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Abstract In the past 15 years, the molecular identification
of antigens that can mediate the killing of tumor cells by T
cells has been vigorously pursued. Molecular identification
of tumor-associated antigens not only provided the means
to activate or monitor anti-tumor immunity, but also gave

insights into new and unexpected biochemical processes
that are taking place within cells. Post-translational splic-
ing, a phenomenon previously identified only in lower or-
ganisms or plants, has recently been added to the list of
atypical processes generating proteins in humans. The pro-
teasome, whose main function is to degrade intracellular
proteins, appears to catalyze this splicing reaction. The
discovery of post-translational splicing has immediate and
important implications for the complexity of the major
histocompatibility complex (MHC) class I peptide reper-
toire and for the immune recognition of self- and foreign
peptides.

Keywords Protein splicing . Tumor antigens . Antigen
presentation

Introduction

Over the course of evolution, acquisition of an immune
system that can survey intracellular and extracellular an-
tigens enabled vertebrates to survive the threat of viral or
bacterial infections. Immune surveillance of intracellular
antigens, most likely to detect viral proteins with foreign
amino acid sequences and eliminate infected cells, can also
detect and destroy cancer cells expressing mutated or
aberrantly expressed proteins [1]. Data from animal studies
[2, 3] and clinical trials [4–6] support the contention that
augmenting this T-cell response to tumors could be valu-
able as a treatment for patients with advanced cancer.
However, in most cases, anti-tumor immunity is not robust
enough to eradicate cancer, and some sort of manipulation
is necessary to induce stronger anti-tumor immunity. This
need to enhance existing anti-tumor T-cell responses led to
efforts to define tumor antigens and epitopes recognized by
tumor-reactive T cells, and this pursuit has uncovered some
surprising insights into human biology. The majority of
defined anti-tumor T-cell responses involve the processing
of intracellular proteins, presented to CD8+ T cells in the
context of the class I major histocompatibility complex
(MHC). This is in contrast to recognition of extracellular
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antigens, engulfed from the environment by antigen-pre-
senting cells and presented to CD4+ T-cells in the context
of the class II MHC. Such class II MHC restricted tumor
recognition does occur and probably plays important roles
in the regulation of anti-tumor responses through the
activation of dendritic cells by CD4+ CD25- helper T cells
[7, 8] or through the immunosuppression by CD4+ CD25+

regulatory T cells [9, 10]. However, the main anti-tumor
effector mechanism in tumor rejection seems to involve
CD8 responses, and a thorough understanding of how
tumor-associated antigens are processed and presented
in the context of the class I MHC is critical in tumor
immunology.

Class I MHC antigen-processing system

The class I MHC is a family of pleomorphic type I
membrane glycoproteins that belongs to the immunoglob-
ulin superfamily and is expressed on nearly all the cells in
the body. These molecules have the role of presenting
peptides that are derived from intracellular proteins to
CD8+ T cells (Fig. 1). Intracellular proteins are degraded
by proteases such as proteasome, tripeptidyl peptidase II,
and other aminopeptidases in the cytoplasm [11]. Resul-
tant short peptides (usually less than 12 amino acids) are
transferred into the endoplasmic reticulum (ER) by the
transporter for antigen processing in an ATP-dependent
manner [12]. At this point, most of the peptides are too
long to bind to class I MHC peptides, and they need to be
further cleaved by enzymes such as ER aminopeptidase
[13–15]. Then, peptides (usually 8–11 amino acids, typi-
cally 9 amino acids) bind in a groove between two α
helices on the membrane-distal surface of a class I MHC
protein [16] and are displayed on the cell surface. MHC
molecules are promiscuous, and they bind many different
peptides with certain amino acid preferences at key po-
sitions (anchor residues) which constitute binding motifs
[17]. Different MHC alleles have different motifs and
bind different sets of peptides. The number of class I
MHC molecules per cell is estimated at 50,000–100,000
[18] and because as many as 2×106 peptides are esti-
mated to be generated every second [19], only a small
minority of peptide epitopes can be presented on a class I
MHC at any time.

T-cell receptor-mediated antigen detection

Unlike antibodies, which bind with the intact folded an-
tigen, T cells recognize only the specific, minimal deter-
minant epitope processed from the antigen and displayed
on the correct “restricting” MHC molecule [20] (Fig. 1). T
cells that can recognize their cognate peptide/MHC
complex only at high antigen density are termed low-
avidity Tcells, whereas those that recognize antigens at low
densities are termed high-avidity T cells. This detection can

be exquisitely sensitive, with T cells recognizing antigen-
presenting cells incubated in sub-nanomolar amounts of the
correct minimal determinant peptide. However, it is not
clear how many peptide/MHC complexes are necessary to
trigger CD8+ Tcells. This can be influenced by such factors
as T-cell receptor (TCR)–MHC affinity, peptide–MHC
affinity, and the peptide–TCR affinity. Older studies
showed that 100–400 complexes per antigen-presenting
cell were necessary [21–23], but more recent work shows
that the activation of a T cell can be initiated by three to five
peptide–MHC complexes per antigen-presenting cell [24,
25]. In the most extreme example, it was reported that an
average of three peptide–MHC complexes per target cell
could elicit a half-maximal cytolytic T-cell response, and
the response of some T-cells could be elicited by a target
cell that bears a single peptide–MHC complex [26]. When
tumor immunologists discovered means for isolating and
cloning tumor-reactive T cells, they then proceeded to
probe these tumors for the protein antigens mediating re-
cognition, using the T cell and TCR as a sensitive peptide-
detection system.

Fig. 1 Class I major histocompatibility complex (class I MHC)
restricted antigen-presenting system. Cytoplasmic proteins are
degraded by cytoplasmic peptidases such as the proteasome and
tripeptidyl peptidase II. Resultant short peptides are transferred to the
endoplasmic reticulum (ER) by a transporter for antigen processing
(TAP) in an ATP-dependent manner. Peptides that are too long to be
presented by class I MHC molecules are trimmed by ER ami-
nopeptidases such as ERAP1. Peptides bound to class I MHC are
presented on the cell surface and surveyed by CD8+ T-cells
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Tumor-associated antigens

Over the past decade, numerous tumor-associated antigens
that are recognized by tumor-specific cytotoxic T lympho-
cytes (CTLs) have been identified [27]. The basic meth-
odology uses a tumor-reactive T cell to screen a tumor
cDNA library expressed in COS7 or 293 cells also
transfected with the appropriate restricting MHC molecule.
Reactivity resulting from combining the T cell with the
target cells transfected with the correct cDNA is evidenced
by IFN-γ release and is detected by ELISA. Tumor anti-
gens recognized by T cells can be categorized into four
main groups:

1. Cancer/testis antigens including MAGE-1 [28] and
NY-ESO-1 [29]. These antigens are expressed in
tumors, testis, and placenta but not other normal
tissues.

2. Lineage-specific differentiation antigens including
MART-1/Melan-A [30, 31], gp100 [32, 33], and PSA
[34].

3. Proteins overexpressed by tumor compared to normal
tissues such as fibroblast growth factor-5 (FGF-5) [35]
and PRAME [36].

4. Tumor-specific mutated antigens such as β-catenin
[37] and CDK-4 [38].

Over 50 antigens responsible for the recognition of
tumor cells by T cells have been identified, most expressed
by melanoma, which has a propensity for generating
tumor-reactive T cells [27]. The next step in the clinical
development of these immunogenic tumor-associated pro-
teins is to identify means of enhancing the reactivity
against these antigens in patients. Active immunization by
vaccination [39, 40] and passive immunization by T-cell
transfer [41] have both been pursued. Passive transfer of
antigen-specific, activated T cells expanded in vitro has
demonstrated that tumor-reactive T cells can cause major
tumor regression. Vaccination is appealing in that it avoids
the complexity and logistical obstacles of T-cell transfer.
Unfortunately, it rarely causes tumor regression by itself,
and the optimal means of vaccinating against these anti-
gens is not established [42]. Thus far, the most consistent
method of augmenting the number of CTL precursors in
patients with cancer has been by immunizing repeatedly
with a minimal determinant peptide in incomplete Freund’s
adjuvant. In addition, conservative substitutions in the
native sequence of these minimal determinant peptides,
which increase their affinity for their presenting MHC
molecule while not affecting the TCR-contact residues, can
dramatically augment their immunogenicity [43]. There-
fore, the best current approach to immunization against
cancer requires that the minimal determinant peptide be
identified within the tumor antigens recognized by T-cells.
The path from antigen identification to discovery of the
minimal determinant peptides presented on specific MHC
molecules has uncovered several novel biochemical pro-
cesses previously unsuspected in the generation of proteins
from the human genome. The exquisite sensitivity of the
TCR as an instrument for detecting specific peptide se-

quences is primarily responsible for these new discoveries.
Although many of the precise mechanisms creating these
epitopes are not fully elucidated, and the functional sig-
nificance of many of these findings is also unknown, they
already have immediate implications within immunology.

Discovery of post-translational splicing in FGF-5

A renal cell carcinoma (RCC)-specific CTL clone (C2) was
established from a metastatic lung lesion in a renal cell
carcinoma patient that had shown spontaneous regression,
a rare phenomenon thought to be immunologically me-
diated [35]. C2 recognized six of ten renal carcinoma cell
lines expressing HLA-A3 and also some breast, bladder,
and prostate cancer cell lines. By expression-based cDNA
library screening, the antigen was identified as FGF-5 and
it was also established that the recognition of cell lines by
C2 was closely correlated with their expression of FGF-5
by quantitative reverse transcription-polymerase chain reac-
tion (RT-PCR) [35]. These observations indicated two clin-
ically important points: (1) the epitope is a non-mutated
epitope that can be used for the vaccination of multiple
patients and (2) utility of an FGF-5 vaccine may not be
limited to RCC. In order to identify theminimal determinant
epitope presented by HLA-A3, we prepared truncated
versions of the FGF-5 gene, asking whether these con-
structs retained the ability to confer recognition by the CTL
when transfected into an HLA-A3+ cell line. This is usually
a routine process, but in the case of FGF-5, it was not [44].
3′-truncations of the full-length FGF-5 gene (Fig. 2a, G1)
that encodes 269 amino acids (aa) showed that the fragment
encoding aa1−220 (Fig. 2a, G2) was recognized but the frag-
ment encoding aa1−212 (Fig. 2a, G3) was not. 5′-truncations
showed that aa161−220 (Fig. 2a, G4) included the epitope but
aa173−220 (Fig. 2a, G5) did not. These results indicated that
the minimum fragment required to generate the epitope
spanned at least aa172 and aa213 and perhaps as much as
aa161−220. However, a 42-aa peptide far exceeded any
known class I MHC binding peptide. One hypothesis con-
sidered was that the epitope resided at one end of this
fragment, and the remainder of this peptide was necessary
for it to serve as substrate in an enzyme-mediated, post-
translational modification. Synthesizing and testing all na-
tive 9-, 10-, and 11-aa peptides encoded within the 60-aa
fragment (aa161−220) resulted in no CTL triggering, sup-
porting the possibility of post-translational modification.
The working hypothesis suggested that some of the internal
peptide sequence might not be necessary for peptide modi-
fication, so internally deleted mini-gene constructs were
made and tested. One of these constructs was recognized by
C2 (Fig. 2b, G6). Starting with this construct, we prepared
stepwise single-codon truncation mutants and further
identified a minimal sequence that was necessary for CTL
recognition. These showed that a gene fragment that en-
coded aa172−176 and aa199−220 (Fig. 2b, G12) was as well
recognized as full-length FGF-5. Next, within this trun-
cated, internally deleted peptide, alanine (or glycine for
alanine) substitutions at every amino acid position were
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introduced by site-directed mutagenesis to find out which
amino acids were crucial for the recognition by C2. The
results showed that, within the 27 amino acids, only the 1st,
3rd, 5th, and the last four amino acids were crucial. This
observation indicated that, if there were a contiguous
epitope at one end of the fragment and it was a 9-mer,
nearly half of the amino acids in the epitope were inter-
changeable with alanine, which was a very unusual obser-
vation. The HLA-A3 peptide-binding motifs favor tyrosine
at position 3 and phenylalanine or lysine at positions 9 or
10. Analysis of the critical amino acids in FGF-5 identified
by alanine substitution showed a tyrosine at aa174 and ly-
sine at aa220. In fact, fusing the two discontinuous peptide
segments that included all the crucial amino acids formed a
neopeptide that conformed well to the HLA-A3 binding
motif. This peptide, consisting of NTYAS from the N-
terminus and PRFK from the C-terminus was synthesized
and tested, and it strongly stimulated C2. Several avenues
of investigation indicated that the fusion event was post-
translational. First and foremost, a synthetic 49-aa peptide
from FGF-5 that included the critical amino acid residues
was successfully taken up, processed, and presented to C2.
This was accomplished by metabolically active B-cell an-
tigen-presenting lines, but not fixed B-cell lines (whereas
the FGF-5 post-fusion 9-mer could be successfully pre-
sented by fixed antigen-presenting cells). Therefore, the
processing event could only be mediated by a viable cell
and was carried out on a peptidic precursor. It was also
considered unlikely that RNA splicing was involved in that
multiple mini-genes with differing internal deletions were
previously made and could confer CTL recognition to tar-
get cells on transfection. The prediction was that these
differing deletions should corrupt splice-donor and accep-

tor motifs and not all would result in successful splicing to
yield the same 9-mer fusion peptide. To further rule out
RNA splicing and translational mechanisms such as ribo-
some skipping [45], termination codons were introduced in
three separate positions within the hypothetical intronic
region, and all three stop codons interrupted epitope cre-
ation and CTL recognition. Finally, it was shown by HPLC
that the epitope presented on the surface of a recognized
tumor line and extracted by acid elution co-migrated with
the candidate 9-mer epitope, not the 49-mer precursor.
Only one mechanism can explain all these observations
and that was that the epitope was generated by post-trans-
lational splicing. FGF-5 splicing seems to be a ubiquitous
phenomenon, because all tumor cell lines tested (renal,
breast, prostate, and bladder carcinoma cell lines and mon-
key COS7 cells) that expressed FGF-5 and HLA-A3 were
recognized by the CTL [35]. A review of the literature
identified two types of protein splicing, but neither has
been found in vertebrates.

Intein-mediated protein splicing

Intein-mediated protein splicing was first identified in the
yeast TFP1 gene [46, 47] and is defined as the excision of
an intervening protein sequence (the intein) from a protein
precursor and the concomitant ligation of the flanking
protein fragments (the exteins) to form a mature extein host
protein and the free intein [48]. More than 115 inteins are
registered in InBase http://www.neb.com/neb/inteins.html)
from Archaea, Bacteria, and Eukarya but not from higher
organisms such as Vertebrata. The intein is a self-excising
catalytic unit, and the smallest size for an intein found so
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Fig. 2 (Adapted from [44]). a
Truncation analysis of the FGF-
5 gene. A series of truncation
mutants were prepared by poly-
merase chain reaction (PCR)
from construct G1. Each PCR
product was cloned into the
eukaryotic expression vector
and transfected into COS cells
expressing HLA-A3. Recogni-
tion by C2 was assessed by
IFN-γ secretion. Nucleic acid
positions are indicated above the
start and finish of each con-
struct and the corresponding
amino acid positions from FGF-
5 below. Constructs shown as
open boxes were recognized and
those shown as filled boxes were
not. b Analysis of internal de-
letion mutants. For simplicity,
predicted amino acid sequences
instead of DNA sequences are
shown. Numbers in parentheses
indicate the position of the first
and the last amino acids. Num-
bers after Δ indicate internally
deleted amino acid residues
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far is 134 aa [49]. Inteins do not require auxiliary factors,
and the direct evidence for this was obtained from the
following experiment. Xu et al. inserted an intein sequence
derived from Pyrococcus GB-D DNA polymerase between
maltose binding protein (MBP) and paramyosin. Because
the protein-splicing reaction is inefficient at low temper-
ature, they could purify the precursor protein using anMBP
affinity column, and then they successfully reconstituted
the splicing in vitro by shifting to a higher temperature
(~65°C) without adding any auxiliary factors [50]. There
are four criteria for intein designation:

1. An in-frame insertion in a gene that has a previously
sequenced homologue lacking the insertion.

2. Experimental proof of splicing such as an identification
of spliced peptides by mass spectromeric analysis.

3. Existence of sequence motifs within the intein.
4. The presence of the four conserved splice-junction

residues such as serine, threonine, or cysteine at the
intein N-terminus (refer to InBase for more details).

Intein-mediated protein splicing does not seem to
explain the mechanism of splicing in FGF-5, because the
intervening sequence in native FGF-5 is only 40 aa, and by
gene-truncation analysis it was possible to shorten it to as
few as 18 aa, while preserving splicing. In addition, none
of the intein motifs or splice-junction motifs is present in
FGF-5.

Post-translational splicing by reverse proteolysis

Another example of post-translational splicing was dis-
covered in plants and occurs with the lectin concanavalin A
(Con A) [51]. In the maturation of jack beans, the initial
precursor of Con A (glyco-pro-Con A) is first activated by
deglycosylation to pro-Con A. Pro-Con A is then cleaved
to produce two distinct proteins that are transposed and re-
ligated to become mature Con A. Although the exact
mechanism of this splicing in plants is still not clear, one in
vitro study showed that asparaginyl endopeptidase can
digest Con A and then re-ligate the digested fragments by
its reverse proteolytic activity [52]. Reverse proteolysis by
an unidentified protease remains a possible mechanism for
the splicing of the FGF-5 epitope. For a protein to be cut
and re-ligated, the intermediates must be bound to a
catalytic unit, compartmentalized, or exist in very high
concentration to avoid interference from other competing
proteins (Con A can constitute 20% of total jack bean
protein [53]). Our data using the proteasome inhibitor
clasto-lactacystin β-lactone showed that the presentation
of the FGF-5 peptide was proteasome dependent, but could
not determine if its role was actually in splicing or con-
ventional processing of the spliced form of FGF-5.

Peptide splicing by the human proteasome

Vigneron et al. had isolated a melanoma-reactive CTL
clone that recognized antigen gp100PMEL17 and were at-

tempting to localize the epitope presented by HLA-A32.
Through a similar series of experiments, they eventually
determined that the epitope was again post-translationally
spliced. Their minimal precursor length obtained by trun-
cation analysis was 13 aa, and the intervening deleted se-
quence was only four aa. They showed that the proteasome
could mediate the splicing event by incubating highly pu-
rified proteasomes with the 13-mer precursor peptide
(RTKAWNRQLYPEW) in vitro and obtained the spliced
9-mer epitope (RTKQLYPEW) as shown by CTL recog-
nition and mass-spectrometric analysis [54]. The protea-
some is amulti-subunit proteinase complex that is composed
of the 20S proteasome and the 19S regulatory subunit. The
functions of the19S complex include binding polyubiquitin
chains [55], catalyzing the release of free ubiquitin [56] and
unfolding substrates and transporting them into the 20S
subunit in anATP-dependent process [57]. In the cylindrical
20S proteasome, there are four rings comprised of either
seven α subunits or seven β subunits ordered as α7β7β7α7

(Fig. 3a). The overall dimensions of the cylindrical complex
are 148 Å in length and 113 Å in diameter. The entrance in
the α subunit is 13 Å in diameter, and only an unfolded
peptide can enter [58]. Three out of seven β subunits are
known to have catalytic activities.β1 has peptidylglutamyl-
peptide hydrolyzing activity, which cleaves after acidic
residues [59], β2 has trypsin-like activity, which cleaves
after basic residues [60], and β5 has chymotrypsin-like
activity cleaving after hydrophobic residues [61]. These
subunits are also known to be replaced by LMP2 (β1i),
MECL-1 (β2i), or LMP7 (β5i), respectively, in a variant
proteasome complex, the immunoproteasome, found in
professional antigen-presenting cells or in some IFN-γ
treated cells. The function of the remaining β subunits and
all the α subunits is still unclear. An N-terminal threonine
on each of the three active β subunits catalyzes peptide-
bond cleavage, and thus the proteasome belongs to a new
mechanistic class of proteases, the N-terminal nucleophile
hydrolases [62, 63]. Cleavage by the proteasome is known
to occur by nucleophilic attack on the peptide bond by the
N-terminal threonine, resulting in the formation of an acyl-
enzyme intermediate [58]. The peptide in this intermediate
is usually rapidly hydrolyzed and released from the pro-
teasome. However, in the small space within the cylindrical
structure of the proteasome, Vigneron et al. hypothesized
that the N-terminal fragment of the cleaved peptide might
compete with water in a nucleophilic attack on the ester
bond of the acyl-intermediate, thereby forming a new
peptide bond (Fig. 3b). They provided data supporting this
model by showing that mixing purified proteasomes in vitro
with RTK and QLYPEWor RTK and AWNRQLYPEW did
not generate the epitope (RTKQLYPEW), but RTKAWNR
and QLYPEW did (implying the energy for the splice came
from the peptide bond between RTK and the excised seg-
ment, AWNR, consistent with the proposed acyl-interme-
diate). In addition, they showed that epitope generation was
prevented by the N-terminal acetylation of QLYPEW. In-
terestingly, D-alanyl-D-alanyl transpeptidases, which have
similarity with the proteasome in their catalytically active
sites, are known to catalyze the cross-linking of peptidogly-
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cans in bacterial cell walls by transpeptidation via the
formation of an acyl-enzyme intermediate [64]. Transpepti-
dation might be a shared activity of N-terminal nucleophile
hydrolases. Vigrenon’s model predicted that splicing does
not depend on a particular sequence motif but could occur
with any fragment produced by the proteasome. In fact,mass

spectrometry of the products of the precursor and the pro-
teasomemix showed the predicted alternative fusion peptide
RTKAQLYPEW (the proteasome cleaves the precursor
RTKAWNRQLYPEWafter K, A, and R).Whether FGF-5 is
spliced by the same mechanism remains unknown. The lack
of impact of varying internal deletions of FGF-5 on splic-
ing suggests such a non-specific mechanism. Proteasome-
based splicing requires only that it cleave after NTYAS
and before PRFK to generate the epitope NTYASPRFK.
One major difference between splicing gp100 and FGF-5
is the length of the intervening sequence, four aa versus 40
aa, respectively. It is estimated that the shortest distance
between two active sites in the proteasome is 28 Å, which
can be spanned by a hepta- or octapeptide in extended
conformation [58]. This mechanism implies a longer-lived
acyl-enzyme intermediate, to allow the juxtaposition of this
intermediate with PRFK within the narrow confines of the
proteasome, but this remains speculative. The proposed
mechanism by Vigneron et al. requires both further vali-
dation and more complete details prior to acceptance.

Aside from its mechanism, the frequency of post-trans-
lational splicing remains to be determined. The original list
of peptides eluted from human class I MHC molecules
included over 800 peptides with about 200 peptides of
unknown origin [65]. Improvements in protein databases
since the publication of this list allowed the identification
of some peptides from the list [66]. However, the majority
of the 200 peptides still remain of unknown origin and
some may be generated by splicing. Recent developments
have suggested that protein/peptide splicing may not be a
rare phenomenon as a third example, for the melanoma-
melanocyte antigen tyrosinase, has been found by CTL
screening (Dr. Paul Robbins, personal communication). In
this finding, two separate peptide sequences are transposed
and re-ligated, accompanied by the excision of 27 inter-
vening amino acid residues to form a minimal determinant
epitope presented by HLA-A24. This example is, because
of the transpositioning, even more complicated than the
gp100 and FGF-5 cases. The mechanisms responsible for
this transposition and splicing are unknown.

The discovery of protein splicing using the exquisitely
sensitive detection modality of the TCR is yet another

3Fig. 3 a Structure of the 20S proteasome. There are four rings
composed of seven subunits in the order of α7β7β7α7. β1, β2, and
β5 subunits are known to have the catalytic activity. Because there
are two layers of the β-subunit ring, there are six catalytic sites per
proteasome molecule. b Model of the peptide-splicing reaction
proposed by Vigneron et al. [54]. Step 1. Cleavage by the proteasome
is by the nucleophilic attack on peptide bond by the catalytic threo-
nines that exist on the amino terminus of β1, β2, and β5 subunits.
Step 2. This attack results in the formation of an acyl-enzyme inter-
mediate (in this case, RTK and AWNR bound to β subunits). Usually,
these peptides are released from the proteasome by a rapid hydro-
lyzation. However, in the small compartment within the proteasome,
where there are peptide fragments resulting from cleavages, N-
terminus of these fragments can compete with water molecules and
make a nucleophilic attack on the ester bond of the acyl-enzyme
intermediate, forming a new peptide bond and producing the spliced
peptide (Step 3). The energy needed for the generation of the new
peptide bond seems to be recycled from the bond between RTK and
AWNR
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example of thismethodology uncovering novel biochemical
processes in human cells. In 1996, Wang and co-workers,
using a CTL clone reactive with the melanoma-melanocyte
antigen, gp75 (TRP-1), demonstrated that it recognized a 9-
aa epitope in the context of HLA-A31 that was encoded by
an alternative open reading frame of the normal gp75 gene
[67]. This alternative ORF encoded a frame-shifted, 24-aa
peptide and was apparently expressed by both melanoma
cells and normal melanocytes, as both were recognized by
the CTL clone. The same group of investigators subse-
quently found another example of an antigenic epitope
arising from an alternative open reading frame for the tumor-
testis antigen NY-ESO-1 (expressed by numerous tumor
types and in this case, presented in the context of HLA-
A31) [68]. This went on to become a common finding
with other groups reporting similar scenarios for tumor
antigens such as LAGE-1 [69], ICE [70], M-CSF [71],
and BING-4 [72]. These examples from epitope identifi-
cation studies imply that this occurs continuously at low
levels in normal as well as transformed human cells, but
whether it has functional significance beyond immune
recognition is not established.

Another epitope-generating process identified in humans
by examining CTL recognition was the translation of pro-
teins entirely or partially from intronic sequences, many
due to defective splicing of unmutated gene products. The
frequency of this occurrence also seems to be surprisingly
high as there are now multiple examples of this phenom-
enon including TRP-2 [73], GnT-V [74], and gp100 [75].
CTL epitope identification was also the means by which
another previously undocumented event in mammalian
protein expression was demonstrated. A CTL was found
that reacted with a renal carcinoma line as well as with
target cells co-transfected with a tumor-derived cDNA and
the gene for the restriction element, HLA-B7. The tumor-
derived cDNA was found to correspond to mRNA arising
from the transcription of the antisense strand of the gene for
RU2 [76]. Transcription starts at a cryptic promoter in the
antisense strand of the first intron of the RU2 gene and
proceeds backwards into the reverse strand of the normal
RU2 promoter where, fortuitously, there is a chance poly-
adenylation signal. The incomplete overlap of the two
complementary messages allowed the measurement of
expression of the two transcripts by RT-PCR. The “sense”
transcript was found in all normal tissues, whereas the anti-
sense transcript was well expressed in a broad array of
tumors and at modest levels in normal kidney, liver, testis,
and bladder [76].

Conclusion

Our quest to define tumor-associated antigens recognized
by T-cells resulted in the unexpected discovery of post-
translational splicing in humans. At the moment, there are
many questions remaining unanswered. How common is
this? Is there differential splicing in various normal and
malignant cells? Are the spliced peptides regarded as self
or foreign by the immune system? If the splicing happens

randomly between the fragments generated by the protea-
some, what is the definition of the immunological self? Are
there spliced variants that survive the proteasome and have
independent functional roles?

Now that immunologists know that epitopes are not
necessarily predictable from primary protein sequences,
there will likely be more examples of post-translationally
spliced epitopes. These new examples may lead us to an-
swers to these questions.
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