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Abstract—Genes in an organism’s DNA (genome) have embedded in them information about proteins, which are the molecules that
do most of a cell’s work. A typical bacterial genome contains on the order of 5,000 genes. Mammalian genomes can contain tens of
thousands of genes. For each genome sequenced, the challenge is to identify protein components (proteome) being actively used for a
given set of conditions. Fundamentally, sequence alignment is a sequence matching problem focused on unlocking protein information
embedded in the genetic code, making it possible to assemble a “tree of life” by comparing new sequences against all sequences from
known organisms. But, the memory footprint of sequence data is growing more rapidly than per-node core memory. Despite years of
research and development, high-performance sequence alignment applications either do not scale well, cannot accommodate very
large databases in core, or require special hardware. We have developed a high-performance sequence alignment application,
ScalaBLAST, which accommodates very large databases and which scales linearly to as many as thousands of processors on both
distributed memory and shared memory architectures, representing a substantial improvement over the current state-of-the-art in high-
performance sequence alignment with scaling and portability. ScalaBLAST relies on a collection of techniques—distributing the target
database over available memory, multilevel parallelism to exploit concurrency, parallel I/O, and latency hiding through data
prefetching—to achieve high-performance and scalability. This demonstrated approach of database sharing combined with effective
task scheduling should have broad ranging applications to other informatics-driven sciences.

Index Terms—High-performance sequence alignment, BLAST, Global Arrays.

<+

INTRODUCTION

THE driving force behind studying newly sequenced
genomes is the desire to understand an organism at the
level of molecular interactions. Many biological processes
involve interaction of proteins, or molecular building-
blocks, which can assume an astonishing array of functions;
hence, assessing the identity and function of proteins in a
newly sequenced organism is critical to understanding the
organism’s molecular interactions. The function of a protein
can often be surmised by its similarity to proteins of known
function using a process called sequence alignment.
Sequence alignment involves comparing the sequence of
known organisms to the nucleotide sequence of DNA or
RNA or to the amino acid residue sequence of proteins in
the newly sequenced organism. Since DNA, RNA, and
proteins can all be represented as linear character strings
(hence, the term “sequence”), scoring the similarity of two
sequences can be considered in the algorithmic sense as a
string matching problem.

Many sequence alignment algorithms have been devel-
oped for quantifying the homology of a pair of amino acid
or nucleotide sequences. Smith-Waterman [1], Smith et al.
[2], Needleman-Wunsch [3], and BLAST [4], [5] are
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examples of sequence alignment algorithms that have been
widely used for research in biology. Of these methods,
BLAST is the most computationally efficient and is
generally the most widely used, even though it has lower
sensitivity than the other methods [6], [7]. The most
common access to BLAST is through Web applications or
installations of standalone packages. These applications are
extremely effective in delivering quick sequence homology
scores for small numbers of queries against most databases.
However, when a task requires millions of queries to be
performed at once, a serial BLAST application may require
weeks or longer to complete. The increased need for
performing large numbers of sequence alignments in a
single task, for instance in multiple genome or multiple
proteome comparisons [8], [9], has motivated the develop-
ment of parallel applications that take advantage of multi-
processor architectures.

ScalaBLAST was developed using a software-based shared
memory approach with the goal of achieving efficiency and
scalability on shared as well as distributed memory
architectures. ScalaBLAST design is based on two main
concepts: 1) sharing of very large databases among
processors to accommodate the exponential growth in the
size of publicly available sequence data and 2) retaining the
efficient scaling characteristic of conventional query-sche-
duling applications, a feature which has been problematic
in previous database sharing applications, as discussed in
more detail in the related work section.

The performance characteristics of ScalaBLAST are
illustrated in this paper with experimental results on the
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two classes of computer architectures, the SGI Altix and the
HP cluster with Quadrics interconnect. For comparison, we
also show results from a serial version of standalone BLAST
and two representative high-performance BLAST imple-
mentations: MPI-BLAST [10], which is a readily available
and widely used open-source implementation of high-
performance BLAST, and HTC-BLAST [11], which is highly
optimized by SGI for their shared memory architecture of
SGI ALTIX.

ScalaBLAST takes advantage of the computational
independence of individual queries while mitigating per-
processor memory limitations by distributing the database
files using the Global Arrays toolkit [12], a shared memory
programming interface that can be used on shared or
distributed memory architectures. For our benchmark data
set, ScalaBLAST scales significantly better than MPI-BLAST
and performs as well as HTC-BLAST in terms of runtime
for real-world queries against the nonredundant protein
database (nr). ScalaBLAST’s advantage over HTC-BLAST is
portability. ScalaBLAST is highly efficient and scalable on
both shared memory and distributed memory architectures
as it does not rely on hardware implementation of shared
memory. The excellent performance and scalability of
ScalaBLAST are due to a combination of several optimiza-
tion techniques that we have found to be broadly applicable
to high-performance sequence analysis in general. These
techniques include:

1. Distributing the target database over available memory:
Global array objects are used to store the database
sequences in “shared” memory segments available
to all processors. Nonblocking operations on global
arrays are utilized to exploit nonuniform memory
access characteristics by overlapping retrieval of
sequence data with computation of the sequence
alignment. The goal is to eliminate the need for
frequent file access during a query and to enable
searching against extremely large databases, which
are expected for informatics-driven science.

2. Multilevel parallelism to exploit concurrency: This
involves scheduling queries to individual process
groups to constrain the need for result-merging to
fewer processors and to improve the overall con-
currency.

3. Parallel 1/O: 1/O performance is improved by
allowing each processor to create its own output file.

4. Latency hiding: Sequence block prefetching using
nonblocking memory access calls to prefill large
local blocks of memory with sequence data so that
latency associated with getting the data is hidden on
both shared and distributed memory architectures.

The remainder of the paper is organized as follows:
Section 2 summarizes existing related work. Section 3
describes our motivation and design goals for the parallel
implementation of BLAST. Section 4 provides details of the
technical approach. In Section 5, we present benchmark
results for ScalaBLAST on both shared and distributed
memory architectures in this paper with respect to
performance of HTC-BLAST on ALTIX, and best runtimes
observed for MPI-BLAST on a HP Linux cluster with a
high-performance Quadrics Elan-4 interconnect. Section 6

describes early but successful experience with using
ScalaBLAST by bioinformatics researchers for grand chal-
lenge class of problems. Section 7 includes discussion of the
broader context and applicability of the proposed paralle-
lization strategy. Finally, conclusions are given in Section 8.

2 OTHER RELATED WORK

We present here an overview of key technical aspects of
representative applications involving query scheduling or
database parsing. Several approaches to high-performance
sequence alignment have been developed to accommodate
the need for running large numbers of queries in a single
batch job. Special hardware solutions for sequence align-
ment include special chip design to accommodate a
particular alignment algorithm [13], or the use of field-
programmable gate arrays to increase the speed of align-
ment calculation [14].

A second approach to increasing throughput of sequence
alignment tools is the use of centralized service centers. For
instance, Soap-HT-BLAST achieves parallelism by schedul-
ing incoming queries through a Web service that distributes
the queries appropriately to available resources [15].
Similarly, TurboHub is a resource for executing parallel
and distributed Java applications that can be used in
conjunction with TurboBLAST to schedule queries over
available processors in a network environment [16]. In-
tegration of sequence alignment with other analysis tools
and data sources using a centralized server has increased
the rate at which practical knowledge can be extracted from
experimental and sequence data [17].

Combining high-performance architectures with specia-
lized software solutions has been shown to improve
sequence alignment throughput. SGI has developed an
optimized BLAST query scheduler that takes advantage of
shared memory hardware to provide significant speedup
for sequence alignment [11], [18]. This vendor proprietary
implementation is distributed in a binary format and has
been optimized for the Altix shared memory architecture.
By taking advantage of low-latency memory access and
multiprocessors, the throughput of BLAST queries has been
dramatically increased over the sequential version of
BLAST. Heterogeneous distributed /shared memory archi-
tectures have also been exploited by scheduling a prefilter-
ing step over a large distributed system, followed by
vectorizing the sequence alignment scoring step [19].
Another hybrid application, ParAlign, uses single instruc-
tion, multiple data (SIMD) supported architectures with
optimized software to achieve speedup of several of the
most popular sequence alignment algorithms [20].

Finally, many software solutions for achieving parallelism
for sequence alignment have been put forth. MPI-BLAST is
one of the most widely used software packages for achieving
high throughput sequence alignment [10]. The main benefit
from using MPI-BLAST arises when the fragments are
numerous enough (and, therefore, small enough) to fit
entirely in memory, thus allowing the application to perform
alignments without having to retrieve sequences from a file
during therun[21]. Recently, serious performance issues with
MPI-BLAST have been identified on shared memory archi-
tecture, including a serial bottleneck that occurs during the
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Fig. 1. MPI-BLAST runtimes for 1,000 queries.

reporting phase, which can result in inverted scaling (i.e.,
using more database fragments and more processors gives a
longer runtime, rather than a shorter runtime) [22]. We also
extensively profiled MPI-BLAST and verified the presence of
these performance issues on a distributed-memory architec-
ture (Linux cluster) as well. Profiling of MPI-BLAST on MPP2,
a 11.8 TFLOP Linux cluster installed at PNNL, has revealed
that the gains from parallelization by fragmenting the
database are more than offset by increased time of master
node processing (which is serial) when the process count and,
hence, thenumber of database fragments, is increased beyond
8. Fig. 1 illustrates the poor scaling we observed using MPI-
BLAST when using additional processors while correspond-
ingly increasing the number of database fragments.

This poor scaling is partly due to the fact that MPP2 has
more than adequate memory for the entire nr database to fit
on each processor, so the superlinear speedup due to
removing the paging bottleneck reported in [21] is not
observed. Second, the processing speed of our architecture
is such that the communication time, printing time, and
spin-waiting associated with the collating phase outweighs
the local query time when only a few processors are used.
This serial phase takes a proportionally higher amount of
the total runtime when more processors are added,
preventing scaling beyond a few processors. Other efforts
have used similar database partitioning schemes [23]. It was
this scalability problem associated with database partition-
ing that led to the development of ScalaBLAST.

Orthogonally, along with the service scheduling pre-
viously discussed, software schemes have been developed to
rapidly calculate alignments by scheduling queries sepa-
rately [24], [25], [26], [27], [28]. This approach has the
advantage that, in most applications, separate queries are
unrelated and therefore can be dispatched concurrently.
However, the increasing size of target databases will
increasingly deteriorate the performance of these approaches
as repeated file access becomes more frequent during
alignment calculations. Hybrid methods also exist that
combine database partitioning and query scheduling [29].

One key bottleneck in sequence alignment efficiency is
related to I/O. Piers is an application which attempts to
mitigate this performance bottleneck by using a hash table
structure to parse the target database, eliminating the need
for each sequence to be compared to the entire database
[30]. This makes it possible in many cases to leave a smaller
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Fig. 2. Trend in sequence database growth (from http://www.ncbi.nlm.
nih.gov/Genbank/genbankstats.html).

data structure in core, obviating the need for repeated file
access during a run. However, Piers relies on a heuristic to
parse the database and does not give identical results to
BLAST. PioBLAST optimizes I/O by employing MPI-IO to
increase the efficiency of accessing the database fragments
required by MPI-BLAST [22].

3 MOTIVATION AND DESIGN GOALS

3.1 Databases Are Growing Faster than Memory

As public gene and protein sequence databases continue to
increase in size at an exponential rate, the need to deal with
very large database files becomes more urgent. Fig. 2
illustrates the growth of one public sequence repository,
GenBank. The largest of the protein databases, the
nonredundant protein database, is currently about 2GB.
Many computers can easily fit files of this size entirely in-
core. However, we expect that the size of this database will
continue to grow exponentially as the rate of high-
throughput sequencing technology continues to increase
and the number of organisms being sequenced continues to
increase.

Even though, today, most databases can fit in-core in a
single enclosure, ScalaBLAST shares only one copy of any
target database between all process groups. Benchmark
results shown in this paper therefore contain representative
communication overhead similar to what one would expect
in the future when sharing a single large database image is
required.

In response to this explosion in database size, the current
implementation of BLAST contains a formatting routine
that converts ASCII text FASTA files containing sequence
information to a collection of binary files to ease the space
limitations associated with large sequence databases.
Database formatting automatically splits databases that
exceed two billion letters into separate “volumes,” ensuring
that 4-byte integers can be used to index any database
volume. One consequence of this is that large databases
cannot be completely stored in-core, even when a large
shared memory interface is present. ScalaBLAST was
designed to get around this problem by enabling a cluster
having sufficient aggregate memory to keep an entire large
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database in-core by sharing a single copy of the database
between process groups.

3.2 Scalability Is a Consequence of Independent
Queries

Query scheduling methods capitalize on the independent
nature of separate queries, but are all limited by the fact the
target databases tend to be very large and are growing more
quickly than single processor memory. As the anticipated
growth rate of publicly available databases continues to be
essentially exponential, a new approach to parallelism is
required. On the other hand, achieving parallelism by
distributing a single query versus scheduling queries has
advantages and disadvantages [31]. Algorithms that dis-
tribute the task of scoring a single query generally suffer
because of the communication required or complex data
dependency to coalesce the partial results into a single
result for a given query. But, distributing a single scoring
task generally reduces the per-processor memory require-
ment. ScalaBLAST was implemented with a query schedul-
ing algorithm to achieve scalability indicative of sequence
scheduling schemes. Combined with database sharing,
ScalaBLAST scales well and is able to accommodate very
large databases, a combination which has proven elusive in
high-performance sequence analysis.

4 TECHNICAL APPROACH

ScalaBLAST uses a target database that is physically
distributed but can be still accessed in a “shared memory”
style at runtime. This eliminates the need to preprocess each
possible target database into fragments, a step that is
required when using MPI-BLAST and which must be
incrementally repeated each time the database is updated.
Database sharing (rather than prepartitioning) ensures that,
even though each process may only handle half of a single
query, they all see the same entire database. So, the
calculation of E-values (a measure of the likelihood of
sequences appearing homologous by chance) is straightfor-
ward using ScalaBLAST. By comparison, calculation of the
E-value was problematic with early versions of MPI-BLAST
[21] and still requires special processing. Database sharing
also makes it possible to fit extremely large databases into
local memory even with moderate per-processor memory.
The Global Array interface allows this “shared memory”
approach to be used on distributed memory or true shared
memory architectures, increasing portability and providing
the functionality to hide memory latency by overlapping
communication with computations.

We achieve the first layer of parallelism by dividing
single queries over a few processors (forming an MPI
process group) and allowing that process group to merge
the partial results and print into its own output file. This
ensures that using more processors on a query list does not
result in the need for cumbersome merging over many
small partial results. Further parallelism is achieved by
dividing the query list itself over the available process
groups. This layered parallelism allowed ScalaBLAST to
achieve near-linear scaling in proportion to the number of
queries being requested. For 1,000 queries, we observed
excellent scaling to 128 processors. For whole genome or

whole proteome comparisons (involving 10,000 queries or
more), we have observed linear scaling to thousands of
processors. We will now elaborate on key elements of the
overall parallelization strategy.

4.1 Distributing the Database Using Global Arrays

Rather than force the user to preformat databases depend-
ing on the target database and the number of processors to
be used in the query (a required step with MPI-BLAST), we
developed a method to read the target database files at
runtime and pack their contents into several shared arrays.
There are two key arrays used for this. The first array
contains the actual sequence information. On our test
platforms (little endian), this must be byte-swapped from
the database files at runtime. Normally, this byte-swapping
is done at the time the information is read from the files and
repeated again each time an entry is read. We byte-swap the
entire sequence database as it is read from the file,
eliminating the need for repeated byte-swapping of the
same sequences. Sequences are packed sequentially into a
sequence array that is visible to all the process groups. A
second “index” array is used to store information about the
starting location of each sequence. For example, the first
and second entries of this index array contain the starting
location of the first and second sequences in the sequence
array, which can be used to find the starting and ending
point of the first sequence in the sequence array. To
complete a sequence lookup, we have modified the
standard BLAST database reading function so that, rather
than opening the sequence file, the sequence is simply
looked up in the proper array object.

4.2 Breaking Up a Query List over Process Groups
To exploit available parallelism effectively, ScalaBLAST
relies on multilevel parallelism based on processor groups.
Each process group is composed of a few processors (two
on MPP2, which is based on two-way SMP nodes). The idea
is to have processors forming a group to be a part of the
same SMP node, which enables very fast interprocessor
communication due to the internal use of shared memory
for allocating global arrays in GA [32], [33].

An initial query list is divided between process groups
using a static load balancing scheme. Each process group
receives a new file containing, as closely as possible, the
same amount of “work” units. Total work is defined as the
number of characters in the combined sequences plus an
overhead of 225 characters per each new sequence. For
example, if the initial query list contains 100 sequences to be
divided between four processors (two process groups), one
may expect that each group should get around 50 sequences.
However, if the first 50 sequences all contain only
100 characters each and the last 50 sequences contain
1,000 characters each, this would result in a huge load
balance problem. So, using this simple algorithm, the total
work to be done is 100*50 + 1,000*50 + 225*100 units or
77,500 units. Divided between the two process groups, both
groups would get as close to 38,750 units as possible. The
first half of the list contains only 100*50 + 225*50 units or
16,250 units. So, the first process group will get all the first
50 sequences, plus some of the remaining sequences. If the
first process group receives an additional 18 of the longer
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Fig. 3. Schematic of load balancing used by ScalaBLAST. Load
balancing is achieved by assigning each process group roughly the
same number of query characters.

sequences, the total work will be 16,250 + 18*225 + 18*1,000
= 38,300 units, which is as close as possible to the target of
38,750. So, the first process group will get the first
68 sequences in the query list and the remaining 32 se-
quences will be processed by the second process group. The
sequence overhead of 225 was derived empirically from
trial-and-error using many different query sizes and
compositions. Once the load balance has been calculated,
each process group creates a new input file based on its
assignments. Fig. 3 illustrates the process group assign-
ments for this sample case.

4.3 Process Group Tasks: The Query Phase

Once the process groups have created their local query lists,
sequence alignment calculation of those lists against the
target database proceeds. When the database is initially
read into the sequence array, the “midpoint” residue is
located. That is, the character that is in the exact center of
the sequence list and its corresponding sequence are
recorded.

In each process group, process 0 performs an alignment
calculation of the current query against all the sequences
from the first to the center sequence and process 1 performs
an alignment calculation of the same query against all the
remaining sequences in the sequence array. Each process
posts the partial results thus obtained to a “results” array
object that is only visible to the process group. Additional
bookkeeping information is also kept to be used during the
result reporting phase. The two processes can perform their
partial alignments independently of each other, so no
synchronization is required until it is time to dump a set
of results to output files. Currently, this query phase is
iterated over the first 20 queries in the local list and all the
partial results are stored before dumping output occurs.

4.4 Process Group Tasks: Reporting Results

After the query phase is complete, the processes indepen-
dently move into the reporting phase. Because partial
results are posted, it is irrelevant which process actually
does the reporting for a query. It is only necessary to ensure
that, for a given query, all processes in the group have
completed their alignment calculation and posted the
partial results. Because the query phase is iterated over
several queries it is rare that a process needs to block until
these results are posted. Process 0 of the group prints
results from odd numbered queries, and process 1 of the
group prints results from even numbered queries. To print,
process 1 retrieves the locations of the two partial results for

the first query in the “results” array. These partial results
are merged into a single results list and dispatched to the
normal BLAST reporting routine. Process 1 then retrieves
the locations of the two partial results for the third query in
the “results” array, then merges and dispatches these
results for reporting. Process 1 proceeds until all the odd
numbered queries have been dumped to the output file.
Process 0 follows a similar course for dumping the even
numbered queries. Both processes write to output files
unique from each other and unique from all the other
output files of other process groups. In this way, I/0 is
achieved in the most highly parallel way possible and the
need for synchrony between processors with respect to
printing and alignment calculations is removed. If any
queries remain after reporting, the algorithm returns to the
query phase.

ScalaBLAST distributes the reporting tasks among the
process groups so that each processor writes its results to a
unique file. This is important in terms of performance
because it allows I/O to occur in parallel, rather than force
processors to wait for a master process to complete writing
tasks. Each process group is responsible for printing its own
results and can proceed with the next tasks independently
of other process groups. Additionally, a query containing
10,000 sequences is expected to produce almost 5 GB of
output. A single text file of this size could be created after
the run by concatenating the results of the original output.
But, dealing with files of this size can sometimes be
cumbersome or even impossible. For many users, it may
in fact be easier to deal with a number of smaller files than a
single monolithic output file.

4.5 Prefetching Sequence Blocks to Hide Latency
on Distributed Memory Systems

Comparing to the specialized vector supercomputers that
provide very high interconnect bandwidth [34], most
commodity clusters offer less bandwidth relative to the
CPU performance (bytes/op ratio). However, modern
interconnect such as the Quadrics Elan-4 deploy intelligent
network interfaces (NICs) that mitigate some of the
bandwidth shortages by offloading most of the commu-
nication costs to the NIC and supporting nonblocking
communication. This in turn allows some applications to
hide communication costs by overlapping communication
with computations.

In our database sharing approach, illustrated in Fig. 4,
the target sequence database is evenly distributed over the
memory of processors being used at runtime. But, sharing
the database in distributed memory architectures presents a
challenge in terms of managing memory access. Each
sequence in the database is serially scored against the
query sequence for the first pass over the database. The
brute force implementation of database sharing would
require blocking memory fetch operations to be performed
on each sequence in the database for each process group per
query. This creates a memory-access bottleneck that is
exacerbated in distributed memory architectures. A further
difficulty is that, when this approach is scaled to higher
processor counts, an increasing amount of the target
database is in nonlocal memory segments, increasing the
fraction of nonlocal blocking get operations. ScalaBLAST



OEHMEN AND NIEPLOCHA: SCALABLAST: A SCALABLE IMPLEMENTATION OF BLAST FOR HIGH-PERFORMANCE DATA-INTENSIVE... 745

Globally shared sequence data

L]

Sequence index
Partial results
Bookkeeping data

Process group 1 Process group 2

Fig. 4. Scope and type of data stored in global arrays defined on process
groups. Each group has its own local copy of the sequence index array,
partial results arrays, and all the bookkeeping arrays. The process
groups share a single copy of the sequence data array.

Sequence index
Partial results
Bookkeeping data

Sequence index
Partial results
Bookkeeping data

uses a nonblocking prefetch algorithm that makes it
possible for remote data access to large blocks to occur
while other meaningful calculations are being done locally.
The implementation relies on nonblocking get operations
available through the Global Array toolkit to hide memory
latency on distributed memory systems by using sequence
block prefetching [35]. When a processor attempts to
retrieve a sequence from the database, first the local
prefetch buffer is checked for the presence of the correct
sequence. If the sequence is not entirely contained in the
current local buffer, a wait call is issued to ensure that the
previous nonblocking get has completed, and the current
local buffer is updated to point to the new memory
segment. An additional nonblocking get is initiated for the
segment that will be required when the last sequence in the
current buffer is reached. In this way, one nonblocking get is
always outstanding (and, therefore, in progress) until the
end of the database is reached to make sure that sequence
segments are available in local memory when they are
needed.

5 EXPERIMENTAL RESULTS

ScalaBLAST was benchmarked on two systems represent-
ing shared as well as distributed memory architectures
using the nonredundant protein database (nr) containing
1,541,362 sequences (503,870,249 characters) or was normal-
ized to this size if the database was larger at the time of the
benchmark. The nr database is maintained by NCBI to
contain a nonredundant record of all proteins registered to
date. Hence, one can query against this database to find
sequence homology and alignments against the genome of
any species which has been sequenced so far. Queries were
performed using the FASTA files containing 1,000 se-
quences, with a total input size of 709 kB.

MPP2 is a distributed memory system composed of
1,960 Intel Itanium II processors running the Linux OS
connected with a high-performance Quadrics Elan-4 inter-
connect. Database, input, and output files were located on a
globally-mounted high-performance Lustre filesystem, opti-
mized in the MPP2 environment for parallel I/O. MPP2
contains so-called “fat” nodes with 8 GB per node and “thin”
nodes with 6 GB per node. Each SMP node deploys two CPUs
running at 1.5GHz clock speed. The SGI Altix at PNNL is a
shared memory architecture composed of 128 1.5GHz
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Fig. 5. Wall clock times of ScalaBLAST on distributed memory
architecture (MPP2) and SGI Altix (ALTIX) compared to HTC-BLAST
on the SGI Altix and MPI-BLAST 1.3.0 on MPP2 for 1,000 queries
(709kB of input). For 32 worker processors, MPI-BLAST had a wall-
clock time of 17,398 seconds.

Itanium II processors running the Linux 2.4.20. The total
memory of the system is 256 GB. Database, input, and output
files were located in the local filesystem of the Altix.

The experimental evaluation of ScalaBLAST was per-
formed on the Linux cluster and the SGI Altix. On the
cluster, we also installed MPI-BLAST 1.2.1 and the latest
MPI-BLAST 1.3.0 for comparison. The performance evalua-
tion of MPI-BLAST on the very similar configuration of the
SGI Altix was reported elsewhere [32]. In addition, we
tested the SGI HTC-BLAST on the Altix. The reported wall
clock time corresponds to all the elements of the application,
including the initial setup activities such as byte swapping
for the input database that is executed sequentially.

Similarly to results reported by others [32] on both
platforms, we observed inverted scaling for MPI-BLAST
(i.e., longer runtimes when using more processors) when
running on more than eight processors, a problem that we
observed as well and which is illustrated in Fig. 1. The best
runtime for MPI-BLAST against 1,000 queries on MPP2 was
5,397 seconds and was achieved using four worker processors
(five processors, total) after dividing the nr database into four
parts using MPI formatdb (included with the MPI-BLAST
distribution). Using the sequential BLAST application run-
ning on one processor, this query required 33,322 seconds or
9.3 hours.

Based on results reported in Fig. 5, it is clear that
ScalaBLAST scales well to 128 processors. Its runtimes are
significantly faster than the best time we observed for MPI-
BLAST. ScalaBLAST running on the ALTIX and MPP2 also
had slightly faster runtimes than HTC-BLAST for each
processor count.

ScalaBLAST has significant advantages over HTC-
BLAST in that ScalaBLAST is portable to other architectures
where a much higher processor count is possible, enabling
scaling to process counts far beyond that available through
conventional shared memory architectures. Perhaps more
importantly, ScalaBLAST does not rely on hardware shared
memory, but rather takes advantage of software imple-
mentation of shared memory available through Global
Arrays.

Scaling illustrated in Fig. 5 is achieved through efficient
sharing of the target database among process groups and by
eliminating the output bottleneck by using a separate
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TABLE 1
Fraction of ScalaBLAST Runtime Spent in Setup, Query, and Writing Tasks
Setup (%) Query (%) Writing (%)

100 queries 2.6+0.7 94.9+0.6 2.59+0.6

8 processors

1000 xmerics 0.056+0.0003 98.5+0.8 1.4+0.8

8 processors

H000 qustice 0.223+0.005 98.3+0.8 1.5+0.8

32 processors

output file for each processor. Table 1 shows the fraction of
time spent in setup, the query phase, and the writing phase
for three representative runs. Note that increasing either the
job size or the number of processors increases the fraction of
the runtime ScalaBLAST dedicated to performing the actual
query. Hence, the writing bottleneck associated with
collating and writing results from a single I/O node is
bypassed. Even for the small 100 query jobs, for which the
total setup time is a greater fraction of the total run time,
greater than 90 percent of ScalaBLAST execution time is
spent in the query phase.

Fig. 6 illustrates a comparison of scaling of ScalaBLAST
with and without prefetching for the same database size
and queries on up to 128 processors. Prefetching is
deployed to hide communication latency on clusters. The
corresponding difference in runtime demonstrates the
performance benefit that is gained by judiciously using
nonblocking GA one-sided interfaces that were optimized
to enable overlapping communication with computations
[35]. The cost of sending sequence information using
blocking calls is significant in a distributed memory
environment, so there is a substantial benefit from using
prefetching on our Linux cluster. The runtimes of Scala-
BLAST using prefetching on MPP2 were nearly identical to
those on the ALTIX, as illustrated in Fig. 5.

To demonstrate scaling of ScalaBLAST on a much larger
test set, we used a collection of protein domain family
alignments used to characterize family membership (PFAM)
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Fig. 6. Prefetching sequence blocks using nonblocking get operation
hides memory access latency on distributed memory architecture
(MPP2). Without prefetching, runtimes are approximately 1.5 times
slower on MPP2 than when prefetching is used. Scaling factor is
calculated with respect to total runtime of serial standalone BLAST of
33,322 seconds.

[36]. This collection of approximately 448,000 protein
sequences was queried against the nr database on MPP2
using a varying number of processors. Each run was allowed
to proceed for 195 minutes, processing as much of the list as
possible. For the 1,500 processor run, 445,989 of the sequences
were processed in 195 minutes. The work factor was
calculated for each run to assess the throughput of sequence
processing per processor. For each run, the work factor is
equal to the number of queries completed per processor per
minute per 1 million sequences in the database. The results of
this benchmark are illustrated in Fig. 7. Work factor is
normalized to a database size of 1 million sequences for future
comparison between nr databases of differing size. Using
nr databases taken at different times, we found that query
time is very nearly linear with respect to number of sequences
in the database (results not shown).

Fig. 7 illustrates that, when using more than one node
(two processors on MPP2), the amount of work done by
ScalaBLAST per processor does not decrease when using
more processors. This is analogous to ideal scaling as
indicated in Fig. 7 by the solid line, even when running on
1,500 processors.

6 APPLICATION EXPERIENCE USING SCALABLAST

ScalaBLAST has already demonstrated its applicability and
effectiveness as a valuable tool for bioinformatics research.
For example, it was used to perform whole proteome searches
against the updated nr database (2,440,549 sequences). This
set of queries contained 48,690 sequences (17.6 MB of input).
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Fig. 7. Work factor indicates the throughput of queries handled by each
processor. The work factor is calculated as the number of queries
performed per processor per minute per million sequences in the target
database. The solid line shows ideal work factor that would be achieved
for a perfectly scaling application. Note that, for more than two
processors (i.e., more than one node), the work factor is essentially
constant with respect to number of processors.
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Using ScalaBLAST on the SGI Altix, this run completed in
9.4 hours using 64 processors. The results from this run will be
used to perform genome context data mining. This data-
intensive scientific field requires the output of entire
proteome searches to be used as input for using contextual
information (the locality of a sequence with respect to
neighbor sequences) to infer evolutionary relationships
between sequences. Generating the enormous data required
to perform genome context analysis has traditionally been a
prohibitive bottleneck to the overall workflow. In this case,
ScalaBLAST is being used to dramatically speed up the rate of
generating input for this analysis by exploiting massively
parallel systems with large globally addressable memory.

7 DiISCUSSION

Experimental results demonstrate that ScalaBLAST per-
forms as well as the vendor optimized proprietary HTC-
BLAST shared-memory implementation and significantly
better than MPI-BLAST for real-world queries against the
nonredundant protein database. The advantages of Scala-
BLAST are that it scales well and is portable to both shared
memory and distributed memory architectures. Scala-
BLAST gives true high-performance on the high-end
systems we tested, in terms of time-to-solution and scaling,
representing a significant improvement in availability over
HTC-BLAST with virtually equivalent run times.

Portability and the capacity to operate on extremely large
databases are conferred by use of Global Arrays, which
hides architectural details by allowing for logical “shared
memory access” on any platform. Global Arrays also are
instrumental in distributing the database evenly over the
processor-attached memory segments in the shared archi-
tecture to prevent memory-controller bottlenecks. In fact,
we observed virtually no difference between the runtime of
ScalaBLAST on the ALTIX and on MPP2 when sequence
block prefetching was used to hide memory access latency
on MPP2. Prefetching was performed based on nonblocking
get operations available with the Global Array toolkit. This
approach makes it possible for sequence analysis tools to
operate efficiently in both shared memory and distributed
memory architectures. It enables queries against extremely
large target databases for large data-intensive sequence
analysis applications, a combination that is likely to become
more important as the growth of publicly available
databases continues to outpace increases in per-processor
memory availability and as the push toward data-intensive
applications matures.

Though the current size of these public databases is
small enough to fit in-core on many architectures (including
our SGI Altix and MPP2), we demonstrate proof-of-concept
that database sharing can be done efficiently using a
software shared memory interface—Global Arrays. For all
benchmark results reported, a single copy of the target
database was shared by all process groups, thereby incurring
a communication overhead proportional to what we would
expect from larger databases that do not fit in-core on a
single enclosure. Even with this penalty (i.e., communica-
tion penalty for distributed architecture and corresponding
memory controller penalty on shared memory), Scala-
BLAST scales well in both shared memory and distributed

memory architectures and effectively hides the latency
associated with accessing sequence data from the shared
databases.

We see two important trends that are likely to continue
in the foreseeable future converging in the field of
bioinformatics: 1) exponential growth of the size of publicly
available sequence databases and 2) a push for larger scale
informatics driven science to be performed using sequence
analysis on these databases. ScalaBLAST was developed as
a solution to these challenges that can be broadly applied to
sequence analysis in general. The methodology employed
by ScalaBLAST can be used, in principle, for any sequence
analysis tasks that can be performed by searching sequen-
tially through a very large database. ScalaBLAST lays the
foundation of managing extremely large databases—even
ones that are too big to fit in memory for any single
machine. Using ScalaBLAST as a test application, this
database-sharing scheme has been shown to scale well for
real-world problems. By hiding memory latency in Scala-
BLAST, we were able to show that our database sharing
strategy is practical for use on both shared memory and
distributed memory architectures to achieve excellent
scalability from whatever resources are available to the
researcher. We chose BLAST as the test application to
demonstrate proof-of-concept that global array-enabled
database sharing works well on both distributed memory
and shared memory architectures. Because sequence align-
ment tools in general operate on large sequence databases,
the concepts we developed in ScalaBLAST are widely
applicable to many other bioinformatics tools.

An externally accessible ScalaBLAST server will be set
up allowing users to submit large queries to a test cluster.
This will provide a vehicle for community access to
ScalaBLAST for testing and to identify areas for further
development.

8 CONCLUSIONS

With the development of ScalaBLAST, we have demon-
strated that the combination of software-enabled database
sharing and query scheduling without the use of specia-
lized hardware solves scalability problems and memory
limitations: the two main shortcomings of existing high-
performance sequence alignment applications. ScalaBLAST
scales linearly to thousands of processors on distributed
memory architecture and to machine capacity on shared
memory architectures for whole genome-sized sequence
alignment tasks, which are driving the growing area of
informatics-driven science. ScalaBLAST also can accommo-
date very large databases in-core, an essential feature for
achieving high machine utilization as sequences database
sizes continue to grow more quickly than per-processor
core memory. As an openly accessible tool, ScalaBLAST will
vastly improve time-to-solution for large sequence align-
ment searches, enabling “tree of life” analysis to be
performed rapidly on newly sequenced organisms and also
on organisms, like human, for which whole genome
sequence alignment is currently intractable.
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