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Tomographic Reconstruction Using an Adaptive
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Abstract—Medical images in nuclear medicine are commonly
represented in three dimensions as a stack of two-dimensional
images that are reconstructed from tomographic projections.
Although natural and straightforward, this may not be an optimal
visual representation for performing various diagnostic tasks. A
method for three-dimensional (3-D) tomographic reconstruction is
developed using a point cloud image representation. A point cloud
is a set of points (nodes) in space, where each node of the point
cloud is characterized by its position and intensity. The density of
the nodes determines the local resolution allowing for the mod-
eling of different parts of the image with different resolution. The
reconstructed volume, which in general could be of any resolution,
size, shape, and topology, is represented by a set of nonoverlapping
tetrahedra defined by the nodes. The intensity at any point within
the volume is defined by linearly interpolating inside a tetrahedron
from the values at the four nodes that define the tetrahedron. This
approach creates a continuous piecewise linear intensity over the
reconstruction domain. The reconstruction provides a distinct
multiresolution representation, which is designed to accurately
and efficiently represent the 3-D image. The method is applicable
to the acquisition of any tomographic geometry, such as parallel-,
fan-, and cone-beam; and the reconstruction procedure can also
model the physics of the image detection process. An efficient
method for evaluating the system projection matrix is presented.
The system matrix is used in an iterative algorithm to reconstruct
both the intensity and location of the distribution of points in
the point cloud. Examples of the reconstruction of projection
data generated by computer simulations and projection data
experimentally acquired using a Jaszczak cardiac torso phantom
are presented. This work creates a framework for voxel-less
multiresolution representation of images in nuclear medicine.

Index Terms—Iterative reconstruction, positron emission to-
mography (PET), single photon emission computed tomography
(SPECT), tomography.

I. INTRODUCTION

ODAY, diagnostic radiology depends heavily upon digital
Trepresentation of images in three dimensions to form di-
agnostic decisions. This has been due to the advancement in
computing hardware and digital storage capability that has been
developed in parallel with new and sophisticated data acquisi-
tion hardware that provides a tremendous amount of digital data
for displaying medical images in various types of image format.
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Recently, significant effort has been spent in developing even
more accurate and efficient ways to display, reconstruct, and
analyze medical images. This paper presents a new voxel-less
method for representation of reconstructed images and outlines
approaches that can be used for three-dimensional (3-D) tomo-
graphic reconstruction of nuclear medicine images using point
clouds and tetrahedral grids. The motivation for this work is the
hypothesis that the new point cloud image representation pre-
sented in this paper is superior in performing diagnostic tasks
to standard voxel-based image representation. Furthermore, the
tetrahedral geometry proposed here may be able to take advan-
tage of the graphics hardware used for visualization of the re-
constructed images.

A standard way of representing 3-D images formed from
the reconstruction of tomographic projections is to divide the
reconstruction volume into a regular array of small voxels
and assume that the reconstructed medium is constant inside
each voxel. Such methods can be described as using constant
basis functions on a regular grid [1]. This approach can be
improved by introducing nonconstant basis functions such as
blobs [2], [3]. Blobs are basis functions that are defined on a
bounded region that extends over several voxels. Linear inte-
grals through the blobs can be computed analytically, thereby
increasing performance of the image reconstruction process.
It has been shown that this approach increases accuracy com-
pared to the standard constant voxel-based approach to image
representation [4]. The irregular image representation in two
dimensions was studied by Brankov et al. [5] where triangular
pixels and a finite element formulation to efficiently reconstruct
a series of two-dimensional (2-D) transverse slices in emission
tomography were used. A maximum likelihood-expectation
maximization (ML-EM) algorithm [6] was implemented to re-
construct image values at the nodes of a fixed finite element-like
2-D triangular mesh. The authors used computer simulations
to demonstrate that a multiresolution approach improves the
accuracy of the tomographic image reconstruction in 2-D over
that of regular grid based methods.

If a regular grid is used, this means that in order to repre-
sent small lesions with small voxels, there will be large portions
of the grid that will just be “empty” space. For tomographic
applications, this increases the number of unknowns in the in-
verse problem. Our approach is to use a more efficient image
description based on nonuniform sampling where image sam-
ples are placed most densely in image regions having fine detail
and less dense in regions with coarse detail. These grid points
can be thought of as forming a cloud of points called a “point
cloud.” In our work, we will use the term “point cloud” to refer
to the collection of points that define the image. There is a corre-
spondence between the description used in this work and mesh
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modeling. Mesh modeling is the formation of a mesh of points
from an already prescribed digital image. Mesh modeling has
been an important part of continuum mechanics but recently
has been applied in computer graphics, specifically to medical
imaging analysis [7]. These approaches in engineering and com-
puter graphics have recently been put on a sounder mathematical
basis using wavelet theory [8]-[12].

For a prescribed point cloud, it is necessary to have a
particular set of basis functions in order to define the image
throughout the 3-D space. In the work presented in this paper,
an image is represented as a point cloud (a set of irregularly
placed points) in 3-D space with the volume segmented by a
set of tetrahedrons defined by these points. Using tetrahedral
image representation and linear interpolation between the
nodes of each tetrahedron, a continuous representation of the
intensity is achieved that cannot be achieved by regular voxels
with constant intensity. The Delaunay algorithm [13] is used
to tetrahedralize the volume from a specified point cloud. It is
important to note that the linear interpolation inside each tetra-
hedron implies that the intensity along any line going through
the tetrahedron will change linearly. This also implies that
intensity along any line through the volume will be continuous
and piecewise linear.

One of the major goals of this paper is to formulate the
tomographic reconstruction problem using a representation of
the reconstruction volume with a set of points defined as a point
cloud. Although the tetrahedral representation of the volume is
used in this work, there are other choices that can be used for
the volume interpolations. For example, irregular voxels created
using Vornoi diagrams [14], [15] in 3-D defined by point clouds
or spline volume interpolation [16] with a set of control points
defined by point clouds can be used. In this work the tetrahedral
approach was used because it is relatively easy compared
to other approaches to efficiently formulate the tomographic
inverse problem using linear interpolation. Using tetrahedral
image representation with linear interpolation allows one to
model the reconstructed intensity as a continuous function over
the reconstruction domain. Each point (node) of the point cloud
has a specific location with a particular intensity. The volume
of the reconstruction is divided into nonoverlapping tetrahedral
cells with each tetrahedron defined by four nodes from the
point cloud. The intensity is linearly interpolated throughout
each tetrahedral volume from values at the nodes.

This paper is organized as follows. In Section II, details of
the definition of a point cloud and details of the volume inter-
polation using point clouds are presented. Section III describes
the algorithm for calculating the system matrix that can be
used with an iterative reconstruction algorithm for parallel-,
fan-, and cone-beam imaging geometries. Section IV presents
an example of the reconstruction algorithm—an adaptive mul-
tiresolution iterative reconstruction algorithm. This algorithm
is applied to the reconstruction of the projection data generated
by computer simulations and projection data experimentally
acquired using the Jaszczak cardiac torso phantom. An example
of a possible strategy for creating a point cloud is given. In
Section V, we outline and discuss some important aspects of
the proposed methods. Finally, Section VI summarizes and
concludes this work.
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Fig. 1. Results of the Delaunay tetrahedralization algorithm. (A) Six nodes in
two dimensions to be triangulated. (B) Result of Delaunay algorithm. The tri-
angulation forms a convex hull. (C) Six nodes (point cloud) in three dimensions
to be tetrahedralized. (D) shows results of the Delaunay algorithm with hidden
edges not displayed and (E) shows hidden edges displayed. Tetrahedralization
of these six nodes created four tetrahedrons.

Fig. 2. Tllustration of projections of a tetrahedron in parallel and cone beam
geometries. In both cases, projections are defined by a set of projections of four
nodes that define the tetrahedron.

II. POINT CLOUDS AND TETRAHEDRAL REPRESENTATION
OF THE RECONSTRUCTION VOLUME

The reconstruction volume is defined by a set of points called
a point cloud. Each point ¢ of the point cloud (node) has location
x; and intensity ;. There is no restriction on the location of
the points or their intensity. The volume of the reconstruction
region (2 is divided into nonoverlapping tetrahedra with each
tetrahedron defined by four nodes from the point cloud.

The Delaunay algorithm [13] was developed to create tetra-
hedrons from a point cloud. The original Delaunay algorithm
creates a tetrahedralization that is a convex hull of the set of
points defined by the point cloud. Fig. 1(A) shows a point cloud
in two-dimensions and Fig. 1(B) shows the result of the trian-
gulation. The code developed by Si® [17], [18] was adapted to
perform the Delaunay tetrahedralization. The code [17] is opti-
mized for speed and computes a Delaunay tetrahedralization of
40 000 randomly distributed points in 4.8 s and 1 000 000 points
in 3 min using a 3.06-GHz Intel processor [18]. Fig. 1(C)—(E)
illustrates a simple 3-D example of the tetrahedralization of six
nodes that creates four tetrahedrons.

For tomography, the reconstructed intensity is specified by
linearly interpolating between the values of four nodes that de-
fine each tetrahedron. The important point to make here is that
the linear interpolation for points inside each tetrahedron im-
plies that the intensity along any line going through a tetrahe-
dron will change linearly. This also implies that the intensity
along any line going through the reconstruction volume is a
piecewise linear function. A 2-D function resulting from a 2-D
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Fig. 3. Projection of a tetrahedron onto a digitized 2-D projection plane is illustrated as a pyramid with quadrilateral base. Thickest point of this pyramid is S.
Obviously, the thickness at the projection of nodes 1, 2, 3, and 4 is 0. To simplify the calculation, the bases of the pyramids are divided into triangles, and the values
at the corners are interpolated. These triangles are divided further (a) into upper- and lower-parts. Upper part is superimposed in (b) onto rows of the projection
bins. Intersection of the upper-part of the triangle with each row creates a trapezoid [shaded area in (b)]. This trapezoid is shown in (c) enlarged three times. Each
trapezoid is divided into two triangles and both triangles are superimposed onto columns of projection bins shown in (d). Intersection of each column with the
triangles in general creates at pentagon shown in (e) that is divided into a maximum of four triangles. For one triangle illustrated in (f) the thicknesses at the corners
are vy, vz, and vz, and are calculated by interpolation using the thicknesses of the initial pyramid. Lower part of the triangle in (b) and the projection bins are
flipped vertically and processed identically as the upper-part of the triangle. (B) Slanted prism in (f) is shown enlarged with values of intensities interpolated from
Ii,...,14. At the base ¢11, 721 , and 37 are the values at the corners, and ¢12, t22, and ¢35 are the values at the vertical corners. For clarity symbols ¢11 and ¢12

were not shown in (B).

cut though the reconstruction volume will also result in a con-
tinuous 2-D function.

III. FORMATION OF THE SYSTEM MATRIX

In order to formulate an inverse problem using a set of points
(point cloud) defined in Section II, we start with the imaging
equation

M
P; = Zaj,ili (D
i=1

where P; is the value of the tomographic projection acquired at
bin j. Itis assumed that the projection bin has rectangular shape.
I; is the value of the reconstructed intensity at the ith point of
the point cloud with M being the total number of points. The
matrix «, which relates the projection vector P to the image
vector I, is called the system matrix. In order to use any iterative
algorithm for the tomographic reconstruction, the system matrix
« has to be specified. The matrix o describes the physics and the
geometry of the tomographic data acquisition. Once the system
matrix is known, an algorithm such as the ML-EM algorithm
[6], [19] can be used for the reconstruction.

In order to estimate the system matrix « for a point cloud
and tetrahedral grid, an algorithm was developed for projecting
a tetrahedron onto the detector plane. The algorithm consists
of two steps: 1) projection of the nodes and 2) calculation of
the weights for the projected tetrahedrons. In the first step, the
four nodes that define each tetrahedron are projected as shown
in Fig. 2 onto the projection plane according to the geometry of
the tomographic apparatus. In the second step, the values of the
projection matrix elements are calculated using the positions of
the four projected nodes with respect to the projection bin posi-
tions. The two-step method is aimed at making the second step
independent of the first, thus, independent of projection geom-
etry, so it can be used for any imaging geometry (parallel-, fan-,
and cone-beam). However, in order to be able to separate these

two steps for all projection geometries, the assumption has to
be made that the magnification angles (Fig. 2) for cone- and
fan-beams are small, which is usually true because tetrahedron
sizes are small compared to the distances from the detector to the
focal points. This assumption is needed because for converging
geometries the interpolation between the projected nodes is no
longer linear for large magnification angles.

The first step of the algorithm—the projection of the
nodes—is straightforward (Fig. 2), thus, we concentrate on
describing the method that is used for calculating the weights
for the projection of a tetrahedron onto the pixelized projection
plane. Obviously, the projections of the tetrahedrons are 2-D,
but for the sake of clarity, let us visualize these projections
as pyramids. The third dimension is the thickness through
the tetrahedron. The height A of the pyramids is h = 3V/B,
where V is the tetrahedron or pyramid volume and B is the
area of the pyramid base. The thickest point of the pyramid
is at S (Fig. 3). In general, a contribution to the projection
from a single tetrahedron will be an integral of the volume of
the pyramid (thickness corresponds to intensity) over the area
intersected by a projection bin with a projected pyramid. In
order to overcome the high computational load, we developed
an algorithm that analytically calculates the exact integrals of
intensities over volumes of pyramids corresponding to projec-
tions of tetrahedrons onto the projection plane.

The schematic of the algorithm is presented in Fig. 3. The
bases of the pyramids are divided into triangles. Each of
these triangles is further divided in upper- and lower-parts
[Fig. 3(A),(a)]. The upper part is superimposed onto rows of
the projection bins [Fig. 3(A),(b)]. One intersection, which
forms a trapezoid, is separated and shown in [Fig. 3(A),(c)].
This is subdivided further into triangles. The lower triangle is
shown superimposed onto the columns of the projection bins
[Fig. 3(A),(d)]. One of the intersections forms a pentagon,
which is divided into four triangles [Fig. 3(A),(e)]. One of
these triangles is shown in Fig. 3(A),(f). The thicknesses at the
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corners are denoted as vy, vo, and v3. These are determined
by interpolating the thicknesses of the initial pyramid. The
final triangle illustrated in Fig. 3(A),(f) is the result of sub-
dividing triangles, trapezoids, and pyramids up the line. This
triangle is illustrated in Fig. 3(B) as a slanted prism with values
cij obtained by interpolating the intensities Iy,..., I of the
original pyramid. The calculation needs to be performed for
all the subdivisions. For example, the calculation needs to be
performed for all the triangles in Fig. 3(A),(e), likewise for all
of the segments in Fig. 3(A),(d), and so forth up the line. The
subdivision in triangular segments forms an efficient method
for calculating the projection weights for each tetrahedron.

For the slanted prism in Fig. 3(B), we derived an analytical
formula for the integral A of the linearly changing intensity in-
side the slanted prism

A= ﬁ [2(61’1]1 + Covo + 63’113) + C1ve + C1U3

+Cav1 + Covs + C3v1 + Cava]  (2)

where the thickness of the prism at the corners is v1, vo, and
vs, and A is the area of the triangle base. The values ¢, ¢z, and
c3 are averages calculated from values of the intensities at the
corners. The values ci11, c21, €31, €12, €22, and cso [Fig. 3(B)]
are the intensities obtained by linearly interpolating the values
at the tetrahedron nodes Iy, .. ., Iy, where ¢; = (¢11 + ¢12)/2,
etc. In general, since ¢;; will be some linear combination of
I,,, we see from (2) that the integral will also be some linear
combination of I,,’s. Calculating all the integrals (A’s) for each
prism of the decomposed pyramid (each pyramid corresponds
to a projection of one tetrahedron), the exact projection of a
tetrahedron can be obtained. With this approach, we are able to
exactly project very small, as well as, very large tetrahedrons.
For example, tetrahedrons smaller than the size of a projection
bin can also be projected exactly. This feature is very important
in our approach since, in general, we do not restrict the size of
tetrahedrons that constitute the reconstruction area.

Fig. 4 presents two projections of the same tetrahedron but
made from different angles. There are no aliasing artifacts due to
the magnification of the edge [Fig. 4(C)]. The profile [Fig. 4(D)]
is a quadratic piecewise function due to the linear contribution
from the linearly changing intensity and the linearly changing
thickness of the tetrahedron. The quadratic behavior of this pro-
file can also be deduced from (2). Since v and ¢ are linear, A
must be a quadratic function.

The system matrix is calculated as follows. A single node j
is set to the value of 1 and the others to 0. To obtain the jth
column of the system matrix, all tetrahedrons are projected for
each angle. The values in projection bins after the projection
are equal to elements of the jth column of the system matrix.
Obviously, to speed up the calculation, only tetrahedrons that
contain node j (nonzero node) need to be projected since all
others have intensities equal to zero.

IV. RECONSTRUCTION EXAMPLES

Two examples are presented of the reconstruction of a point
cloud segmented into nonoverlapping tetrahedra. One is the
reconstruction of computer simulated projections and the other
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Fig. 4. Images (A) and (B) present projections of the same tetrahedron from
two different angles onto a 256 x 256 pixel projection plane using the technique
in Fig. 3. Intensity for only one node (marked by arrow) is nonzero and the
intensities of the other three nodes are zero. Image (C) is a magnification of
the rectangular region marked on image (B) showing the pixelization. Plot (D)
shows a profile through the projection (B). Location of the profile is marked by
the line in (B).

is the reconstruction of projections acquired from a SPECT
phantom study. The volume of the reconstruction is divided
into nonoverlapping tetrahedra with each tetrahedron defined
by four nodes from the point cloud. The values of the intensities
were reconstructed using the ML-EM algorithm [6], [19] with
a system matrix calculated using the method described in
Section III. No regularization (except postsmoothing) was used
because although well developed for the standard voxel ap-
proach the regularization methods have not yet been developed
and optimized for point cloud image representation. In order to
be fair in the comparison we decided to use the straightforward
ML-EM algorithm. The reconstruction involved determining
both the intensity of the nodes as well as the location of ad-
ditional nodes. The algorithm that was used in this paper for
the addition of nodes is just an example and in no way do we
claim that it is optimal. Other methods of node placement are
presented in Section V.

If the minimum number of nodes required to construct the
point cloud is IV, the following algorithm was used:

Step 1) start with a coarse regular grid with n nodes where

n < N nodes (e.g., n = 1000);
Step 2) tetrahedralize to obtain the number of tetrahedrons
T (Section II);

Step 3) calculate the system matrix (Section III);

Step 4) reconstruct intensities at the nodes using the
ML-EM algorithm;
add n,T (0 < n, < 1) number of nodes to the
point cloud at the centers of the tetrahedrons with
the largest variations in the reconstructed intensities
and with volumes V' > Viin;
if (n = n + n,T) < N disregard previous tetrahe-
dralization and go to 2 else END.

All steps in the above algorithm were discussed in the pre-
vious sections except Step 5), where the nodes are added to the
point cloud. In the current implementation of the algorithm, we
added nodes at the centers of the tetrahedrons with the highest
variations in the intensities v between the four nodes that de-
fine each tetrahedron (please see Section V for some other cri-
teria for node placements that can be used). The v for a tetra-
hedron with I, ..., I, was calculated as v = Zle(li —1)?,
where I = Z?:l 1I; /4. In order to prevent over-sampling, nodes
were added to tetrahedrons only if the tetrahedron volumes were

Step 5)

Step 6)
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TABLE 1
COMPUTING TIMES FOR FIVE CYCLES OF THE ALGORITHM
Cycle 1 2 3 4 5
# tetrahedrons 4k 14k 47k 141k 445k
Delaunay <0.1 0.3 0.6 1.6 5.5
System Matrix 56 172 470 1469 4424
ML-EM per iteration 3.1 4.2 -

All values are in seconds.

Data for Intel Xeon 3.4GHz. Software compiled and optimized for speed with
Microsoft Visual Studio C++ compiler.

“A value could not be measured accurately due to insufficient memory
causing extensive swapping.

above some threshold Vi,;,,. The variable n, is an arbitrary pa-
rameter describing the number of nodes to be added at each it-
eration. In this paper, we used Vipin = 0.1a>, where a was the
size of the square projection bin, and n, = 0.25. Please note
that when using such an algorithm the initial shape of the re-
construction area is unchanged because a point can be added
only inside existing tetrahedrons.

In terms of computer complexity, the most computationally
expensive steps are steps 2, 3, and 4. The times needed for cal-
culation of these steps are listed in the Table L.

A. Computer Simulations

A computer simulation was performed to evaluate the pro-
posed methods. The object consisted of a big sphere with diam-
eter of 64a and density 1. The unit of length was equal to the size
of the projection bin a. The object also contained three smaller
spheres with diameters 16a, 4a, and 4a positioned off-center in-
side the large sphere with intensities 0.5, 4, and 2, respectively.

Simulated parallel projection data consisted of 32 projections
128 x 128 square bins each acquired over an angular range of
180°. The projection for one angle is shown in Fig. 5(A). The
value of each projection bin was determined by numerical inte-
gration of line integrals going through the object where each line
integral was calculated analytically. For each projection bin 64
line integrals were considered. The simulated projections were
reconstructed using six cycles of the algorithm. The following
numbers of ML-EM iterations were used 1, 1, 2, 10, 200, and
400 for six subsequent cycles.

As can be seen in Fig. 5(C) and (D), the quality of the projec-
tion of the tomographic reconstruction increases as more nodes
are included in the point cloud. The projection of the final re-
construction with 121 000 nodes [Fig. 5(B)] is virtually indis-
tinguishable from the original projection presented in Fig. 5(A).
Fig. 6 presents cuts through the reconstruction area for different
cycles of the reconstruction algorithm. Notice that the density of
the nodes is increased at the edges of the myocardium. The im-
ages in Fig. 6(A)—(D) correspond to the images in Fig. 5(C)—(F).
The projection in Fig. 5(F) is from a reconstruction yielding
67908 nodes.

B. Experimental Phantom Studies

The method was also tested using experimentally acquired
phantom data. We used the Jaszczak anthropomorphic cardiac
torso phantom (Data Spectrum, Hillsborough, NC). Three dif-
ferent sets of projections were generated with 2:1, 5:1, and 10:1
ratio of activity of %™Tc placed in the myocardium compart-
ment and in the background that included blood pool, torso, and

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 9, SEPTEMBER 2006

Fig. 5. Images present a single original projection of the numerical phantom
(A) and a final reconstructed projection of the grid with 121 000 nodes (B).
Images (C)—(F) correspond to reconstructed projections of the grid for four dif-
ferent cycles of the reconstruction algorithm (they correspond to grids presented
in Fig. 6(A)—(D). Increased accuracy for subsequent cycles can clearly be seen.

Fig. 6. Results of the reconstruction using a tetrahedral grid and a numerical
phantom. Images (A)—(D) present cuts through the multiresolution grid at four
different cycles of the reconstruction algorithm. (A) corresponds to an initial
coarse mesh with 1000 nodes. Meshes (B), (C), and (D) correspond to the third,
fourth, and fifth subsequent iterations with 6949, 21456, and 67 908 nodes, re-
spectively. Density of the nodes increases mainly around the edges of the object.

liver compartments. There was no activity placed in the spinal
cord and in the lungs. Sixty projections in 128 x 128 matrix were
acquired over 180° using a GE Millennium VG3 camera with
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parallel collimators. The acquisition was performed at 140 keV
with a 20% energy window. The numbers of counts in the 3-D
sinograms were equal to 3.72, 3.84, and 4.05 million, respec-
tively.

The 3-D image consisting of a point cloud of nonoverlapping
tetrahedral elements was reconstructed from the sinograms
using five cycles of our algorithm with 2, 2, 10, 200, and 200
iterations of the ML-EM algorithm in each cycle, respectively.
Another 3-D image consisting of the standard rectangular cubic
grid of 128 x 128 x 128 with a voxel size a was reconstructed
from the same set of sinograms using 200 iterations of the
ML-EM algorithm. No attenuation or detector response was
modeled in the reconstruction of either image.

Following the reconstruction by both methods, the recon-
structed images were regularized by applying a 3-D Gaussian
filter with a full-width at half-maximum (FWHM) of 2a. This
is a straight forward procedure for a regular grid and somewhat
more involved for a tetrahedral grid. If Iy, I, . . ., I are inten-
sities of nodes directly connected to a node with intensity Iy,
where K is the number of nodes, then the regularized value R
is

K K
_ 2 _ 2
RO — E Ik@ a(lk § e (I,dt (3)
k=0 t=0

where @ = 41n2/w; /2, and di and d; are the distances from
node 0 to nodes k and ¢, respectively, and w; /o is the FWHM
of the Gaussian curve. The results of the reconstructions are
presented in Fig. 7.

V. DISCUSSION

A method is presented for image representation and tomo-
graphic reconstruction based on unstructured distribution of
point clouds with non-overlapping tetrahedrons. An important
result of the paper is the formulation of the inverse problem
using point cloud image representation and the development
of an efficient method for calculating the system matrix for a
tetrahedral segmentation of the image space. This approach
has the potential of high impact in nuclear medicine imaging
because the new image representation may prove to be superior
to standard voxel-based images. The main motivation of this
work was to create a framework for further investigation of
the point cloud image representation. The choice of the image
representation was dictated by the hypothesis that with smaller
number of unknowns the tomographic inverse problem will
be better posed. Second, our image representation (tetrahe-
dron based) is designed to take advantage of readily available
graphics hardware in order to explore 3-D visualization modes.
This graphics hardware support of our configuration was one
of the main reasons for this development, and once fully de-
veloped may become a very important tool for medical image
visualization. This is an area of research that we are actively
pursuing. There are several other important issues associated
with the methods presented that we would like to emphasize in
the following discussion.

One of the important aspects of our method is that a tetrahe-
dral geometry of the reconstruction volume can be visualized in
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Fig. 7. Images are slices through the volume of the Jaszczak torso phantom
with cardiac insert reconstructed from projections acquired using the GE Mil-
lennium VG3 SPECT camera. (A) Cut through the volume reconstructed on a
128 X 128 x 128 cubic grid using 200 iterations of the ML-EM algorithm. (B)
Cut though the volume reconstructed to give a point cloud consisting of 62 000
nodes. This point cloud was obtained by five cycles of the reconstruction al-
gorithm. Images (C) and (D) represent the same cuts as (A) and (B) after the
application of the 3-D Gaussian filter with a FWHM of 2a. Images (E) and (F)
correspond to the same slice but with ratio of activity between the heart and
background of 5:1, and (G) and (H) with 2:1. Graphs (I)-(K) present the pro-
files through the images corresponding to lines presented in (C) and (D).

3-D using commodity graphics processing units (GPUs). In re-
cent years, the development of graphics hardware has grown so
fast that the GPU performance doubles every six months. The
rapid development of the GPU is driven by the video game in-
dustry. Currently, the NVidia GeForceFX 6800 GPU (NVidia
Corporation, Santa Clara, CA) contains a chip that performs
floating point operations almost an order of magnitude faster
than a 3-GHz Pentium 4 central processing unit (CPU). The
GPU has already been used for tomographic reconstructions
using an iterative reconstruction algorithm with the standard,
regularly distributed, voxelized reconstruction region to achieve
8-10 times faster reconstruction times compared to reconstruc-
tion times for a standard implementation on a CPU [20] and
[21]. The GPU could also be used for tomographic reconstruc-
tion with tetrahedral grids. Keep in mind that volume rendering
performed on the GPU is very similar to a projection operation
in tomographic reconstruction. The GPU can be adapted for the
most computationally demanding tasks associated with iterative
reconstruction algorithms, which is the creation of the system
matrix. The imaging application in [20] and [21] used texture
mapping techniques for which it was convenient to reconstruct
on regular grids. However, since the texturing techniques used in
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[20] and [21] are not well suited for the application to tetrahedral
grids [22], new algorithms for the visualization of reconstruc-
tions of tetrahedral elements need to be developed or adopted
from the literature dealing with visualization of unstructured
grids in computer graphics [22]-[25].

The current reconstruction implementation presented as
an example in this paper uses a suboptimal algorithm for the
placement of additional nodes. Nodes are added to the point
cloud in Step 5) of the algorithm (Section IV), specifically to
tetrahedrons with the highest deviation in intensity between the
four nodes. The more optimal and probably the more effective
placement would be to add nodes to centers of tetrahedrons
with the highest mean curvature. Mean curvature is defined as
the average of the three eigenvalues of the Hessian matrix of the
intensity function [26]. Other algorithms, such as the minimum
description length (MDL) principle [27], can also be used for
determining the optimal number of nodes and their locations.
However, the computational complexity for determining the
second derivative for every node or the computation time
needed for optimization using the MDL implementation may
offset the benefit of adding addition nodes. Other approaches
that could be used for determination of the point locations
is to reconstruct the image first using the regular grid, then
based on this reconstruction distribute the points in optimal
locations. This approach, however, would slightly limit the
practical values of our method because it would require per-
forming the standard reconstruction first. However, some fast
analytical techniques (such as filtered backprojection [1]) can
be used for the initial voxel-based reconstruction, increasing
only minimally the computational burden of this method. Once
the voxel-based image estimate is reconstructed, points can
be distributed, for example, using the approach developed in
[28]. The other interesting issue that needs to be studied is
whether the algorithms for distribution of points should be the
same for all kinds of nuclear medicine studies. For example,
one would expect to have nodes distributed differently for
oncology studies where low-contrast lesions may be positioned
on low intensity background than for cardiac studies where
nodes probably should be concentrated at the boundaries of the
myocardium. These issues need to be investigated before any
strong conclusion as to what is the optimal algorithm for node
distribution can be drawn. We plan to investigate this in future
work.

One of the most important future steps in the development of
this method is the implementation of attenuation and detector re-
sponse correction for PET and SPECT. The implementation of
the attenuation correction is straightforward and could be done
when calculating the system matrix by modifying the intensity
at each node j from 1 to exp(— [ pdl), where the line integral
goes from the node location to the location of the projection bin
and integrates the distribution of attenuation coefficients in the
attenuation map. Depth-dependent correction for the detector
response can also be implemented in the system matrix by ap-
plying an appropriate smoothing filter to the projection of each
tetrahedron. This will model the effect of depth dependent blur-
ring. The amount of smoothing will depend on the distance from
the node j to the particular projection bin. These corrections will
be implemented in the future.
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The algorithm presented in this paper lacks regularization
features that are needed in order to implement MAP iterative
reconstruction algorithms [6], [29]-[32]. A large amount of re-
search literature exists on various regularization and filtering
methods for regular grids. These methods are necessary to re-
duce noise for viewing by readers in clinics using 2-D displays.
Similar regularization tools need to be developed for tetrahedral
mesh defined by a point cloud.

The other direction of research is using the 3-D visualization
to suppress noise in the reconstructed images. It is expected that
the noise can be suppressed (at least to some extent) using 3-D
visualization techniques, such as volume rendering that aver-
ages out the noise by integrating intensities. The visualization
aspects of the point clouds and tetrahedral grids are an important
continuation and extension of this work that we will investigate.

VI. SUMMARY AND CONCLUSION

In summary, we have described a new fully 3-D method for
tomographic reconstruction using a reconstruction domain de-
fined by a point cloud. A method was presented for the contin-
uous representation of reconstructed images in three dimensions
by linear interpolating within nonoverlapping tetrahedrons de-
fined by points of the point cloud. An ingenious method was pre-
sented for efficiently calculating the system matrix for iterative
reconstruction for this somewhat more complex but yet more ef-
ficient image representation. Using data from a computer sim-
ulation and from an experimental phantom study, examples of
tomographic reconstructions were presented using this devel-
oped methodology.

We believe that our image representation is better suited for
representation of 3-D images due to the adaptive multiresolution
nature of point clouds, thus providing an efficient representation
of medical images. Since these images are represented by a set
of unstructured points that can easily be moved in time without
destroying the reconstruction framework, the extension of this
work could involve the application of the point cloud model to
motion tracking and motion compensation directly in the tomo-
graphic reconstruction process similar to the work of Gilland e?
al. [33], [34]. Although we believe that the impact of this work
on medical imaging will be high, a strict evaluation and compar-
ison to standard reconstructions methods need to be performed
before drawing any strong conclusions.

Three-dimensional display of medical images is becoming
more and more popular with advances in hardware and com-
putational speed. However, reconstructed images are often still
represented by a stack of 2-D images. This work provides an al-
ternate fully 3-D image representation for which the full advan-
tage will be realized only in conjunction with 3-D visualization,
which is a future direction of our work.
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