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Summary. We calculate the stress-strain relation for elastomeric foam from an ab initio theory, which 
shows that the "plateau" and "densification" regions should be described by a hyperbola. The theory 
seems to agree reasonably well with experiment. 

1 Introduction 

Dienes [1] has suggested that the principle of superposition o f  strain rates has much wider 

application than usually assumed, and that it can serve as a basis for formulating constitutive 

relations for highly nonlinear material behavior. In general, the relations involve tensors, but 

here we consider isotropic behavior, which requires only scalars. For hydrostatically stressed 

isotropic foam, the strain rate can be expressed as the sum of a term involving a changing 

stress and a term that represents the changing compliance due to compaction, so 

= (,~& + 0~ ,  (1) 

where c is the strain, C is the compliance, cr is the stress, and a dot denotes the rate of the 
underlying quantity. 

In this paper we apply the principle of superposition of strain rates to obtain the nonlinear 

behavior of certain elastomeric foams. Section 2 reviews the theory of a spherical void. 

Though well known, the results are needed in the subsequent calculations combining the 

behavior of an ensemble of voids. Section 3 accounts for boundary conditions on a single 

void and Sect. 4 considers multiple voids. Section 5 demonstrates the validity of results in the 

limit of an infinite bulk modulus. In Sect. 6 we apply the method to the most frequently 

encountered case for elastomeric foams: finite bulk modulus, large compared to shear mod- 

ulus. In this case we find the stress-strain curve to be a hyperbola. Then, in Sect. 7, we com- 

pute the effective shear modulus, and in Sect. 8 we show the results to be consistent with ex- 
perimental data at large compressions for three types of foam. The transition region between 
linear behavior and complete buckling is very short, and not of particular interest here, but it 
can be shown using a nonlinear buckling theory that the transition is very quick, as observed 
in experiments. We conclude with a tentative explanation for why the results of an apparently 
naive theory agree so well with data in a highly nonlinear regime. 
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2 Behavior of  a single void 

Consider a thin spherical shell of  inner radius r and thickness Ar .  Equating the force normal  

to an equatorial section to the corresponding component  of  force resulting f rom radial stress 
leads to the result 

27crArao = A(Trr2 a~.) ~ ~rr2 Aa~. + 27:radAr, ( 2 )  

where a~ is the radial stress and a0 is the tangential stress. Rearranging Eq. (2) and taking the 
limit, we have 

do-r 

From Hooke ' s  law and Poisson's principle in spherical symmetry,  the radial strain is 

ar ao du 
e~- -  E 2 ,  E d r '  (4) 

and the tangential strain is 

o- 0 o- r ~- O" 0 "(L 
e0  = - u ( 5 )  

E r 

where E is Young 's  modulus,  u is Poisson's ratio, and u is the radial displacement at the 
radius r. Thus, 

= r(r ,  t) (6) 

is the current radius of  a particle in the elastic material,  initially at P. So r(~, 0) = P and the dis- 

placement is u = r - r. (The bar  is used throughout  to denote the initial value of  a variable.) 
The solution to Eqs. (3), (4), and (5) is 

b 
u = ar + ~ . (7) 

It  is readily shown that  the mean stress, (a~ + 2ao)/3, is unaffected by the cavity, taking on 
the far-field value of the radial stress, o-j ~), everywhere in the material. 

3 Boundary conditions 

Equation (7) applies to any sphere of  elastic material. Now we consider a sphere of  very large 

outer radius with a concentric spherical cavity of  radius r0. We evaluate a and b from the 
boundary  conditions. First, a,. must approach the constant a j  ~) as r -+ ~ .  Given the radial 
stress in the far field, 

(1 - 2u) a j  ~) a~(~) 
a -  E - a k  ' ( 8 )  

where k = E /3(1  - 2u) is the bulk modulus.  Second, the radial stress must  vanish for r = r0, 
which gives 

b -- (1 + u) ro3cr~. (c~) ro3a~(~ ) 
2E  -- 4# ' (9) 
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where # = E /2 (1  + u) is the shear modulus or Lam~'s constant. Combining Eqs. (7), (8), and 
(9), we obtain the displacement 

(1 - 2.)  ro-r (~) (1 + u) r0a~ (~176 (10) 
u = E t 2Er2 

The displacement is unaffected by the presence of  a cavity for large r. This result, which 

follows f rom the displacement solution of the elastic equation, is consistent with the super- 
position principle, i.e., the continuum superposition principle is supported in the example of  a 

spherical void: the overall strain is the sum o f  the continuum par t  and a defect part.  

4 Multiple voids 

To fix ideas, first note that  the volumetric strain is independent of  r, because combining 

Eqs. (4), (5), and (6), we have 

e~ + 2e0 - (11) 
k 

This local strain is different fi 'om the macroscopic strain, which will be discussed later. The 
1 

deviatoric strain [2], e i j =  e# - ~ e~k(~ij, depends only on the shear modulus,  

or(~) ro 3 
e~. = ell -- (12) 

2# r a '  

(7(~ r03 
e~ = e22 - (13) 

4# r 3 ' 

which can be easily derived f rom Eqs. (4), (5), and (10). Thus, the material  adjacent to the 

void is not subject to any density change due to the presence of  the void, al though it displaces 

outward and changes shape. 
F rom Eq. (7), the outward volume displacement for each void at r is 

47fur :~ = 47rat 3 + 47rb. (14) 

Since a = cr~,(~)/3k (see Eq. (8)), the first term is just the volume change due to homogeneous 
bulk behavior. But the second term involves the volume of the void, since from Eq. (9) there 

follows 

7rr0acr.r(~) 
4~b -- (1.5) 

# 

Because the volume change due to a void is independent of  the distance from the void, we can 

expect the effect of  a number  of  voids to add. 
Consider now the behavior  of  an ensemble of  voids. Let N be the number  density of  voids 

per unit mass in a porous solid (foam), a quantity that does not change with deformation.  
Then, NO is the number  per unit volume, with 0 the density of  the solid material. Since the 
first term of  Eq. (14) is independent of  the voids and the second term is independent of  the 
radius, but proport ional  to the cavity volume, it is natural  to write the volume displaced 
through the surface of  a sphere S with radius ~ as 

4 
A V  = 47cu~ 2 = a -  47cr 3 + b. 4~r ~ 7 r N ~  3 , (16) 
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A 
where 3 ~r0N~a is the number of voids in S. The sphere is not symmetrical about each void, so 

the displacement is not exactly the same as if it were symmetric. But if ~ >> to, it should matter 
little. The average volume strain for the ensemble is 

A V r a 
V - 3a ~g + 4rcbNg. (17) 

Using Eqs. (8) and (9), we can rewrite Eq. (17) as 

A V  ~(oo) r 3 rrro3~(oo)LoN cr~ (~~ r 3 3 a~ (~) 
V - - T  5a + - - -  f ,  (18)  # k ~3 +4 # 

f = 4 rrNoro 3 is the void fraction. To close the equations, we write an additional rela- where 
O 

4 -3  
tion involving f ,  where f = ~TrNoro , the initial value of f.  In fact, the change in the void 

fraction plus the change in the absence of voids is the change in volumetric strain I A V / V ,  

cry(~176 AV (19) 
f - / ~  k - v  

Substituting Eq. (8) into Eq. (18), combining with Eq. (19) to eliminate f,  and letting 
~/r ~ 1, we obtain 

AVv - k e r r @ ~  f +  V 3Crr(~176 ( A V  o-T (~176 " (20) 

Changing signs in Eq. (20) so A V  is positive under compression by making the substitutions 

-or and ~ --+ - e ,  we have, on dropping the superscript, crr(~ 

= - + - g + (21) 
k ~ 

Equation (21) represents a hyperbola with one asymptote parallel to the strain axis and the 
other asymptote at the slope of the bulk modulus k. The second asymptote intersects the 
strain axis at f .  Equation (21) is quadratic in Cr, and the physically meaningful solution is 

cr = ~1 k(e - / )  - g2 # _ 61 i [3k(e  _ / )  _ 4#12 + 48k#e + c, (22) 

where a constant of integration c is added to account for the stress contribution at the transi- 
tion to buckling, as will be discussed in a later section. 

5 Limit  for very high stress 

In the limit of very large stress, all the cavities should collapse, and the stress-strain relation 
should be the same as for the bulk polymer, i.e., d~ = h de. Differentiating Eq. (22), we find 

~/[3k(c - / )  - 4~] 2 + 48k 

1 In other words, the presence of the voids does not affect the compression of the adjacent material. 
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and taking the appropriate limit 

dc~ 
lim = k. 

]r oc ~ 

which is exactly what we would expect. 
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(24) 

6 Approximation for large bulk modulus 

In general we expect the shear modulus to be small compared to the bulk modulus for elasto- 
meric materials, which typically have a Poisson ratio near 1/2. This allows a useful approxi- 
mation, which eliminates the need for knowledge of the bulk modulus. If we expand Eq. (22) 
as a Taylor series in k -1, we obtain 

2 _ ) 4 #c 
( ~ - + /  1 + c =  ~c, (25) 

~ = 5 # \ f _ e  3 0 7 - e  

which is the familiar hyperbolic function with orthogonal asymptotes. 

7 Effective shear modulus 

Nemat-Nasser and Hori [1] have shown that the effective shear modulus of an elastic solid 

with spherical voids, using their differential scheme, is given by 

09 /2 (26) 
c9~ = (1 - ] ) (1  - 92) ' 

where/2 is the effective shear modulus and 

2 4 - 5 z /  
s2 - (27) 

15 i - z /  

Integrating Eq. (26) we have 

= ~ ( 1  - / ) ~  (2s) 

where #~ is the shear modulus of the solid (matrix) material and 

,5(1 - z/) 
a -- (29) 

7 - 5 z /  

Substituting Eq. (29) into Eq. (25), we have 

4 ~ c ( 1  - / ) ~  + ~. (30) ~=g / _ ~  

8 Comparison with experiment 

Figure la shows a family of experimental stress-strain curves for open-cell polyethylene foam 
[4], taken at low strain rate (i ~ 10 .2 s-1), so the material is essentially in equilibrium. The 
densities of the uncompressed foams are 138, 120, 69.2, and 29.4 kg. m -3. Figure lb shows a 
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Fig. 1. Polyethylene foam: a Experimental stress-strain curves with uncompressed densities in kg. m 3; b 
theoretical values for the same densities 
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Fig. 2. P o l y u r e t h a n e  foam:  a Exper imenta l  s t ress-s t ra in  curves  with u n c o m p r e s s e d  densit ies in k g .  m 3; b 
theoret ical  values  for  the s ame  densit ies 

family of  theoretical  stress-strain curves for the same densities as calculated from Eq. (30), 

assuming a solid polymer  density of  1 M g . m  3 and solid shear modulus  [5] of  

#s = 10MN �9 m -2 and a Poisson 's  rat io of  u = 1/2. The curves are cut off below a strain of  

0.2. In  the low strain region, there is a l inear response of  stress to strain until buckling occurs, 

at  which poin t  the curve rapidly  turns down to the p la teau  regipn. We use the term buckling 
constant for the stress at  the onset o f  the p la teau region. This is the same constant  c as first 

ment ioned near  the end of  Sect. 4. In Fig. 1, the buckling constants  for the curves are all left 

at zero to emphasize the semiquanti tat ive agreement  between the theoretical  and experimental  

results. The buckling constant  will increase with density, causing the curves in Fig. lb  to more 

closely agree with the curves in Fig. la .  The low-stress region is not  applicable to the theory 

presented here, and an analysis of  buckling will be addressed in a future paper.  

Figure 2a shows a family of  experimental  stress-strain curves for open-cell polyure thane  

foam, taken at a low strain rate ( i  ~ 10 3 s - l ) ,  so the mater ial  is essentially in equilibrium. 

The densities of  the uncompressed foams are 51.7, 32.4, and 14.1 kg - m  3. Figure  2b shows a 
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Fig. 3. Silicone foam: a Experimental stress-strain curves with uncompressed porosities; b theoretical 
values for the same porosities 

family of  theoretical stress-strain curves for the same densities as calculated from Eq. (30), 

assuming a solid polymer density of  1.2 Mg.  m 3 and/J,~ = 0.8 MN- m -2. The curves are cut 

off below a strain of  0.2 as that is the region where buckling dominates. The buckling con- 

stants for the curves are 0.002, 0.002, and 0.004 MN- m -2, respectively. 

Figure 3a shows a pair of  experimental stress-strain curves for open-cell silicone foam [6], 

also taken at low strain rate. The thickness of  both samples was about  1 ram. The porosities f 

are 0.6 and 0.7 Figure 3b shows a pair of  theoretical stress-strain curves as calculated from 

Eq. (30), assuming/~  = 0.27 MN �9 m -2. The curves are cut off below a strain of  0.2 as that is 

the region where buckling dominates. The buckling constants for the curves are 0.02 and 

0.005 MN �9 m -2, respectively. 

9 Conclusion and comment 

On the basis of  a very simple ab initio calculation, we have shown that the nonlinear region of  

the stress-strain relation for elastomeric foams should be approximated by a hyperbola. We 

recognize that the problem is far more complex than the simplified picture we have presented. 

But we are gratified by the general agreement with the behavior of  some polyethylene, poly- 

urethane, and silicone foams, based only on the knowledge of  the porosity and shear modulus 

of  the bulk polymer. 

The success of  our simple calculation can be partially explained by referring to some com- 

ments by Kachanov,  although, strictly speaking, they apply only to linear media. First, if his 

method of  superposition [7] were applied to find the interactions within an ensemble of  spheri- 

cal holes, it would hinge on finding the mean stress at a cavity location (without the void) due 

to each of  its cavity neighbors. This mean stress is uniform, however, and unaffected by the 
presence of  a hole. Thus his superposition method, which is very similar to those described by 
a number of  authors cited by Kachanov,  would lead to the conclusion that the interaction has 

no effect, at least in that approximation. In a similar vein, Kachanov notes that competing 
effects of  stress shielding and stress amplification balance each other - at least in the cases 
investigated [8]. 
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