that have linked ribonucleases to eosino- 
phil physiology. We will include our studies 
on the unusual pattern of evolution of these 
eosinophil ribonucleases and demonstrate 
how these molecular evolutionary studies 
have led us to consider several novel hypoth- 
eses regarding the role of eosinophils and their 
ribonucleases in host defense against a previ- 
ously unrecognized group of target pathogens, 
specifically, single-stranded RNA viruses. 

The Enigmatic Eosinophil 
The human eosinophilic leukocyte, both 

light and electron microscopic views, is shown 

in Fig. 1. The eosinophil is a cell of the granu- 
locyte lineage known primarily for its unique 
and distinctive morphology. Evident in the 
images shown is its characteristic bilobed 
nucleus and large refractile cytoplasmic secre- 
tory granules. Similar to other granulocytes, 
eosinophils are produced in the bone marrow 
from pluripotent stem cells and are released 
into the peripheral blood where they persist in 
circulation for several days. Thereafter, eosi- 
nophils migrate into the tissues--primarily of 
the pulmonary, gastrointestinal, and genitouri- 
nary tracts--where they survive for about a 
month. Paul Ehrlich was the first to describe 
eosinophils in print as "cells...so richly en- 
dowed with granules that their entire proto- 
plasm stained violet" (1). Interestingly, even 
today, little else about eosinophils can be said 
with such assurance. Part of the enigma of the 
eosinophil stems from the fact that, as noted 
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Table 1. Diseases Associated with Peripheral Blood and/or Tissue Eosinophilia 

Parasitic diseases 
Helminth infections 
Visceral larval migrans 
Tropical eosinophilia 
Dermatologic diseases 
Atopic dermatitis 
Urticaria 
Immunodeficiencies 
Hyper-IgE (Jobs') syndrome 
Wiskott-Aldrich syndrome 
Rheumatologic diseases 
Hypersensitivity vasculitis 
Eosinophilic fasciitis 
Myeloproliferativc and neoplastic diseases 
Idiopathic hypereosinophilic syndrome (IHES) 
Kimura's disease 
Eosinophil leukemia 
Hodgkins' disease 

Gastrointestinal diseases 
Inflammatory bowel disease 
Eosinophilic gastroenteritis 
Respiratory diseases 
Asthma 
Allergic rhinitis 
Eosinophilic pneumonia 
Loeffler's syndrome 
Aspergillosis 
Viral disease 
Human immunodeficiency virus-1 
Respiratory syncytial virus 
Graft-vs-host disease 
Drug/Toxin reactions 
Cytokine therapies (IL-2, GM-CSF) 
Toxic oil syndrome 
Eosinophilia-myalgia syndrome 

above, most of the research on these cells has 
focused on their detrimental features (2). 
Table 1 is a list of conditions, syndromes, and 
diseases associated with blood and/or tissue 
eosinophilia; in nearly every case, the eosino- 
phil plays the role of the villain. Meanwhile, 
the role of eosinophils in promoting host de- 
fense remains a subject of great controversy. 
Perhaps the most dramatic illustration of this 
point is the findings of Sher and colleagues (3) 
demonstrating that, contrary to accepted wis- 
dom, eosinophils may actually not be major 
components of host defense against helmin- 
thic parasites in vivo; numerous recent studies 
have confirmed or refuted this point (4-10), 
which remains perhaps the most controversial 
subject in eosinophil research today. Other 
positive roles suggested for eosinophils cur- 
rently under consideration in the literature 
include wound healing (11,12) and antigen 
presentation (13-16). Although there may not 
be one, all-encompassing answer to the ques- 
tion of a positive role for eosinophils, in our 
laboratory we have begun to look at some of 

the intriguing associations that link eosino- 
phils to diseases caused by respiratory viral 
pathogens, most notably respiratory syncytial 
virus (RSV). As in other cases, eosinophils are 
currently perceived as the villains of RSV dis- 
ease, and have been shown to contribute to the 
bronchospasm, wheezing, and tissue damage 
characteristic of this condition. Based on our 
recent findings, we believe that the eosino- 
philic inflammation characteristic of this dis- 
ease may actually represent a double-edged 
sword, as eosinophils, via the actions of their 
unique secretory ribonucleases can, and per- 
haps do, provide some level of innate host 
defense against this viral pathogen. 

Eosinophils and Ribonucleases 

The cytoplasmic granules of the human 
eosinophil were recognized as containing 
ribonuclease activity by Archer and Hirsch as 
early as 1963, although the full significance of 
this observation was not appreciated at that 
point (17). The granules were later shown to 
contain four major secretory effector proteins, 
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Fig. 2. Alignment of the amino acid sequences of the six known human members of the Ribonuclease A 
gene superfamily. The shaded boxes enclose the eight cysteines and catalytic lysine and histidines that are 
characteristic of members of this gene superfamily; the open boxes enclose additional conserved residues. 
Reprinted with permission from: Rosenberg HF, Dyer KD: Molecular cloning and characterization of a novel 
human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic 
Acids Res. 1996;24:3507-3513, Oxford University Press. 

including two originally described by Olsson 
and colleagues (18,19) and Durack and col- 
leagues (20,21) and given the names eosino- 
phil cationic protein (ECP) based on its high 
apparent net charge, and eosinophil-derived 
neurotoxin (EDN), based on its observed tox- 
icity to rabbit Purkinje cells, respectively. 
Gleich and colleagues (22) were the first to 
purify ECP and EDN and to remark upon the 
similarity of their amino terminal sequences 
to that of bovine Ribonuclease A. Molecular 
cloning of both EDN and ECP confirmed these 
proteins as members of a larger group, namely 
the emerging Ribonuclease (RNase) A gene 
superfamily (23-26); Slifman and colleagues 
(2 7) and Gullberg and colleagues (28) demon- 
strated that EDN and ECP were both general- 

ized ribonucleases with activity against standard 
polymeric RNA substrates. At current count, the 
human genome contains six unique sequences 
encoding RNase A superfamily ribonucleases 
(Fig. 2), including the eosinophil ribonu- 
cleases EDN (RNase 2) and ECP (RNase 3), 
pancreatic ribonuclease (RNase 1), RNase 4, 
angiogenin (RNase 5), and RNase 6, all of 
which map to the long (q) arm of chromosome 
14 (29). Among features common to all mem- 
bers of this family, EDN and ECP have amino 
terminal signal sequences, eight spaced cys- 
teines that form four disulfide bonds in the 
correctly folded, catalytically active form of 
the protein, and two histidines and one lysine 
(the latter within a conserved motif) that com- 
prise the active site. 
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Ribonuclease Activity and Cytotoxicity 
Given that ECP and EDN are ribonucleases, 

the obvious question emerges: Does ribonu- 
clease activity play a role in any of the charac- 
terized functions of these eosinophil granule 
proteins? Two groups working independently 
came to the conclusion that ribonuclease 
activity was essential to the neurotoxicity of 
EDN (30,31), but given the unlikelihood of 
this representing a physiologic phenomenon, 
the conclusions from this with respect to eosi- 
nophil function remain unclear. ECP had been 
characterized as a generalized cytotoxin, with 
activity against parasites, bacteria, and mam- 
malian cells (32,33) via what was initially 
characterized a membrane-disruptive lytic 
mechanism (34). We began by asking a simple 
question: Does ribonuclease activity contrib- 
ute to the observed cytotoxicity of ECP? 

Much to our surprise, the answer was no. 
To perform this work, we prepared recombi- 
nant ECP, both wild-type and with mutations 
in two of the three aforementioned catalytic 
residues. As expected, the wild-type was 
ribonucleolytically active, while the mutant 
form was not. Yet both forms were equally 
effective at reducing the number of colony 
forming units of a characterized target strain 
of Staphylococcus aureus (35). Similar results 
were obtained by Molina and colleagues (36) 
in their study of the anti-helminth activity of 
native ECP. The results of this work--that 
ribonuclease activity was not essential for 
cytotoxicity--was not only surprising but 
counterintuitive from an evolutionary per- 
spective. If ribonuclease activity per se is not 
required for function, what are the constraints 
that have permitted this activity to be retained 
intact? 

Evolution 
of Primate Eosinophil Ribonucleases 

At about this time, several of our colleagues 
urged us to consider studying this in vivo, via 

targeted gene disruption of these eosinophil 
ribonucleases in mice. However, we found our- 
selves unable to identify genes orthologous to 
EDN or ECP in mouse genomic DNA, even 
under the least stringent of DNA-DNA hybrid- 
ization conditions. On further investigation, we 
were surprised to discover that sequences ho- 
mologous to EDN and ECP could be detected 
only in primate genomes [Fig. 3 (37)]. We pro- 
ceeded to isolate these (intronless) coding se- 
quences from several nonhuman primates, and 
found that EDN and ECP arose as a gene pair 
rather recently, some time after the divergence 
of the Old World from the New World mon- 
keys, a date estimated at -50 million years ago. 
We also noted that, since duplication, the genes 
encoding EDN and ECP have been diverging at 
a very rapid pace, with nearly 30% amino acid 
sequence divergence noted between human and 
New World monkey orthologs of the EDN 
gene. To put this in some perspective, most 
human-mouse coding pairs differ by no more 
than 10-15 % (38), with the divergence between 
these two mammalian species estimated to have 
occurred -80 million years ago. Upon a thor- 
ough analysis of the GenBank database, we 
found that EDN and ECP were incorporating 
nonsilent (nonsynonymous) mutations at rates 
exceeding those of all other functional coding 
sequences studied among primates. Most sig- 
nificant to us was the fact that, despite the rapid 
rate at which these sequences were incorporat- 
ing mutations, each retained the eight cysteines, 
the two hisfidines, and the catalytic lysine, all 
features that are crucial to maintaining ribonu- 
clease activity among members of this gene su- 
perfamily. Zhang and colleagues (39) have 
provided a more thorough evolutionary analy- 
sis of this lineage, and have concluded that the 
evolution of ECP represents one of the rare 
examples of positive (Darwinian) selection 
contributing to diversity at the molecular level. 
We have evaluated the catalytic activity of the 
various primate orthologs (40,41) and found 
that the recombinant version of the New World 
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Fig. 3. Above, restriction maps of hEDN and hECP. The (intronless) coding sequence of EDN (shown in 
black) was used to probe the genomic blot shown in below. Below, Pst I- digested mammalian genomic DNAs 
probed with the coding sequence of EDN. The genus/species identification is noted above each lane. Lanes 
1-10 are from the order Primata; lanes 11-13, from the order Rodentia; lane 14, the order Lagomorpha; lanes 
! 5-16, the order Carnivora; lanes 17-18, order Ariodactyla. Reprinted with permission from: Rosenberg HF, 
Dyer KD, Tiffany HL, Gonzalez M. Rapid evolution of a unique family of primate ribonuclease genes. Nature 
Genet 1995;10:219-223. 

monkey single-sequence EDN/ECPs have sig- 
nificantly less ribonuclease activity than their 
higher primate counterparts. We have traced this 
differential activity in part to a tripeptide se- 
quence present at the carboxy-terminus, a re- 
gion not previously recognized as part of  the 
catalytic site as it is currently defined (41). 
Finally, while establishing the unusual evo- 
lutionary history of primate EDNs and ECPs, 
we have isolated and characterized a previ- 
ously unidentified ribonuclease, RNase k6, a 
single copy gene in primate genomes that is 
the next most closely related ribonuclease to 
EDN and ECP (42,43). 

Taken together, these evolutionary studies 
lead us to the conclusion that ribonuclease activ- 

ity must indeed be crucial to one or more im- 
portant physiologic functions of EDN and 
ECP, and by extension, to the physiologic 
function of the eosinophilic leukocyte. 

Evolution of Rodent Ribonucleases 

Our initial hypothesis gained strength in 
light of  several findings on the evolution of the 
EDN/ECP lineage in rodents. This work was 
initiated by Larson and colleagues (44) who 
identified mouse eosinophil ribonucleases 
(mEARs) 1 and 2 by amino acid sequencing of 
proteins isolated directly from mouse eosino- 
phils. We have since identified six additional 
related ribonucleases in mice, forming what 
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Fig. 4. Evolutionary dendrogram depicting the relationships among the mouse mR and rat rR cluster 
ribonucleases. The tree was constructed using the neighbor joining method with Kimura's distances (65) and 
is rooted on the interior branch between the two clusters using the sequences of human EDN and human ECP 
as outgroups. Values at the interior nodes are bootstrap percentages derived from 500 replications (66). 
Reprinted with permission from: Singhania NA, Dyer KD, Zhang J, Deming MS, Bonville CA, Domachowske 
JB, Rosenberg HF. Rapid evolution of the Ribonuclease A superfamily: adaptive expansion of independent 
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we call the mouse ribonuclease (mR) cluster. 
All mR cluster ribonucleases have the requi- 
site cysteines and catalytic residues, and range 
from 60% to 94% amino acid sequence simi- 
larity to one another, demonstrating an unu- 
sual expansion of the EDN/ECP lineage within 
a single species. This has only been com- 
pounded by what has occurred in rats. We have 
recently identified an analogous ribonuclease 
cluster in rats, and have demonstrated that dis- 
tinct ribonuclease clusters have evolved inde- 
pendently in inbred species of rats and mice 
(46; Fig. 4). The results shown here imply that 
within the last 10-15 million years, the esti- 
mated divergence time of rats and mice, each 
species has undergone at least eight indepen- 
dent gene duplication events. Clearly, both 
primate and rodent ribonucleases of this lin- 

eage are undergoing similar but independent 
styles of rapid evolution, suggesting the pos- 
sibility that they may be responding to similar 
but independent evolutionary constraints. 

Putting It All Together 
EDN and ECP, both ribonucleases, are 

among the maj or effector proteins of the human 
eoisnophilic leukocytes, cells whose role in host 
defense remains a subject of controversy. The 
evolutionary studies suggest that the function 
of these proteins must somehow take into 
account the conserved ribonuclease activity. 
Furthermore, the astounding amount of evolu- 
tionary energy that has been expended on these 
specific ribonuclease lineages suggests not 
only that they are important, but that they are 
in the process of being tailored for a specific, 
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ribonuclease-related goal. This takes us to our 
most recent work, in which we have begun to 
explore the associations linking eosinophils 
and diseases caused by respiratory viral patho- 
gens, most notably that caused by the single- 
stranded RNA virus, respiratory syncytial 
virus. 

Eosinophils, Eosinophil Ribonucleases, 
and Respiratory Syncytial Virus 

Respiratory syncytial virus (RSV) is a 
member of the Pneumovirus subfamily of the 
family Paramyxoviridae. Its genome is a 
molecule of single-stranded RNA consisting 
of-15,200 nucleotides encoding 11 viral pro- 
teins (47). RSV has been characterized as one 
of the most important respiratory pathogens 
worldwide, resulting in a seasonal bronchioli- 
tis affecting primarily infants and toddlers, as 
well as the institutionalized elderly (48,49). 
Some examples of the associations linking 
eosinophils and RSV--during severe RSV 
infection, eosinophils have been shown to be 
recruited to and degranulate into the lung 
parenchyma (50,51), and RSV-infected epi- 
thelial cells express several prominent eosino- 
phil chemoattractants (52-56). RSV-infected 
epithelial cells also support the increased 
adherence ofeosinophils (57), and pulmonary 
eosinophilia has been observed in the Balb/c 
mouse model of RSV infection (58,59). As in 
other disease states, eosinophils are univer- 
sally perceived as the villains of RSV disease, 
and the role of eosinophils in promoting tissue 
damage and bronchospasm has been the focus 
of this area of research. Looking at this from a 
new perspective, we have begun to consider 
the possibility that eosinophils, via their 
unique collection of ribonucleases, may also 
have a beneficial role to play here, and that the 
eosinophilic inflammation associated with 
RSV disease may actually represent more of a 
"double-edged sword." 

Our in vitro experiments have yielded 
intriguing results. When introduced into RSV 

viral suspensions, we found that purified eosi- 
nophils mediate a dose-dependent reduction 
in viral infectivity (Fig. 5; 50). Furthermore, 
we have determined that this antiviral effect is 
mediated by the eosinophil secretory ribonu- 
cleases; addition of placental ribonuclease 
inhibitor completely eliminates the antiviral 
effect. Taken one step further, we have found 
that recombinant human EDN, the more pow- 
erful of the two eosinophil ribonucleases, act- 
ing alone, also mediates reduction in viral 
infectivity in vitro. Again, ribonuclease activ- 
ity seems to be essential--EDN' s antiviral ac- 
tivity is not shared with the ribonucleolytically 
inactivated point mutant of EDN, EDNdK 38. 
At the same time, this antiviral activity is not 
shared by RNase A, a highly potent ribonu- 
clease that is the prototype of this gene family. 
It is also not shared with bovine seminal ribo- 
nuclease, nor with the amphibian ribonuclease 
onconase, both ribonucleases with antiviral 
activity characterized in different contexts 
(61,62). These results imply that EDN inter- 
acts with its target (as yet unknown) with some 
degree of specificity above and beyond its role 
as a generalized ribonuclease, as discussed in 
the section on mechanism of action. 

EDN and RSV: Implications for Therapy 
As EDN clearly functions as an antiviral 

agent in a cell-culture based, in vitro assay 
system, it is intriguing to consider the possi- 
bility that it might function as an antiviral 
agent in a clinical setting. Working in its favor, 
EDN is a thermostable protein, with no toxi- 
city to respiratory epithelial cells observed in 
culture (63) and a very short half-life in the 
bloodstream (64). We envision the use of EDN 
and/or its derivatives as an aerosol agent to 
be administered as prophylaxis against (or 
treatment of) RSV and similar respiratory 
viral pathogens; it is conceivable that EDN 
might function synergistically with antiviral 
agents currently in use. Once we have a 
clearer picture of its mechanism of action, 
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modifications designed to enhance its anti- 
viral activity and/or improve tolerance can 
be envisioned (US Patent Serial No. 60/ 
052,986). 

Rihonucleases and RSV: 
Mechanism of Action 

Certainly one of the most pertinent ques- 
tions that emerges is that of mechanism of 
action. How does EDN mediate this antirival 
effect? Is EDN interacting with the virions 
alone, with a target on the cell surface, or 
both? Is EDN acting directly during infec- 
tion, or is it creating perturbations that have 
some effect later down the line? How does 
the catalytic activity, apparently crucial to 
the antiviral effect, play a role in this mecha- 
nism of action? Although it is tempting to 
assume that there is a direct interaction be- 
tween the ribonuclease and the viral RNA 
genome, the existence of such an interaction 
is not yet clear. Whereas these questions re- 
main to be answered, we do have evidence 
demonstrating that the interaction between 
EDN and its target (be it cellular and/or vi- 
ral) is both specific and saturable (62; Fig. 
6). Specifically, when the antiviral activity 
of rhEDN is measured in the presence of 
increasing concentrations of the ribonu- 
cleolytically inactivated rhEDNdK 38, we 
observe a dose-dependent inhibition of the 
antiviral effect. In contrast, increasing con- 
centrations of rhRNase k6, a ribonuclease 
with no antiviral activity in this assay, has 
no effect whatsoever on the drop in infectiv- 
ity mediated by rhEDN. The implications of 
this result reach out in many directions. 
First, it would be difficult to consider a spe- 
cific, saturable interaction between EDN 
and its target as anything but physiologi- 
cally relevant. This single result stands in 
greatest support for our hypothesis regard- 
ing the double-edged sword of eosinophilic 
inflammation, and has suggested the exist- 

ence of a specific target molecule to be iden- 
tified. Second, even if the pharmacologic 
potential of EDN proves to be less than an- 
ticipated, the elements of specificity might 
be harnessed and linked to some other form 
of antiviral therapy. And finally, the sug- 
gestion of a specific interaction between a 
EDN and its as yet unidentified target pro- 
vides support for our more general hypoth- 
esis regarding ribonuclease and viral path- 
ogens, below. 

Ribonucleases and Host Defense: 
a Hypothesis 

We believe that the unusual evolutionary 
constraints acting on the EDN/ECP lineages 
of the RNase A gene superfamily have pro- 
moted the acquisition of specialized antivi- 
ral activity. We believe that, when we begin 
to look carefully, we will find that these 
rapidly evolving r ibonucleases have di- 
verged to interact specifically with indepen- 
dent targets relating to host defense against 
viral pathogens. The degree to which this 
hypothesis represents foresight or fantasy 
will emerge as our work continues. 

Eosinophils and Host Defense Against 
Respiratory Viral Pathogens 

The role of eosinophils and their ribonu- 
cleases in host defense again respiratory vi- 
ral pathogens will require experimentation 
with relevant animal models. In this particu- 
lar situation, the comparison problems are 
quite complex. The first issue is the fact that 
human eosinophils and murine eosinophils 
are quite different from one another, most 
pronouncedly so with respect to their com- 
ponent ribonucleases. The two mR cluster 
ribonucleases known to be associated with 
eosinophils--mEAR- 1 and mEAR-2--have  
only about 50% amino acid sequence iden- 
tity to their human counterparts. Further- 
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more, RSV is not a mouse pathogen, and has 
extremely limited infectivity in this species. 
In order to address this question, we will 
need to examine the activity of murine ribo- 
nucleases against murine paramyxoviral  
pathogens in vitro, as well as to evaluate 
murine paramyxoviral pathogens for their 
ability to promote pulmonary eosinophilia. 
Armed with this knowledge, we can then 
approach cell ablation and gene ablation ex- 
periments in a more coherent and substan- 
tive way. 

Conclusions 

Our recent work suggests that eosinophils 
and their secretory ribonucleases may have 

a significant role to play in host defense 
against respiratory viral pathogens. In our 
work, we continue to address both the physi- 
ologic as well as the pharmacologic impli- 
cations of these findings. 
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