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Improving FPGA Placement with Dynamically
Adaptive Stochastic Tunneling
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Abstract—This paper develops a dynamically adaptive stochastic
tunneling (DAST) algorithm to avoid the “freezing” problem
commonly found when using simulated annealing for circuit
placement on field-programmable gate arrays (FPGAs). The
main objective is to reduce the placement runtime and improve
the quality of final placement. We achieve this by allowing
the DAST placer to tunnel energetically inaccessible regions
of the potential solution space, adjusting the stochastic tunneling
schedule adaptively by performing detrended fluctuation analysis,
and selecting move types dynamically by a multi-modal scheme
based on Gibbs sampling. A prototype annealing-based placer,
called DAST, was developed as part of this paper. It targets
the same computer-aided design flow as the standard versatile
placement and routing (VPR) but replaces its original annealer
with the DAST algorithm. Our experimental results using
the benchmark suite and FPGA architecture file which comes
with the Toronto VPR5 software package have shown a 18.3%
reduction in runtime and a 7.2% improvement in critical-path
delay over that of conventional VPR.

Index Terms—Field-programmable gate array (FPGA), place-
ment, simulated annealing, stochastic tunneling.

I. Introduction

DESPITE advantages such as fast time-to-market, low
non-recurring engineering costs, and exceptional fine-

grained parallel performance, field-programmable gate arrays
(FPGAs) significantly lag behind application-specific inte-
grated circuits in power efficiency and circuit speed [1],
[2] due to their high programming overhead. Consequently,
FPGAs cannot be widely used in applications that demand
high power efficiency and low critical-path delay. Among the
key software factors affecting FPGA’s overall performance,
placement may be the most influential, as it directly de-
termines the relative locations of target circuit blocks and
therefore directly affects the final performance and power
consumption of routed design. Unfortunately, finding optimal
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placement/routing in FPGAs is computationally infeasible due
to its NP-completeness, hence can only be approximated
by heuristic methods such as simulated annealing. However,
conventional simulated annealing-based placement often suffer
from the “freezing” problem that traps the optimized solution
in local minima, thus degrading the quality of results and
prolonging total runtime [3], [4]. For example, experiments [5]
have shown that for some large benchmarks with known
optimal placement, state-of-the-art placers such as PAR from
Xilinx, San Jose, CA, Quartus II from Altera, San Jose, CA,
versatile placement and routing (VPR) [6] and PATH [7] from
academia can yield results far from the optimal solution. In the
extreme case, where each circuit consists of global connections
only (G-PEKU benchmarks), these tools can be as far away
from the optimal by 41% to 102%. As integrated circuit (IC)
technology continues to scale and move toward 20 nm, the
FPGA placement problem will only get worse as the number
of look-up tables (LUTs) per FPGA continues to increase [2].

A. FPGA Placement Problem

Conceptually, placement in FPGAs is a graph matching
problem. As illustrated in Fig. 1(b), routing resources in a
FPGA, such as switch blocks, connection blocks, and intercon-
nect channels can be abstracted as a graph GFPGA = (U, E(U)),
comprising a set of vertices U and a set of edges E(U).
Given a vertex u ∈ U, we indicate with E(u) the set of
neighboring vertices of u (or neighbors, for short), which
represents the possible reconfigurable interconnections in the
FPGA. Likewise, as shown in Fig. 1(c), a synthesized user
design after technology mapping can also be represented as a
graph Gdesign = (V, E) consisting of a set of vertices V and
a set of edges E(V ). Given graphs GFPGA and Gdesign, the
objective of placement is to find an optimized graph mapping
so that the performance of the mapped design is maximized
according to a pre-defined cost function C(GFPGA, Gdesign, M),
where M is a mapping function between GFPGA and Gdesign

subject to various placement constraints. The objective of
FPGA placement is not only to minimize hardware resource
usage but also to produce a compact placement that facilitates
routing and achieves high operating frequency.

Algorithmically, placement in FPGAs is a NP-hard global
optimization (GO) problem, which often faces a solution space
so enormous that a deterministic and efficient solution is in-
feasible. Fortunately, for most GO problems such as predicting
protein structures by minimizing its free energy [8], near-
optimal solutions can be achieved by probabilistic methods

0278-0070/$26.00 c© 2010 IEEE



LIN AND WAWRZYNEK: IMPROVING FPGA PLACEMENT WITH DYNAMICALLY ADAPTIVE STOCHASTIC TUNNELING 1859

Fig. 1. (a) Baseline FPGA architecture. (b) Graph representation of routing
structure. (c) Graph representation of user design circuit. (d) Simple example
of a placed and routed design or mapped graph. LB: logic block, SB: switch
block, CB: connection block, Ui: routing graph node, Vi: circuit graph node.

with reasonable performance and acceptable runtime. One
such heuristic is Monte-Carlo-based sampling, whereby a
substantially smaller subset of the otherwise vast solution
space is sampled with the Metropolis criterion [9] followed
by identifying the optimal solution in this reduced subset. In
FPGA literature, such an optimization technique is typically
known as the simulated annealing (SA) algorithm, and remains
widely used for FPGA placement today as it can readily adapt
to realistic architectural constraints.

B. Prior Work

Due to its importance, there have been many attempts to
improve the quality and runtime of FPGA placement. The
majority of these studies focus on specific heuristics closely
related to particular FPGA architectures (e.g., [10]–[12]). This
paper instead focuses on improving the simulated annealing
algorithm commonly used to drive FPGA placement, which
is orthogonal to other FPGA-specific approaches and can
potentially be applied to other problem domains. Coarsely,
prior work on this subject can be classified as either software
or hardware-based.

Software-based approaches typically target improving vari-
ous components of a conventional simulated annealing algo-
rithm, such as the initial placement, the annealing schedule,
the objective function, or the acceptance criteria. For exam-
ple, VPR [6] introduced several key improvements to FPGA
placement, including the concept of path-based weighting
for timing-driven optimization, timing-driven clustering, fast
incremental bounding box computation, and an experimentally
tuned annealing schedule. Recently, researchers [13] have
attempted to achieve better initial placements by coupling
annealing with other deterministic placement strategies in hope

of reducing the overall annealing time. For example, in [14],
recursive min-cut partitioning, a faster placement heuristic, is
employed to quickly produce better initial placements, thereby
requiring the annealer to run only in a lower temperature
regime. In [15], an adaptive strategy was proposed to dynam-
ically alter the annealing schedule to better suit the dynamics
of the evoluting system states. Given the importance of the
objective function in optimization, several more accurate ones
have also been suggested such as (e.g., path-based timing
weights, or the incorporation of congestion metrics).

Motivated by the extensive design reuse with intellectual
property blocks in FPGAs, several authors have recently
focused on more application-specific approaches to improve
the placement results. For example, [16] presented both incre-
mental slack/criticality update technique and a reformulated
cost function to enhance timing-driven FPGA placement for
pipelined netlists. In [10], the authors discussed various
intelligent strategies for selecting and placing cells that are
interspersed with traditional random moves during anneal-
ing, allowing the annealer to converge more quickly and
to attain better quality with less statistical variability. While
almost all these studies are FPGA-specific in order to achieve
high-performance placement solutions, we believe that these
problem-specific approaches are completely complimentary
with our approach to many FPGA applications.

More recently, partially due to the fast advances in VLSI
technology, researchers started to investigate using hardware
to accelerate the simulated annealing. In [17]–[19], the authors
proposed how a systolic structure can accelerate placement by
assigning one processing element to each possible location for
a FPGA LUT from a design netlist. They demonstrated that
their technique approaches the same quality point as traditional
simulated annealing measured by a simple linear wirelength
metric, while achieving three orders of magnitude reduction in
the total computer-aided design (CAD) runtime. Despite their
impressive performance gains, hardware-assisted placement
often involves HDL programming, therefore seriously limiting
its applicability in many circumstances.

Our proposed dynamically adaptive stochastic tunneling
(DAST) approach is software-based, which is often much
preferred in real-world applications for compatibility rea-
sons. However, unlike many previously proposed software
approaches, the DAST algorithm is not FPGA-specific. There-
fore, it not only has wide applicability but also can benefit
from other techniques specific to FPGA placement.

C. Contributions

This paper has two objectives: 1) investigating the effec-
tiveness of using stochastic tunneling (STUN) to improve
runtime and quality of results (QoR) of FPGA placements,
and 2) proposing a DAST algorithm that outperforms both
conventional simulated annealing and STUN. To this end,
we show that the proposed DAST method not only can be
readily incorporated into existing FPGA CAD software, but
also significantly improves the overall placement QoR. The
main contributions of this paper are as follows.

1) Stochastic tunneling for FPGA placement: recent ad-
vances in stochastic methods, such as stochastic tunneling
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and parallel tempering, have been successfully applied to
a wide range of optimization problems, e.g., molecular
and DNA folding [20]–[22]. However, such means are
practically unexplored in the field of CAD. This paper,
to the best of our knowledge, is the first study on the
effectiveness of stochastic tunneling in placing FPGAs.

2) Multi-modal move selection based on Gibbs sampling:
instead of being limited to a single move type, our
annealing approach chooses among several move types
according to Gibbs sampling. This adaptation strategy can
further improve the placement quality and achieve better
runtime.

3) Detection scheme for local minima entrapments: previous
studies [23] and our results have shown that stochastic
tunneling, in its originally proposed form, cannot satis-
factorily prevent the freezing problem, which motivates
us to detect local minima entrapment with the detrended
fluctuation analysis (DFA).

4) Dynamic adaptation of tunneling schedule: we developed
a dynamical annealing schedule, which alternates be-
tween conventional simulated annealing and self-adaptive
stochastic tunneling whenever local minima entrapment is
detected. Furthermore, we propose an effective method to
automatically select the key stochastic tunneling parame-
ter γ .

The rest of this paper progresses as follows. Section II intro-
duces simulated annealing and uncovers the key weaknesses of
its original form when applied to a global optimization prob-
lem. We then show in Section III that applying conventional
static stochastic annealing directly to the benchmark problems
can only improve the quality of results to a very limited extent
while the overall annealing procedure still suffers severely
from entrapment in local minima. These limitations motivate
us to propose the dynamically adaptive stochastic annealing
approach in Section IV. Finally in Section V, we apply the
DAST algorithm to standard FPGA placement problems and
illustrate the superiority of the DAST algorithm.

II. Simulated Annealing

A well-known search-based heuristic, simulated anneal-
ing [24], attempts to find the minimum solution R∗ of an
objective function F that takes real values over a set of states
S by numerically mimicking an annealing process, in which a
thermal system initially melts at high temperature and then
cools slowly until it reaches a stable state (ground state)
with the lowest energy [25]. Because the ground state of
any physical system at temperature zero will concentrate in
the vicinity of the global minimum, simulated annealing will
ultimately converge to an optimal solution given a sufficiently
slow cooling schedule and suitable cost function. Simulated
annealing is effective because it can escape from most local
optima by allowing the deterioration in the objective func-
tion value controlled probabilistically through the annealing
temperature (i.e., probabilistically “climbing” up the hill of
potential solution space), which fundamentally deviates from
all greedy heuristics.

Today, the simulated annealing method is probably the
most prominent example of applying the Metropolis sampling
method to GO. It introduces two tricks. The first is the so-
called “Metropolis algorithm” [9], in which some “bad” moves
that yield higher energy value are still accepted, and therefore
allows the solver to “explore” more solution space. Such “bad”
moves are allowed using the criterion

e− �f

kT ≥ R(0, 1) (1)

where �f is the change of cost due to a random move, f is
called a “cost function,” T is a “synthetic temperature,” k is
Boltzmann’s constant, and R(0, 1) is a random number in the
interval (0, 1). The second trick is to strategically lower the
“temperature” T , i.e., annealing schedule.

SA algorithm has been widely used for FPGA placement
because it can be readily adapted to realistic architectural
constraints. A conventional simulated annealing-based FPGA
placer typically uses a cost function aiming for best possi-
ble logic density or timing, sequentially swaps random cell
locations, computes the difference in the cost function of
�f , then determines the acceptance probability of each trial
swap with min(1; e− �f

kT ) as in (1) (Metropolis criterion) [9].
In other words, during FPGA placement, greedy moves are
always accepted, while non-greedy ones are accepted with
a probability that exponentially decreases according to the
current “temperature” and the difference in the overall cost
function. Although quite effective for optimizing placement in
FPGAs, simulated annealing, as any optimization approaches
based on Monte-Carlo sampling, has notable weaknesses.

1) Sensitivity to parameters: studies [26] have shown
that choices of annealing parameters can significantly
affect the effectiveness of simulated annealing. For ex-
ample, the initial annealing temperature T0 not only
affects the length of the annealing procedure needed
to reach the thermal equilibrium, but also the quality
of final results. To confirm this, we placed and routed
all 20 largest MCNC benchmark designs [27] using
VPR. Our experimental results have shown that, as the
starting annealing temperature changes from 10 to 100,
the deviation of the resulting critical-path delay can
vary up to about 10%. Similarly, the annealing schedule,
which determines at what point in the procedure and by
how much the temperature T is to be reduced, also plays
a significant role in the final performance of simulated
annealing. While keeping the starting annealing temper-
ature constant at 10, we changed the linear factor α from
0.80 to 0.99; the resulting critical-path delay deviated by
up to 13%. Intuitively, the placer prefers high initial T0

and a slow cooling schedule, however it is not clear
which annealing schedule is optimal. In practice, users
are often forced to perform manual tuning, which not
only is cumbersome but also will not guarantee optimal
performance and results. In addition to the annealing
schedule, the move generator is particularly important
to the annealing performance. For a given problem,
there are often different types of moves that can be
taken. For FPGA placement, the move can be a random
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Fig. 2. Schematic 1-D solution space, both local and global minima are
illustrated. The current solution is trapped inside a local minimum and can
not escape due to the high well surrounding it.

swap, a neighboring swap, or even a random move.
Unfortunately, it is unclear as to which move type at
any particular time is the optimal choice.

2) Freezing problem: many simulated annealing problems
with a rugged solution space suffer from the so-called
freezing problem [28], occurring when the cooling pro-
cess ends up in a local minimum (a well of barri-
ers) that cannot be escaped. As depicted in Fig. 2,
the current solution reaches one of the local minima,
however the energy barrier for the local minimum to
escape is far larger than the potential energy difference
between the current minimum and the global minimum.
Consequently, at high temperatures, the solution can still
cross the barriers, but not differentiate between the wells.
As the temperature drops, the solution will eventually
become trapped with almost equal probability in any
of the wells of local minima, failing to resolve the
energy difference between them. The success of sim-
ulated annealing, as in many other stochastic optimiza-
tion techniques, hinges on its capability to effectively
sample its vast solution space. Unfortunately, when the
energy difference between “adjacent” local minima on
the topology of solution space is much smaller than the
energy of intervening transition states separating them,
the freezing problem often arises.

In what follows, conventional static stochastic tunneling
is first used to solve the FPGA placement problem. We
show that the static stochastic tunneling can only improve the
solution to a limited extent, which motivates us to develop two
powerful augmentations to static stochastic tunneling, namely,
multi-modal moves through Gibbs sampling and dynamically
adaptive stochastic tunneling DAST in Section IV.

III. Static Stochastic Tunneling

To improve the performance of simulated annealing, STUN
was introduced by Hamacher and Wenzel [29] in the study
of physical interacting particles with global order. Its original
objective was to overcome large energy barriers while avoiding
the “freezing” problem during numerical simulations. The
physical idea behind the stochastic tunneling method (STUN)
is to allow the particle to “tunnel” forbidden regions of the

potential energy surface that are irrelevant for the low-energy
properties of the problem.

Static stochastic tunneling can be accomplished by applying
the following nonlinear transformation to the solution space
(or the potential energy landscape) before applying conven-
tional simulated annealing as in (1)

fSTUN(�x) = 1.0 − e
− E(�x)−E( �x0)

γ (2)

where E(�x) denotes the value of potential energy at one
specific point in the energy space �x, �x0 is the lowest minimum
encountered by the dynamical process thus far [29], and γ is
the tunneling parameter that will be discussed in Section IV-D.
Location �x is vectorized because in general, each point in
solution space is multi-dimensional. For example, in FPGA
placement, �x denotes one specific FPGA placement. By con-
tinuously adjusting the reference energy f0 = E( �x0) to the best
energy found so far, (2) preserves both the effective potential
and the locations of all minima, but maps the entire energy
space from f0 to the maximum of the potential onto the inter-
val (0, 1]. Functionally, the transformation by (2) is equivalent
to amplifying the topology of the local potential landscape
and eliminating its irrelevant features so that the probability
of escaping local minima is enhanced. When applying STUN,
the meaning of E(�x) and �x depend on specific applications. For
example, in this paper of FPGA placement, E(�x) represents the
cost value computed with specific placement cost function for
a specific FPGA placement �x.

Alternatively, the dynamic process in stochastic tunneling
with fixed temperature T can be interpreted as an equivalent
one with a self-adjusting cooling schedule on the original
solution space, where the annealing temperature TST can be
approximated as exp

(
−E(−→x1,2)−E(−→x0 )

γ

)
· T . In this process, the

equivalent temperature rises rapidly when the local energy is
larger than f0 and the particle diffuses (or tunnels) freely
through potential barriers of arbitrary height. As better and
better minima are found, ever larger portions of the high-
energy part of the potential energy surface are flattened out.
To illustrate, Fig. 3(a) shows a 1-D example with three local
minimum solutions and two global minimum. After minimum
f1 is found, because the annealing temperature is too low, it
becomes difficult for the optimized solution to escape from
this local minimum and locate the nearby better solutions f2

and f3. However, if we can somehow flatten the solution space
in all regions that lie significantly above the best estimate f1

and simultaneously enhance the potential surface landscape
around f2 and f3, finding globally optimized solution f3 is
much more probable, as depicted in Fig. 3(b) and (c).

There are several issues associated with using static stochas-
tic tunneling directly. First, as shown in [20] and [30], the
performance of static stochastic tunneling depends heavily on
the form of transform functions, which was corroborated by
our paper. Among tunneling function candidates 1−e−γ(E−E0),
1−sgn(E−E0)

2 E, tanh(−γ(E− E0)), and sinh(−γ(E− E0)), our
experiments have shown that the final optimization results can
differ by up to 20%. In our paper, 1−e−γ(E−E0) yields the best
results. Second, the performance of static stochastic tunneling
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Fig. 3. Schematic of a 1-D solution space, where the minimum indicated
by the arrows is the best minimum found so far (f0). x1, x2, and x3 denote
the solution points corresponding to each f0. Potential energy depicted in
(b) and (c) are transformed versions of that in (a) and (b), respectively. The

transforming function is f = E(x)

(
1.0 − e

− E(x)−f0
γ

)
. All wells that lie above

the best minimum found are suppressed. If the dynamic process can escape
the well around the current minimum estimate it will not be trapped by other
local minima that are higher.

is sensitive to the choice of the tunneling parameter γ that
controls the degree of the cutoff steepness in high-energy
regions. As shown in [23], by choosing γ values between
1.0 and 5.0, the final optimization results can differ by up
to about 30%, which makes using stochastic tunneling highly
unreliable. Consequently, in practice, γ is often manually
tuned for optimal performance. Most importantly, our results
on FPGA placement have shown that although the QoR from
stochastic tunneling is better than that from mere simulated
annealing, it is still far from the optimal. All these issues
motivate us to develop a dynamically adaptive stochastic
tunneling DAST.

IV. Dynamically Adaptative Stochastic

Tunneling

Stochastic optimization often levels off in the best minimum
found so far, which makes subsequent improvement expo-
nentially difficult. One conceptually appealing approach to
circumventing such degradation is to use an adaptive strategy,
whereby the effectiveness of optimization is measured on-line
and the algorithm is steered according to certain dynamic
measures. Such adaptation is not a new idea and has been
extensively studied in the context of global optimization. For

example, in the energy landscape paving method [31], low-
temperature Monte-Carlo simulations were performed with
a modified energy expression designed to steer the search
away from regions that have already been explored. In [32],
a global optimization based on machine learning relied on an
internal model of the objective function to represent its state
of knowledge. A simple inference network was then used to
turn its state knowledge into strategic decisions at each stage
of optimization.

Unfortunately, in general applications, no special knowledge
about the underlying problem and its respective solution space
is available and thus the specific adaptation approaches such
as [31] and [32] are not always applicable. We instead de-
velop a dynamically adaptive annealing strategy that requires
no manual intervention during its execution while achieving
good performance for the FPGA placement problem. In the
following, we detail each key component of our proposed
DAST algorithm.

A. Multi-Modal Moves Through Gibbs Sampling

When generating candidate moves in simulated annealing,
it is essential that after a few iterations of the algorithm, to
ensure optimization efficiency, the current state should have
much lower energy than a random state. Therefore, as a general
rule, one should skew the move generating process toward
candidate moves where the energy of the destination state is
likely to be similar to that of the current state. This heuristic,
the main principle of the Metropolis-Hastings algorithm, tends
to exclude “very good” candidate moves as well as “very bad”
ones; however, the latter are usually much more common than
the former, so the heuristic is generally quite effective.

Typically in problems of simulated annealing, there are
different kinds of candidate moves. For example, the traveling
salesman problem has at least three kinds of moves: swapping
two consecutive cities, swapping two randomly chosen cities,
and reversely swapping sections of tour. Similarly for FPGA
placement, there are global moves that swap two randomly
chosen logic blocks, local moves that move logic blocks
within its vicinity, or moves that fine-tune locations of sub-
components within a logic block. Intuitively, at the early stage
of annealing, global moves tend to be more effective while
local moves become more efficient as annealing approaches its
end. In short, depending on the temperature and the current
landscape of solution space, certain move types tend to be
noticeably more effective than others during the process of
annealing. The challenge, of course, is to select the most
effective move types without prior knowledge of the global
solution and the overall solution space. To our knowledge,
most annealers, including VPR, only consider a single move
type. In this paper, we propose a robust adaptive strategy based
on Gibbs sampling to automatically select the “best” move
types throughout the annealing procedure based on Gibbs
sampling. By “best” we mean the move types that will yield
the best results on average in a probabilistic sense.

Gibbs sampling is a special case of the Metropolis-
Hastings algorithm, and thus an example of the Markov chain
Monte-Carlo algorithm. Mathematically, it is an algorithm
to generate a sample sequence from the joint probability
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distribution of two or more random variables. The purpose
of such sequence generation is to approximate the joint dis-
tribution that can not be written in closed-form or too costly
to compute directly. The key idea of Gibbs sampling is that,
given a multivariate distribution, it is much simpler to sample
from a conditional distribution than to integrate over a joint
distribution. More specifically, suppose that a sample X is
taken from a distribution depending on a parameter vector
θ ∈ � of length d with prior distribution g(θ1, . . . , θd). It
may be that d is large and that numerical integration to find
the marginal densities of the θi would be computationally
expensive, or the form of g(θ1, . . . , θd) is too complicated
to be evaluated. Then an alternative method of calculating the
marginal densities according to Gibbs sampling is to create
a Markov chain on the space � by repeating these two steps
that define a reversible Markov chain with the desired invariant
distribution g.

1) Pick a random index 1 ≤ j ≤ d.
2) Pick a new value for θj according to g(θ1, . . . , θj−1, ·,

θj+1, . . . , θd).
Based on the above scheme, we propose the following

scheme to adaptively select effective move types. Let mi ∈ M,
i = 0, 1, · · · , n−1, be one of n possible move types. Initially,
we draw a move from M with equal probability 1

n
among all

move types. Throughout the annealing process, we keep track
of acceptance rate ai of each move type mi. As annealing
progresses, during each iteration, moves are drawn with the
probability

p(mi) =
ai∑n−1
i=0 ai

. (3)

In this paper, we choose three move types m1, m2, and
m3 with different range limits Rrange = 2L/3, 4L/3, 2L,
respectively. Rrange is measured as the Manhattan distance and
L equals the number of clustered logic blocks (CLBs) along
the X and Y directions of the target FPGA chip. Additionally,
each move type mi is associated with two types of counters
ctotal,i and csucc,i, which count the total number of move of
type mi performed and the total number of moves of type mi

accepted, respectively. At the beginning of the annealing, each
of the three move types m1, m2, and m3 are equally picked and
their associated counters ctotal,1, ctotal,2, ctotal,3, csucc,1, csucc,2,
and csucc,3 are set to 0. As the placement progresses, the
success rate ai of each move type si is updated as csucc,i

ctotal,i
and the

probability to be picked for mi will be determined by (3). To a
large extent, our approach based on Gibbs sampling is similar
to the range limiting functionality of VPR, detailed in [6].
However, our approach is much more general in that the move
types under consideration are not limited to range differences.
Instead, the set of move types can also include pipeline retim-
ing and architecture-specific ones as discussed in [33]. Addi-
tionally, the range limit Rlimit changes continuously according
to a static formula, whereas in our Gibbs based approach, the
range limit is adaptively but discretely determined.

B. Detecting Entrapments in Local Minima

Because stochastic tunneling is most effective when applied
right after entrapments in local minima occur [20], [22],

detecting local minima entrapment is crucial to the success of
our proposed dynamically adaptive stochastic tunneling DAST
approach. What makes such entrapment detection in stochastic
tunneling particularly challenging is that, in general, the opti-
mization procedure itself has no special knowledge about the
underlying problem. As mentioned in Section III, simulated
annealing typically alternates between “global” search at high
temperature and “local” search at relatively low temperature.
In other words, if we treat the objective function values at
different iterations as a timing series signal, such a sequence
is highly non-stationary, which makes traditional stationary
signal processing techniques less effective. For example, one
naive indicator for the evolving state of the DAST procedure
would be the derivative �score

�n . Intuitively, the smaller the
absolute value of �score

�n is, the more likely no further progress
beyond the current iteration can be achieved. This, however,
depends on the function chosen and can therefore not serve
as a generic measure. Our results using this indicator to
detect local minima entrapments only resulted in very marginal
improvements in the final optimization results.

To accurately detect the local minima entrapments and
permit the detection/quantification of long-range correlations
in the progressing of the proposed DAST algorithm, we opt
to use a powerful statistical method called DFA [34]. As
implied by its name, DFA was conceived as a method for
detrending local variability in a sequence of events, and hence
providing insight into long-term variations in the data sets.
It is useful for analyzing time series that appear to be long-
memory processes and was originally proposed as a technique
for quantifying the nature of long-range correlations. Based
on the DFA, we propose the following procedure to be used
in the DAST algorithm.

1) Let N be the current iteration number,1 t be the iteration
index, and xt be the annealing cost computed by the
placement algorithm at the iteration t. Treat the history
of xt up to N as a bounded time series and compute the
cumulative sum by Xt =

∑t
i=1(xi − 〈xi〉), where 〈xi〉 is

∑
N

i=0 mi

N
.

2) Divide Xt into time windows of length L samples, fit
each segment of Xt with a straight line by minimizing
the squared error E2 =

∑L
i=1 (Xi − ai − b)2 with respect

to the slope and intercept parameters a, b. The initial
value of L depends on the total iteration number N. Our
experience shows that 	N/L
 ≈ 10 is a good choice.

3) Calculate the root-mean-square deviation from the trend
(or fluctuation) in each segment by

F (L) =

[
1

L

L∑
i=1

(Xi − ai − b)2

] 1
2

.

4) Repeat Step 3 for different L, and finally a log-log graph
of L against F (L) is constructed to find F (L) ∝ Lα. To
reduce the computation, in this paper, we choose four
different Ls according to 	N/L
 ≈ 10, 20, 30, and 40,
respectively. Finally, the scaling exponent α is calculated

1In DAST, we only perform local minima detection every 10 000 iterations.
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Fig. 4. Success rate comparison of annealing moves vs. iteration number.
(a) Dynamically adaptative stochastic tunneling. (b) Static stochastic tunnel-
ing. (c) Conventional simulated annealing.

as the slope of a straight line fit to the log-log graph of
L against F (L) using least-squares.

According to DFA, the value of computed α strongly
indicates the long-term stationarity of a time series. Normally,
higher α means higher stationarity, i.e., the time series flattens
out. In this paper, whenever α value exceeds 0.75, we claim
that a local minima entrapment is detected. In other words,
the annealing process is not making progress. The threshold
value of 0.75 is empirically determined.

C. Alternating Between Local Search and Tunneling

Ideally, a good global optimization technique should be
capable of avoiding local minima by itself. As stated in
Sections II and III, both conventional simulated annealing and
static stochastic tunneling suffer from the “freezing problem”
due to low annealing temperature, although to different extent.
Our numerical experiments and other studies [29] have shown
that applying the stochastic tunneling technique throughout the
annealing schedule can quickly degrade the effectiveness of lo-
cal moves. Intuitively, as annealing progresses toward its final
stage and its solution becomes close to the global minimum,
the effect of the stochastic tunneling transformation results
in a golf course-like solution space, i.e., the solution space
in large is relatively flat but the minimum is hidden in a very
localized region, therefore very hard to find. To circumvent this
“golf-course” issue, instead of applying stochastic tunneling
all the time, our proposed DAST algorithm alternates between
a conventional simulated annealing and a “tunneling phase”
once a local minima entrapment is detected by a DFA.

To illustrate the effectiveness of this alternating annealing
schedule, we plot in Fig. 4(a)–(c) the success rate of annealing
moves vs. iteration number for conventional simulated an-
nealing, static stochastic tunneling, and the DAST algorithm,
respectively. Success rate here is defined as the ratio between
the number of accepted moves and each epoch of 100 moves.
These results are obtained by placing and routing the largest
MCNC design, tseng. Note an accepted move does not
always produce a better solution. As shown in Fig. 4(b) and
(c), the majority of successful moves are heavily concentrated
in the early stage of annealing. After the first several thousands

of moves, the success rate quickly declines to almost zero,
which indicates entrapment in a local minimum. The fact that
the success rate does not rebound even with a large number
of additional iterations shows that, without external perturba-
tion, it is hard to escape from this entrapment. In contrast,
in Fig. 4(a), spikes of high success rates can be observed
throughout the annealing process and clearly show the effect
of escaping from local minima by stochastic tunneling.

D. DAST Algorithm

The key steps of our proposed DAST approach are listed
in Algorithm 1, which differentiates it from the conventional
simulated annealing method in several aspects. First, DFA is
performed throughout the whole annealing schedule. Depend-
ing on detection of local minima entrapment, the objective
function is evaluated differently. Second, different move types
are considered as a whole and different move types are chosen
according to the probability of success computed by a heuristic
method based on Gibbs sampling, which is in turn determined
by both the annealing history and the current topology of the
solution space. Third, instead of using a pre-chosen value for
the tunneling parameter γ , we use a simple adaptive technique,
i.e., a dynamically choosing γ to ensure E−E0

γ
≈ 0.05. The

value 0.05 is first suggested in [29] and is confirmed by
our numerical experiments. Additionally, our experiments have
shown that choosing a γ value dynamically is only effective
when the annealing schedule alternates between conventional
simulated annealing and stochastic tunneling. One plausible
explanation is that in DAST, stochastic tunneling is only
applied after local minima entrapment is detected and therefore
only serves as an “annealing perturbation” on the otherwise
conventional simulated annealing schedule.

V. Experimental Results and Analysis

A. Experimental Approach

An prototype annealing-based placer, called DAST, was
developed as part of this paper. While DAST targets the
same CAD flow as VPR, its simulated annealing algorithm
is replaced with the proposed DAST algorithm detailed in
Algorithm 1. Modified VPR software modules include the
annealing scheduler, the temperature updating subroutine, and
the cost evaluator.

The software implementation of DAST is largely based on
the VPR5 package [35], specially designed to both support
heterogeneous FPGAs and to provide an entire Verilog-to-
routing CAD flow including the packing placement (VPACK)
and routing. As illustrated in Fig. 5, the VPR5 flow starts with
ODIN that provides elaboration of Verilog followed by logic
synthesis with a specific version of the ABC tool [36] from
UC Berkeley. Logic packing is performed with an updated ver-
sion of TVPack that can pass heterogeneous blocks through
untouched. Finally, placement and routing is performed with
the latest version of VPR. More details about the VPR5 flow
can be found in [37].
VPR5 uses an XML-based architecture file format in order

to conveniently model hierarchy, which gives VPR the capabil-
ity to implement circuits with hard blocks. We used the FPGA
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Algorithm 1 Dynamically Adaptive Stochastic Tunneling Algorithm.

1: Generate an initial random solution;
2: Initialize T ;
3: Initialize m counters ci, i = 0, 1, · · · , m − 1;
4: while T > 0 do
5: while Thermal Equilibrium not reached do
6: Perform multi-modal selection scheme on counters

ctotal,i and csucc,i, i = 0, 1, · · · , m − 1 to generate a
random solution s;

7: Compute DFA (Detrended Fluctuation Analysis);
8: if Local entrapment detected then
9: Using E−E0

γ
≈ 0.05 to adjust γ;

10: Evaluate s and obtain the new state T by Comput-

ing E with e
− E−E0

γ ;
11: else
12: Evaluate s and obtain the new state T by Comput-

ing E with the original objective function;
13: end if
14: Evaluate �E;
15: if �E < 0 then
16: Update the current state and accept s;
17: end if
18: if �E ≥ 0 then
19: Update the current state and accept s with proba-

bility p;
20: end if
21: end while
22: Update Temperature T ;
23: end while

architecture file k4-n4.xml from VPR5 with the number of
LUTs per CLB set to 4 in order to resemble a Virtex II style
architecture [38]. Using the CAD flow in Fig. 5, we success-
fully synthesized circuits with hard multipliers from Verilog
through the ODIN tool, and then packed, placed and routed
on a FPGA with 18×18 multipliers and CLBs of four 4-input
LUTs, with Fc,in = 0.15, Fc,out = 0.25, Fs = 3, and segments
of length L = 4. More detailed timing model of our FPGA
architecture can be found at the iFAR website [39]. Instead of
the more commonly used MCNC benchmark suite, this paper
uses benchmark circuits provided by VPR5 because they are
more realistic and larger in size. Most of these circuits are
obtained from OpenCores http://www.opencores.org
and internal University of Toronto projects.

A good annealing schedule is essential to obtain high-
quality solutions in a reasonable computation time with sim-
ulated annealing. To ensure our baseline competitive, we
adopt the optimized annealing schedule proposed in [6], which
leads to high-quality placements, and in which the annealing
parameters automatically adjust to different cost functions and
circuit sizes. We compute the initial temperature in a manner
similar to [40]. Let Nblocks be the total number of logic blocks
plus the number of I/O pads in a circuit. We first create a
random placement of the circuit. Next, we perform N blocks
moves (pairwise swaps) of logic blocks or I/O pads, and
compute the standard deviation of the cost of these N different

Fig. 5. CAD flow of performance comparison.

configurations. The initial temperature is set to 20 times this
standard deviation, ensuring that initially virtually any move
is accepted at the start of the anneal. As in [6], the default
number of moves evaluated at each temperature is 10×N1.33

blocks.
Low-stress routing, i.e., allowing 15% wider routing channel

width, was employed in all cases as this paper aimed to quan-
tify the benefits of different types of annealing perturbations
on the quality of placement results and not to measure the
minimum architectural channel widths. To alleviate the effect
of random seeds, each circuit from the test suite was run with
five different seeds and all reported results are averaged over
the five seeds used for each design.

B. Numerical Results

To illustrate the performance benefits of DAST, we compare
it against both VPR5—a widely used academic placer [37] and
PATH—a timing-driven placement scheme with net weighting
developed in [7]. To make our performance comparison fair,
we perform all numerical experiments using timing-driven
placement in order to minimize critical-path delay. In both
VPR and DAST, we use the timing cost function derived from
T-VPlace [41], which is both wireability-driven (minimizing
wiring requirements) and timing-driven. Because considering
only wireability will often degrade timing performance, we
follow the approach of T-VPlace and simultaneously con-
sider critical path delay and wireability. The key innovation
of T-VPlace is to define the auto-normalizing cost function
�C as

�C = λ · �Ctiming

Ctiming,prev
+ (1 − λ) · �Cwire

Cwire,prev

where λ is a tradeoff variable that determines how much
weight to give each cost component, �Ctiming and �Cwire rep-
resent the cost change in timing and routability, and Ctiming,prev

and Cwire,prev denote previous cost components updated once
every temperature. More details of timing computation and
cost formula can be found in Section 3.2 of [41]. Our experi-
ments suggest that λ = 0.6 yields the best results on average,
which is close to the suggested value 0.5 in the study [41].
In the experiments using PATH, we use the net weighting
function suggested in [7], which has relatively low complexity,
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TABLE I

Performance Comparison Between DAST, PATH, and VPR

Critical-Path Delay (ns) Min. Req. # of Tracks Placement Runtime (s)
Circuit # of CLBs VPR PATH DAST VPR PATH DAST VPR PATH DAST
CRC33-D264 103 10.09 9.16 8.52 22 21 23 128 146 112
cordic-v-18 2948 6.24 5.41 5.12 111 109 117 242 293 194
cordic-v-8 556 4.43 4.53 4.16 54 51 56 310 325 297
fir-24-16-16 1553 11.62 10.67 9.92 83 80 88 540 612 477
fir-3-8-8 79 3.75 3.77 3.46 18 18 19 425 508 354
des-area 1426 4.09 3.72 3.48 81 85 85 236 322 161
des-perf 4457 4.86 4.27 4.00 142 139 143 675 817 551
diffeq-f-sysC 237 23.78 21.92 20.40 33 33 35 247 285 211
diffeq-paj-co 485 25.14 23.97 22.19 45 45 47 871 1035 732
iir 299 8.74 7.79 7.26 35 34 34 674 707 644
iir1 298 12.15 12.89 11.73 35 34 37 124 147 103
mac1 3044 9.93 9.21 8.57 110 105 110 456 552 364
mac2 10 373 12.73 12.44 11.48 213 221 215 246 276 218
oc54-cpu 2201 11.62 10.30 9.65 103 104 105 765 882 659
rs-decoder-1 1085 10.96 10.26 9.56 69 69 74 231 280 189
rs-decoder-2 1673 13.62 12.55 11.68 91 87 96 234 319 163
sv-chip0-hi 7039 5.94 5.75 5.31 186 180 181 178 194 164
sv-chip1-hi 37 703 3.42 3.20 2.97 179 164 192 1023 1093 953

Fig. 6. Performance comparison between VPR, PATH, and DAST. (a) Performance improvements in critical-path delay d. (b) Performance improvements in
runtime t.

strong flexibility, and easy implementation. The basic idea of
PATH is to put a higher weight for nets that are more timing
critical.

We use two metrics to compare the performance of DAST,
PATH, and VPR: the total placement runtime and the final
QoR. The QoR in this paper is measured by the critical path
delay that includes the LB delays along the path. The QoR
improvement in this paper is defined as the ratio of the critical-
path delay for the same baseline FPGA but computed with
the proposed DAST or PATH against the unmodified VPR.
Results for all 18 benchmark circuits are listed in Table I.
Note, as shown in Fig. 6(a) and (b) the improvements of DAST
over VPR ranges from −5.29% to 10.97% for the critical path
delay and from 4.43% to 32.35% for the runtime reduction,
respectively. Similarly, the improvements of DAST over PATH

range from −5.29% to 10.97% for the critical path delay and
from 4.85% to 36.45% for the runtime reduction, respectively.
Unfortunately, unlike runtime reduction, the improvements of
DAST in critical-path delay are actually negative in several
designs, but within 6%. To illustrate the routability perfor-
mance in each approach, we also list in Table I the number
of minimum required routing tracks Ntrack,min in order to route
each resulted placement by VPR, PATH, or DAST. For all 18
benchmarks we used, both PATH and DAST yield about the
same Ntrack,min, which on average is about 3% lower than that
of VPR.

C. Results Analysis

Given DAST’s improvements to critical path delay and
overall runtime, one might suspect that, just by changing
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Fig. 7. Annealing history of VPR, PATH [7], SST, and DAST for sv-
chip1-hi. In both (a) and (b), along the direction of the arrow, the four
curves are in the order of VPR, SST, PATH, and DAST, respectively.

the timing tradeoff parameter λ, VPR could achieve similar
critical-path delay results. This is not the case. To validate
this assertion, the timing tradeoff parameter λ was swept from
0.1 to 1.0 for generating placements with VPR. Our numerical
results have shown that for the same amount of runtime, DAST
consistently performed about 8% better in critical path delay
than VPR on average. Additionally, note the key contribution
of DAST have only to do with improving the simulated
annealing algorithm that drives FPGA placement, therefore
its success is orthogonal to the design of the cost function.
To verify this, we compared the performance of DAST with
that of VPR while using the same PATH-like net weighting
cost function. Again, we observed the similar performance
improvements as in Fig. 6(a) and (b). Specifically, for the
18 benchmark designs we used, the improvements of DAST
over VPR range from −2.34% to 7.28% for the critical path
delay and from 10.89% to 31.15% for the runtime reduction,
respectively.

To further understand the performance improvement of
DAST, we examine the annealing history of one benchmark—
sv-chip1-hi. For easy visualization, we present in
Fig. 7(a) and (b) the average net delay and critical-path
delay for the benchmark sv-chip1-hi, plotted against the
runtime, both of which are normalized against the delay and
runtime of pure VPR—thus, a value of “1.0” on the y or x-
axis roughly corresponds to the QoR or runtime achievable
by an VPR annealer with an inner num of 20 and an
initial starting temperature of 20 times the measured standard
deviation [6]. Care was taken to ensure that the annealing
parameters were properly tuned for each of the runtime com-
parison points presented in this paper. Specifically, to alleviate
the effect of random seeding, for each benchmark run, we run
five times using different random seeds and take the average of

Fig. 8. Annealing history of sv-chip1-hi for stochastic tunneling with
various alternating schedules. (a) Stochastic tunneling with no dynamic
adaptation. (b) Stochastic tunneling with dynamic adaptation of alternating
interval 5 × 106. (c) Dynamically adaptive stochastic tunneling.

all five results. Additionally, both VPR and DAST use the same
inner number 20. In addition to comparing DAST with VPR,
we also compare the overall QoR of DAST with the PATH
with net-weighting scheme [7] and SST, where the annealing
algorithm of VPR is replaced with the conventional stochastic
tunneling.

As shown in Fig. 7(a) and (b), the DAST converges almost
two times faster than the conventional VPR, while the critical-
path delay achieved by DAST is about 8.3% shorter than
that of VPR. Our results have shown that the net weighting
algorithm for timing-driven placement [7] only achieves about
15% runtime reduction and 7% improvement in critical-path
delay, respectively. In both Fig. 7(a) and (b), it can be seen
that DAST can significantly accelerate the annealing; the
alternating between conventional VPR and DAST is reflected
in the abrupt slop changes of the DAST curves. There are
actually five changes between VPR and DAST, but only the
last one is obvious.

To illustrate the effectiveness of dynamically alternating
between VPR and DAST, Fig. 8(a) and (b) presents the
annealing history of various alternating schedules for the
benchmark sv-chip1-hi. Specifically, Fig. 8(a) presents
the results of stochastic tunneling without dynamically
alternating, while Fig. 8(b) present the results of DAST with
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Fig. 9. Overall performance comparison between VPR, PATH [7], and
DAST.

a fixed alternating schedule. As shown in these figures, by
changing from the static stochastic tunneling to the fixed
alternating interval of 5 × 106, the runtime changes from
1.23 × 108 to 1.00 × 108, clearly showing that the alternating
schedule significantly impacts the convergence rate. Finally in
Fig. 8(c), the dynamical adaptation is applied to the stochastic
tunneling, which reduces the converging iteration number
further down to about 8.5 × 107.

Finally, to overview the performance benefit of DAST over
the conventional VPR, we placed and routed all 18 benchmarks
using both approaches. For each benchmark design, we nor-
malize both critical-path delay and runtime values from DAST
against that of VPR. To make the comparison objective, for
VPR, the starting temperature is chosen to be 20 times the
measured standard deviation of random placement. Sixteen
different combinations of random seeds and inner nums
are used and we pick the set that produces the best results
as our reference for normalization. After obtaining 20 such
performance curves, we use the geometric average to collapse
them into one curve. As shown in Fig. 9, on average, DAST
improves the runtime by approximately 30% and the critical-
path delay by about 12%.

VI. Conclusion

This paper presented a DAST algorithm which improves
the quality of FPGA placement while reducing the placement
runtime. Three key ingredients of the DAST algorithm are:
1) a detection scheme for local minima entrapment based on
DFA; 2) a dynamically adaptive annealing schedule based on
stochastic tunneling; and 3) a heuristic to automatically select
move types based on Gibbs sampling.
DAST can readily be incorporated into existing FPGA

placement software and benefit from other research work
specifically targeting FPGA placement improvement. We hope
that this paper will motivate the FPGA community to sys-
tematically evaluate the many newly developed and promising
optimization techniques, such as stochastic tunneling, parallel
tempering, and particle swarm optimization. As a versatile
algorithm, DAST may also be applied to other global optimiza-
tion problems, such as protein folding, and has the potential
to yield significant performance improvements there as well.
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