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A mean field theory is presented for the recently discovered self-organized 
critical phenomena. The critical exponents are calculated and found to be the 
same as the mean field values for percolation. The power spectrum has " l / f "  
behavior with exponent ~o = 1. 
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Recently a new critical phenomenon termed "self-organized criticality" was 
discovered, t~) It was argued that some extended dissipative systems 
naturally evolve into a stationary state that is critical, in the sense that 
both spatial and temporal correlations obey power law behavior. Indeed, 
the existence of the self-organized critical state was demonstrated on 
several specific dynamical models. Critical exponents were defined and 
calculated numerically, and scaling relations derived. ~2) 

In this paper, we present a mean field theory for the self-organized 
critical phenomena. The main purpose of the theory is to yield insight into 
the fundamental mechanisms, and to provide a phenomenological 
framework and vocabulary. The mean field exponents that we provide are 
probably not very accurate for low-dimensional systems, as for most other 
critical phenomena. Nevertheless, they may serve as a first approximation 
in more general expansions. Moreover, there may exist an upper critical 
dimension above which these exponents are exact. We found that these 
mean field exponents are identical with those for the percolation model. 
This does not mean that they belong to the same universality class. In fact, 
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the numerically calculated exponents in two and three dimensions are very 
different from 2D and 3D percolation exponents.(2) Of particular interest is 
the exponent ~0 for the power spectrum. We find a pure " l / f "  spectrum 
with exponent 1. In real systems, the exponent is usually not precisely 1. 
The deviations of the exponent from unity can thus be understood as 
deviations from mean field theory. 

We consider the following simple "cellular automaton. ''(1) On each site 
r on a d-dimensional hypercubic lattice of linear size L we define an integer 
variable z(r), which can be thought of as a local slope or pressure driving a 
transport process. The dynamics is very simple: if z(r) exceeds a critical 
value z,., then at the next time step it "diffuses" 

z(r) --, z(r) - 2d 
(1) 

z ( r + n ) ~ z ( r + n ) +  1, n =  -}-el, +e2,..., +ea  

where {ei} are the unit vectors. Without loss of generality, we can choose 
z~ = 2 d - 1 .  The event above represents a unit "particle flow." The total 
flow at time t, J ( t ) ,  is simply the number of lattice sites on which z > zc. 
The current density j = J / L  d may be viewed as the order parameter for this 
critical phenomenon: if the average slope 0 = ( z ) ,  where ( . )  denotes the 
lattice average, is larger than a critical value 0c, then j r  0. Otherwise, j will 
be zero unless an external "field" h is applied. The field represents the 
probability that 

z(r) ~ z(r) + 1 (2) 

For  simplicity, consider the one-dimensional case. Generalization to 
higher dimensions is obvious. More importantly, the essential physics, 
including values of all the exponents, is independent of dimension in the 
mean field theory. In one dimension, z c =  1. If on a particular site the 
variable assumes the value z, we say that this site is in state z. If z > z c, the 
site is then "active." A state 0 will change to state 1 during the next time 
step with probability 1 - h  if one of its two neighbors is active, and with 
probability h if none is active. Schematically we can represent the process 
0--* 1 in a "reaction equation" 

0 2(1--h)At,  hI 2 , 1 (3) 

where A and I denote the active states (2, 3, etc.) and inactive states 
(0 or 1), respectively. Let Pz denote  the fraction of sites in state z. In 
mean field approximation, Pz can be viewed as the probability that a 
site is in state z. The "reaction rate" of Eq. (3) can then be written as 
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2 ( 1 - h )  PoPAPz+ hPoP~. We are interested in the critical region where j 
and h are small. This means that PA =J is small. To second order in P2, 
the rate of Eq. (3) is 2P o P2( 1 - P2) + 2Po P 3 + hPo - 4hPo P2. Generalizing 
the above argument to the other states, we get the following "reaction 
diagram": 

_ ) AI, 2 

I 
Y 

2(l-h)Al, hl 2 

2 

The stationarity condition implies that the rate of flow into a state should 
be equal to the rate of flow out of the state. To second order in P2, this 
leads to the following set of equations: 

P2(1 -p2)2-hP2=2PoP2(1 -P2)+2PoP3+hPo+PoP2-2hPoP2 (4a) 

2POP2(1 - P2) + 2POP3 + hPo + 2P~ + P3 + hPz - 4hPoP2 

= 2PIP2(1 - P 2 )  + 2PtP3 + hPl + P1P 2-2hP1P2 (4b) 

2hPoP2-4hP1P2+2PIP2(1 -P2)+2P1P3+hP1 +PoP~=P2 (4c) 

PI P~ + 2hP1 P2 = P3 (4d) 

The average slope 0 is simply 

0 = 0 x P o +  1 x P  1 + 2  xP2  + 3 x P  3 (4e) 

Equations (4) are our mean field equations for the self-organized critical 
phenomena. 

When the field h = 0 ,  it is easy to see from Eqs. (4a) and (4b) that 
Po=l/2+O(P2) and P~=l/2+O(P2). Thus, at the critical point 
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Po--  P~ = 1/2 and 0 c-- 1/2. It can be shown that in the d-dimensional case 
at the critical point P0 = P1 = P2 . . . . .  P2d- 1 = 1/2d and 0c = d -  1/2. 

From Eqs. (4) we can derive an equation for the order parameter 
J = P2 q- P3 ~ P2. To the lowest interesting order 

4p2+  (1 - 20 + 2h) P 2 - h O = O  (5) 

I f h = 0 ,  t h e n P 2 = 0 ,  or 

P 2 = ( 1 / 2 ) ( 0 - 0 c ) ,  so /~=1 (6) 

Differentiating Eq. (5) with respect to h and then setting h = 0, we get 

8 P 2 z + 2 P 2 +  ( 1 - 2 0 )  Z - 0 = 0  (7) 

where Z = (dP2/dh)h=o. For 0 < 0,. = 1/2, P2 = 0, and Eq. (7) gives 

Z = (1 /4 ) (0 , -  0)-1, 7 = 1 (8a) 

For 0>0,. ,  P2= (1 /2) (0-0 , . )  and Eq. (7) gives 

Z = (1/4)(0 - 0c)-1, 7' = 1 (8b) 

At the critical point, 0 = 1/2 and Eq. (5) becomes 

4P 2 + 2hP2 - h/2 = 0 

which gives (as h--. 0) 

P2 = (h/8) '/:, 6 = 2 (9) 

We can also study the relaxation of the order parameter below the 
critical point. Recall that Eqs. (4) are the equalities for the "reaction rates." 
Hence, 

dP2/dt = lhs of Eq. ( 4 c ) -  rhs of Eq. (4c) 

Setting h = 0 and dropping all the terms of order higher than P2, we have 

dPz/dt = 2PIP:  - P2 = - ( 1  - 20) P2 

where Eq. (4e) was used. Thus, the order parameter relaxes exponentially 

Pz(t) = P2(0) e x p ( -  t/tco ) (10) 
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The relaxation time diverges at the critical point: 

t,.o = (0 , . -  0)-  1/2 (11) 

In ref. 2, it was shown that the order parameter relaxes as 

j ( t )  z t ~ -  1 exp[ - (t/t,.o) ~ -  2)/~] (12) 

where (p is the power spectrum exponent, t co~(O~-O)  -zIps, D is the 
fractal dimension, r is the cluster size distribution exponent, and z is the 
dynamical exponent. Comparing Eq. (12) with Eqs. (10) and (11), we have 

qo= 1, z / D o =  1, D ( r - 2 ) / z =  1 (13) 

In ref. 2 we also derived a set of scaling relations that are valid in any 
dimensions: 

= (3 - ~)/cr, D = 1lay, 7Iv = 2 (14) 

where l/~ and v are the exponents for "cutoff" cluster size and correlation 
length, respectively. From Eqs. (6), (8), (9), (13), and (14) we get the mean 
field values for all the exponents: 

/~=1, ~,=1, 6 = 2 ,  D = 4 ,  r=5 /2 ,  z = 2 ,  o=1/2 ,  ~=1 /2 ,  q0=l (15) 

It is very suggestive that these values are identical with the mean field 
exponents for percolation. However, direct numerical simulations for low- 
dimensional systems clearly indicate that the self-organized critical 
phenomena are not in the same universality class as percolation, f:) 

In summary, we have constructed a dynamical mean field theory for 
the self-organized critical phenomena. It may help us to understand further 
the mechanisms for this new kind of critical phenomena. We can solve the 
mean field theory exactly for several exponents, and derive the remaining 
exponents from scaling relations. It is very interesting to note that the 
power .spectrum exponent q~ is 1. This gives us a hint on why " l / f "  noise is 
usually so close to 1If We point out that the theory presented here may 
not be the mean field theory for all the self-organized critical phenomena. 
One may get different mean field exponents for some other models. 
Furthermore, models with the same mean field exponents may easily have 
different "real" exponents and belong to different universality classes. It is 
far from clear how many different universality classes there are for the new 
phenomena. Symmetry will presumably play an important role here, like 
in any other critical phenomenon. The dynamics studied in this paper 
(Eqs. (1) and (2)) is both translational and rotational invariant. Models 
with different symmetries may give different exponents. ~)'~3) 
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