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This, in turn. implies inequality (1.4) and thus completes the proof. 

COYCLUSION 

In this note, we have proved two inequalities which involve the singular 
values of matrices. Proposition 2.1 has particular implication in the Ha 
approach to control system design. The modification of the proofs to the 
case where Z = [ X  r] and m denotes the number of rows is 
straightforward by considering Z Z * .  
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Necessary and Sufficient  Conditions for Balancing 
Unstable Systems 

CHARLES KENNEY AND GARY HEWER 

Absrrucr-Necessary and sufficient  conditions are given for the 
existence of balancing transformations for minimal state-space realiza- 
tions (A, B, C )  where A may be unstable. These  conditions are expressed 
in terms of the real diagunalhability uf the product uf the reachability 
Gramian and the observability Gramian. For symmetric realizations these 
conditions  can be reformulated in terms of the real diagonalizabilily of 
the cross Gramian, and we  show that minimal symmetric systems can be 
internally balanced if the associated Hankel matrix is  positive semide- 
finite. Examples are given of minimal systems, including symmetric 
systems, which cannot be balanced. 

INTRODUCTION 

In this note we present simple necessary and sufficient conditions for 
the existence of balancing transformations for minimal state-space 
realizations (A ,  B, C )  where A may be unstable. In particular. we show 
that a balancing transformation exists if and only if the product W, W, of 
the reachability Gramian W, and the observability Gramian W, is similar 
to  a real diagonal matrix. We further show that a minimal system can be 
internally balanced if and only if the product W, W, is similar to a positive 
diagonal matrix. These results are easily proved by applying established 
congruence theorems for  symmetric matrices [lo], and a simple example 
is given of a minimal system which cannot be balanced. 

The above condition on W, W, is related to the work of Fernando and 
Nicholson [2]-[4] and Laub et ul. [8] on symmetric realizations where it 
is shown that the cross Gramian W, satisfies W I  = W,W,. From this 
we conclude that the Jordan  structure of W,W, is determined by the 
Jordan structure of W,,, and therefore a minimal symmetric realization 
can be internally balanced if and only if the  cross Gramian is similar to  a 
real diagonal matrix. An example is given which shows that there are 
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minimal symmetric systems which cannot be balanced. Finally, we show 
that any minimal symmetric system which has a positive semidefinite 
Hankel matrix can be internally balanced. 

BALANCING 

Let (A,  B, C) be a minimal (that is observable and controllable) state- 
space realization with A € N""", B € il""", and C € ; I r x n  for the 
linear time-invariant system 

I = A x + B u  (1) 

y = c x .  

Although we allow A to be unstable, we shall assume throughout that X + 
p # 0 for any eigenvalues X, p ofA [i.e., X, p E u(A)]. This assumption 
is needed to  ensure the existence and uniqueness of the reachability 
Gramian W, and the observability Gramian W, which are defined 
implicitly by the equations 

AW,+ ",A'= -BB' (3) 

A 'W, + UfoA = - CTC. (4) 

The goal of balancing is  to find a coordinate transformation such that in 
the  new coordinate system the reachability Gramian and the observability 
Gramian are both diagonal and, if possible, equal. More specifically, if 
we transform the state coordinates x = TP where 7 is a nonsingular real 
matrix, then with respect to the new coordinates P, we have 

A = T-'AT, B =  T-IB, CT ( 5 )  

and 

J&'r=T-'W,T-r, Po= T'W,T. (6) 

If Wr and W o  are both diagonal, then we say that the system ( A ,  B, C )  is 
balanced by 7, and that Tis  a contrugredient transformation for W, and 
W,. If Wr and W o  are both diagonal and equal, then we say that the 
system (A,  B, C )  is internully balanced by T. One important aspect of 
balancing lies in its relationship to model reduction (see [9], [ 5 ] ,  [SI). 

It is  well known that ( A ,  B, C )  can be internally balanced when A is 
stable and (A ,  B, C )  is observable and controllable [6]. However, for 
many state-space realizations the matrix A is not stable. In  the  next 
section we characterize those ( A ,  B, C )  which can be balanced for 
unstable A .  

NECESSARY AND SUFFICIENT  CONDITIONS FOR BALANCING 

Definitions: Two matrices M I ,  M2 in P"" are similar if there exists a 
nonsingular real matrix X such that 

M i  =X-'",. (7) 

Two matrices MI, Mz in I n X "  are congruent if there exists a nonsingular 
real matrix Y such that 

M ,  = Y'M2 Y. (8) 

We need the following result which can be found in [lo]. 

Then the following are equivalent. 

transformation. 

Theorem 1: Let  SI and Sz be nonsingular real symmetric matrices. 

1) SI and S2 can be simultaneously diagonalized by a real congruence 

2) S ;  IS? is similar  to  a real diagonal matrix. 
Using Theorem  1 we obtain the following. 
Theorem 2: Assume that the state-space realization (A, B, C )  is 

observable and controllable and that X + p # 0 for any X. p € a(A). 
Then the following are equivalent. 

1) There exists a balancing transformation T for (A,  B, C). 
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2) Wr Wo is similar to a real diagonal matrix. 
Proof: Since p i X # 0 for any p ,  X E u(A), we have that there 

exist unique solutions W, and W, to (3) and (4), respectively, and these 
solutions are symmetric (see [7]). By the assumptions of observability and 
controllability we also have that W, and W, are nonsingular (see [ 1, Prop. 
4. p. 651). Now assume I ) .  Then there exists a real nonsingular matrix T 
such that (6) holds with er, fro both diagonal and necessarily real since 
T, W 0 ,  W r  are real. This means that 

T - ~ W , W , T = I . ~ " ~  (9) 

so that W,W, is similar to a real diagonal matrix. Thus, 1) 3 2). 
Now assume 2). Then W, W, = ( W?-]) - I  W, is similar to  a real 

diagonal matrix. By Theorem 1 this means that W; l and W, are 
simultaneously diagonalized by a real congruence transformation T: 

T'W;'T=D,  (10) 

TTWoT=Do (1 1) 

where D, and D, are real and diagonal. Since W, and Tare nonsingular, 
we see that D, is nonsingular and 

T-' W,T-'=D;'.  (12) 

Since D;l is diagonal, we have that T i s  a contragredient transformation 
for W, and tV0 and that (A, B, C) is balanced by T. Thus, 2) * 1). This 
completes the proof of Theorem 2. 

The following example illustrates that there are  obsewable and 
controllable unstable systems (A,  B, C) which cannot be balanced. 

Example I :  Let 
r 1 r 1  

L -I 

Then 

Since W,W, has eigenvalues X -  = 1/16 

L - I  

f d15/16i. it cannot be similar - 
to  a real diagonal matrix and hence. by Theorem 2, the system (A ,  B, C) 
cannot be balanced. 

The next theorem is the analog of Theorem  2 for internally balanced 
systems. 

Theorem 3: Assume that the state-space realization (A, B,  C) is 
observable and controllable and that X + p # 0 for any X, p E u(A). 
Then the following are equivalent. 

1 )  There exists an internal balancing transformation T for (A, B, C). 
2) W, W, is similar to a positive diagonal matrix. 

Proof: As in the proof of Theorem  2  there exist real symmetric 
nonsingular solutions Wr and W, to (3) and (4). 

Now assume 1). Then there is a real nonsingular matrix Tsuch that (6) 
holds with I@r = I@o = D diagonal. Since Wr, W, and T are 
nonsingular. we must have that D is nonsingular, and hence 

T~iH~'rW,,T=W,Wo=DD'>O, (13) 

that is cT',IVo is similar to  a positive diagonal matrix and so 1) =) 2). 

matrix T such that 
Now assume 2). Then by Theorem 1 there exists a nonsingular real 

TTW;'T=D1, T'WoT=D2 (14) 

where Dl and D: are diagonal. Now since Wr and Tare invertible, so is 
D l .  Thus. 

T-lpVrT-T=B-l D (15) 

But 

and so 

DID.= T-'W,  W,T. (16) 

That is, W, W, is similar to the diagonal product DID2. But  by assumption 
W, W, is similar to a positive diagonal matrix. Thus. the main diagonal 
entries of D, D2 are positive 

(DIDJ,,>O for i= 1 to n. (17) 

Now let 

f = T ( D l D 2 ) 1 ; J ~ D 2 ~ - ~ ~ z  (18) 

where 

(D1D2)114=diag  ((DlD2);:J) (19) 

and 

(Dzl-';2=diag (lD2,#l-"2) 

and all roots are positive. 
Then 

p W , f =  ID2/ ~"2(DIDz)'i4Dz(DID2)~iJ!D2~-'i2 

=(DID2)"2D21D21-1 (21) 

where we have used the fact that diagonal matrices commute. 
We also have 

f-' W , f ' - T = ~ D ~ ~ 1 ~ 2 ( D l D ~ ) ' L ' J D I ( D I D Z ) ~ L ' 4 ~ ~ 2 ~ 1 ~ 2  

=(D1D2)-1'2DJD21 

= ( D ~ D : ) - " 2 D ~ D ~ D ~ ' ~ D 2 ~  

= ( D I D J ' " D ; ' ~ D ~ ~ .  

D2ID21-l=diaS ( D d 1 D 2 , J )  

=diag (1D2,,1/D2.)=D;114(.   (23) 

Thus, by (23) we see that the right-hand sides of (21) and (22) are equal, 
so that f is an internal balancing transformation for (A,  B, C): 

T T W 0 f = T - ' W r f - '  

is diagonal. Thus  2). + 1) and the proof is complete. rn 

SY%lIMETRIC REALIZATIONS 

A state-space realization (A ,  B, C) with A E i2"*", B E ;?""", C E 
$1'""" is symmetric if the transfer function G(s)  = C(s l  - A ) - ' B  is 
symmetric for all complex s which are not eigenvalues of A .  A simple 
geometric series argument shows that if (A ,  B, C) is symmetric. then 
CA"B is symmetric for K = 0, 1, . . . . Symmetric systems arise 
naturally in circuit theory [ l  I ]  and any SISO system is trivially 
symmetric. 

For symmetric systems we can define the cross Gramian FVr, as the 
solution to 

AW,+  W,A= -BC (24) 

where we assume that p + X # 0 for any p.  X E u(A) .  The next theorem 
provides an elegant connection between the reachability. observability, 
and cross Gramians. 

Theorem 4: Assume that (A ,  B,  C) is symmetric and that p + X # 0 
for any 1.1. X E u(A) .  Then W f ,  = W, W,. 

Proof: This result was first proved in [2] for the SISO case, 
extended by [8] to the stable case. and proved in general in [4]. 

One of the first uses of the cross  Gramian involved characterizing the 
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minimality of (A,  B, C). By Theorem 4, (A,  B,  C) is minimal if and only 
if W, is nonsingular (see [2], [8], [4]). Then in [3] it was shown that W, 
determines the Cauchy index of the system ( A ,  B, C) and places 
restrictions on possible model reduced systems. The next theorem  shows 
that the Jordan  structure of W, determines whether the system (A ,  B, C )  
can be internally balanced. 

Theorem 5: Assume that (A ,  B, C) is an observable and controllable 
symmetric state-space realization with p + X # 0 for any p, X E a(A).  
Then the following are equivalent. 

I )  The cross Gramian W, is similar to a real diagonal matrix. 
2) There exists an internal balancing transformation 7 for (A ,  B, C). 

Proof: As in the proof of Theorem  4 W,, W,, W, exist and are 
uniquely defined by (3). (4), and (24). Moreover. by Theorem 4 we have 
W, UTo = W, CV,, As in the proof of Theorem 2 we have that IVr, W, 
are nonsingular, and hence so is W,. 

Now assume 1). That is,  there exists a nonsingular real matrix X such 
that 

X -  I W,,J = D, (25) 

where D, is a real nonsingular diagonal matrix. This means that 

W, W, = XDroX- 'XDrZ- '  = XD2 r0 X- ' (26) 

so that W, W, is similar to a positive diagonz matrix.  Thus, by Theorem 3 
there exists an internal balancing transformation Tfor (A, B, C). That is 
1) 2). 

Now assume 2). Then by Theorem 3 the matrix W,W, is similar to a 
positive diagonal matrix. This means that W:, is similar to a positive 
diagonal matrix. Now suppose for the sake of contradiction that W, is  not 
similar to a diagonal matrix. Then 

W r o =  Y-IJY where J =  [ J 1 J 2  ... ] (27) 

JK 

where the J ,  are n, x ni Jordan blocks of the form 

J, = [X,] for ni= 1 

J , = X i l  for n 8 > l ,  

where Xi # 0 for any i since W, is nonsingular. We may assume without 
loss of generality that the first block J ,  has n ,  > 1. Now 

so that J 2  is similar to  a positive diagonal matrix, and hence J :  is similar 
to a positive diagonal matrix. But 

and in particular J :  has  an eigenvector VI = (1 ,  0, . . . , 0 ) l  and a 
generalized eigenvector Vz = (0, 1, 0, . . . , 0) r. This means that J :  is not 
similar to a diagonal matrix and we have a contradiction. Thus, W, is 
similar to a diagonal matrix. Moreover,  since yo is similar to a positive 
diagonal matrix we must have that W,o is similar to  a real diagonal matrix. 
That is 2) * 1) and the proof is complete. 

We now give an example of  a minimal symmetric realization which 
cannot be balanced. 

Example 2: Let 

Then 

and 

Since W, has eigenvalues - 1 f i, we  see by Theorem 5 that (A ,  B, C )  
cannot be internally balanced. Moreover, since W, W, has eigenvalues 
-I 2i, we see by Theorem 2 that ( A ,  E ,  C) cannot be balanced at all. 

We  now show that there is a class of symmetric systems which can 
always be internally balanced; namely those systems with positive 
semidefinite Hankel matrices. 

For a state-space realization ( A ,  B, C) define  the Hankel matrix H by 

If (A,  B, C) is also symmetric with p + h # 0 for any A, p E &I), 
define the "cross-Hankel" matrix H, by 

We need the following preliminary result. 
Lemma: Let ( A ,  B, C) be a symmetric realization with p + X # 0 for 

any p1 A E &I). Then the Hankel matrix Hand the cross-Hankel matrix 
H, are both symmetric. 

Proof: Symmetry implies that CA K B  is symmetric for K = 0, 1, 
. . . , thus H i s  symmetric. In order  to show that Hro is symmetric we need 
only show that 

(CA'WrJJt?B)7=CAJW.J'B (32) 

for any i, j between 0 and n - 1.  To do this we need the fact that for 1x1 
> p(A) = max (h(A)I 

which follows from  the geometric expansion 

(34) 

and the symmetry assumption. 
Now let l', and rj be two circles in the complex plane centered at the 

origin of radii p ,  # p 2  with p , ,  p r  > p(A) .  We may then represent W, in 
two ways [7] 
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thus 

(37) 

1 * CA'(XZ-A)-'BC(X,-A)-'A'B 
=ZF I r l  Sr, X I  + 1 2  

= CAjW,d'B. (38) 

dXz dXI 

Thus, H i  = H,o and  the proof is complete. 
We now have the following. 
Theorem 6: Let (A, B, C) be a minimal symmetric realization with A 

E $ l n x n ,  B E W n x m ,  C E amxn. If the associated Hankel matrix is 
positive semidefinite, then (A ,  B, C) can be internally balanced. 

Proof: We will show that there exists matrices Q E An mn and E 
$Inxn such that 

(39) 

This  meam that W, is similar to a symmetric matrix since Hro is 
symmetric, and hence W, is similar to a real diagonal matrix. Then, by 
Theorem 5, (A,  B, C) can be inte-rnally balanced. 

In order to construct Q and B, we note that since H is positive 
semidefinite and (A ,  8, C) is minimal, then H can be written as 

H= UC2U' (40) 

where U E 2'"'' x has orthonormal columns  and 

and define C, B E B n x n  by 

Then 6 = B-I because 

Thus 

=CW,B=B-'W,G. (45) 

and the proof is complete. 
Remark: Theorem 6 is still true if H is negative semidefinite rather 

than positive semidefinite. In this case we would write - H = UX2WT 
and proceed as above.  The next example illustrates Theorem 6. 

Example 3: Let A ,  B be as in Example 2, but change C to C = BT = 
[ l  11. Then 

SO (A,  B, C) can be internally balanced. 

Finally we  note that the idea of symmetry can be extended to systems 
( A ,  B, C) for which r # m whereA E A"'", B E ; I n x m ,  C E $irxn,  in 
such a way  that the previous results are retained. Specifically we say that 
(A,  B,  C) has extended symmetry if there exists matrices U E A""', V 
E ; c r n x n  such that U and V have orthonormal columns and rows, 
respectively. 

UTU=I E 1"' 

VVT=I E 2 m x m  

and 

U C ( s I - A ) - ' B V = ( U C ( s I - A ) ~ ~ B V ) '  

for any s Cf a(A) .  For U and Vas above, define U7r0 to be the solution to 

AW,+  W,A= -BViJC 

where we assume that p + A # 0 for any p, X E o ( A ) .  Then we have by 
the same proof techniques. 

Theorem 4: Assume that (A ,  B, C) has extended symmetry as above 
and that p + X # 0 for any p. X E a@). Then W:o = W,Wo. 

Theorem 5: Assume that (A,  B, C) is an observable and controllable 
extended symmetric realization with p + # 0 for any p. X E @). 
Then the following are equivalent. 

1) The cross Gramian W r o  is similar to a real diagonal matrix. 
2) There exists an internal balancing transformation 7 for (A,  B, C). 
Theorem 6: Let ( A ,  B,  C) be as in Theorem 5. If the Hankel matrix H 

defined by 

H =  [En-] [ B V  ABV ... A"-'BV]  

is positive semidefinite, then (A, B, C) can be internally balanced. 

CONCLUSION 

We have presented simple necessary and sufficient conditions for  the 
existence of balancing transformations for minimal realizations (A,  B, 
C). These conditions do not  hold  in some cases as seen by example. For 
symmetric realizations we have shown that the real diagonalizability of 
the cross Gramian determines whether ( A ,  B,  C) can be internally 
balanced. Lastly. we have shown that any minimal symmetric realization 

a positive semidefinite Hankel matrix can be internally balanced. 
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