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Abstract-Advances in information technology, ubiquitous 
communications, and distributed generation and storage reveal 
new opportunities for the participation of demand-side resources 
in balancing the physical and economic operation of electric 
power systems. To better understand the potential impact of this 
participation, accurate, detailed energy resource models are 
necessary at the distribution feeder level. This presentation 
describes a detailed approach to residential energy resource 
modeling that preserves the individual characteristics of major 
residential appliances and human behavior patterns so that their 
contribution to energy efficiency schemes and intelligent demand 
curtailment algorithms is properly portrayed. These models are 
derived from previous analyses of residential and commercial 
building systems supported by data collected from the End-Use 
Load and Consumer Assessment Program (ELCAP) undertaken 
by the Bonneville Power Administration from 1983 to 1990. 
Preliminary results of using these models in distribution system 
simulations indicate that non-obvious, complex behavior patterns 
can emerge when consumers are confronted with varying price 
signals. 

Index Term-adaptive systems, complexity theory, home 
appliances, load modeling, power distribution, power system 
simulation 

I. INTRODUCTION 
s the restructuring of the electric power industry moves A from wholesale to retail markets, new incentives are 

emerging to encourage the participation of demand-side 
resources in the economic operation of the system. Energy 
service providers are at various stages of development to 
incorporate the rising penetration of distributed energy 
resources in their service areas into their operations portfolio. 
These resources include distributed generation, storage, and 
controllable load. Though generally regarded in the 
experimental phase today, several organizations have 
programs for commercial sector distributed energy resources 
to participate in day-ahead energy, emergency energy, and 
similar markets [ 11. Other programs offer time of date rates 
to commercial or residential customers. The decrease in cost 
and increase in intelligence of sensors and controllers together 
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with the wide availability of telecommunications over 
interoperable platforms (wire, fiber, wireless.. .) is converging 
with forces in the electric power industry toward higher 
efficiency, greater utilization of assets, and targeted customer 
services. Entrepeneurial load serving entities and energy 
aggregators are moving forward with their creative ideas in 
this area; however, many questions arise concerning the 
impacts of such operational changes on the distribution 
system. 

How do these programs affect the diversity of the load 
profile experienced at the head of the feeder? How far can 
the peak load be brought down or controlled? What savings 
could be realized on system upgrades and expansion with 
such programs? By stimulating active, independent decision 
making with economic signals, what complex behaviors will a 
plethora of intelligent devices exhibit? 

To address these questions, the empirically driven, non- 
interactive load models need to give way to sophisticated 
models that simulate the independent behavior of those 
components that contribute to the feeder load shape. 
Specifying a time, date, and temperature for scaling load 
profiles based on historical data is no longer adequate when 
energy consumers are given the choice to participate in 
various programs offered by multiple organizations. To 
simulate the emergent behavior of potential new economic 
incentive programs and control schemes requires a significant 
change in the way demand has been modeled traditionally. 

The following sections present the components required 
for a more detailed modeling of the residential loads and their 
potential use within a distribution system simulation 
environment. Though this paper focuses on residential load 
models, the work represents an initial step forward. Future 
work is planned to encompass commercial and industrial 
consumers. 

11. BO~TOM UP APPROACH 

A.  Residential Empirical Models 
Nearly all of today’s distribution load forecasting is 

empirically determined. That is, most approaches to 
determining load growth and load profiles are based on some 
combination of measurement and probabilities [2], [3]. 

The contributions from all the load components within the 
feeder are combined to make a single, lumped model. This 
top-down form of modeling does not allow the extraction or 
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regression of the individual parts from the total load. It is 
inherently unable to simulate the effects of changes in the 
interactions between individual load behaviors that contribute 
to the aggregate load shape at the head of a feeder. 

B. Detailed Residential Models 
An alternative to empirical models is a deterministic 

model. Consider a residential heating ventilation and air 
conditioning (HVAC) system. By describing this system with 
differential equations and thermostatic controllers, a 
computational model for the behavior of the HVAC can be 
created. Modeling the residential appliance to this level of 
detail allows the computer to simulate their combined 
interactions. The result is an aggregated behavior that is not 
realizable with an empirical model. 

An essential objective of the detailed model is to ensure 
that it accurately reproduces the effects of load diversity. 
This behavior can be seen in the following graphs of 
simulations with detailed models of thermostatically 
controlled appliances (HVAC, water heaters, and 
refrigerators). 
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Fig. 1: Load diversity as household loads increase 
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Fig. 2: Load duration curves as diversity increases 

Fig. 1 shows that the effects of diversity are indeed 
represented in the model output. This is verified by looking at 

the load duration curves in Fig. 2 for the four cases in Fig. 1. 
As more customers are added to the distribution feeder, the 
peak load per customer is dropping, which is a direct result of 
increased diversity. 

Combining many similar models, such as HVAC, hot water 
heater, lighting, and residential appliances, creates a model of 
a house. Modeling many homes statistically diversifies the 
model parameters and initial conditions, producing what is in 
essence a realistic residential feeder model. The model 
currently used is based on the End-Use Load and Consumer 
Assessment Program (ELCAP) data collected by the 
Bonneville Power Administration (BPA) from 1983 to 1990 
[4]. From this data we obtained thermal parameters and load 
shape probability density functions for the most significant 
building end-uses [ 51. 

When the exogenous inputs vary, such as outside 
temperature and radiant sunlight, variations on the distribution 
system are evident. However, if this model is joined with 
economic market structures (through retail contracts), and the 
loads are provided with adjustable curtailment algorithms, 
then a distribution system owner could also use this model to 
forecast the economic benefit of using alternative rate 
structures. Such a distribution model is shown in Fig. 3. 

h 

Distributed 

Fig. 3: Residential feeder model 

111. RESIDENTIAL DEMAND TYPES 
Residential appliances can be categorized into those that 

are thermostatically controlled and those that are non- 
thermostatically controlled. In addition, the human behavior 
that controls the setpoints and use of these appliances must 
also be modeled. 

A. Thermostatically Controlled Appliances 
There are three types of thermostatically controlled 

appliances allowed in the model. They are HVAC systems, 
electric water heaters, and refrigerators. Each of these 
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appliances is modeled in a similar manner, so we shall focus 
only on the HVAC model for illustrative purposes. 

A major assumption integrated into this process is that 
appliances controlled by a thermostat curtail load by adjusting 
their thermostat setpoint. For example, if the distribution 
system reports to the HVAC system that the cost of electricity 
has just risen from 5 cents per kWh to 15 cents per kwh, then 
the HVAC system would respond (within bounds) by lowering 
the heater’s thermostat setpoint, or alternatively, raising the 
air conditioning setpoint. The entire process of developing a 
parametric thermal model based on end-use data is called 
Equivalent Thermal Parameters and is illustrated in Fig. 4, 
below, see [6]-[8]. 

Change in 
Thermostat Sslp~inl  

Power 

Thennostat Setpoint 

4 
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Heat Transfer 
Model Analog 

equations allows load 
to be calculated 

Fig. 4: Model of residential HVAC systems 

The fundamental parameters in thermally controlled 
appliances are the size of the appliances, the nominal 
thermostat setpoint and ambient thermal conditions. 
Although each of these variables can be individually set for 
each appliance, the variables are typically set using random 
variables within bounds, assigned by uniform or Gaussian 
distributions. 

The central part of Fig. 4 explains in detail how the 
thermally controlled appliances are modeled. Each type of 
appliance is modeled with a similar heat transfer model. 
However the constants within each model for each house are 
randomly distributed within expected ranges. 

The rising curves in Fig. 5 indicate operation of the HVAC 
heater, and show a temperature rise within the house. The 
falling curve shown in Fig. 5 represents a cool down period 
where the home heating system is not active. As the HVAC 
unit cycles, the temperature in the house rises and falls with it. 
The cycling points of the HVAC unit are shown as times t l -  

t4. These times indicate the end of a solution set, which is 
any event in the system such as reaching a temperature limit 
or reaching the end of a time step. At each end of a solution 
set, the coefficients of the differential equations are updated, 
then solved for time as a function of temperature. 

This method of calculating load usage for thermostatically 
controlled loads has a tremendous advantage in computational 
speed over a finite difference method. Tradeoffs between 
accuracy and computation time can be easily made by 
changing the solution time step. Decreasing the time step 
enhances solution accuracy by allowing the differential 
equation coefficients to be updated more frequently. 

Coefficients for T(t) are allowed to change between any solution 
set (defined by reaching a temperature limit or time step limit) 
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Fig. 5: Differential models of controlled thermal behavior 

B. Non- Thennostatically Controlled Appliances 

Appliances such as dishwashers, washers, and dryers 
cannot use the thermostatic method of curtailment because 
they are not controlled with a thermostat. A different 
technique of load deferral was designed based on a Monte- 
Carlo method. 

This approach, which computes the amount of load 
deferred for non-thermal loads, combines a Monte-Carlo 
method with a queuing technique. The calculation is 
analogous to a laundry system. Let the probability of doing a 
load of laundry be based on a probability density function 
(PDF) curve, as well as the amount of laundry in the laundry 
basket (which represents the queue). Let the queue increase 
by a linear function (in the absence of better information), and 
let it drop each time a load of laundry is done. 

A form of Monte-Carlo method is used to determine if and 
when laundry will be done. A new curve is created called the 
‘Likelihood’ curve. This function is the combination of the 
original PDF curve and the variable queue. The resulting PDF 
shape and amplitude represent the likelihood of doing a load 
of laundry on any particular day. 

By comparing random numbers with the likelihood curve, a 
determination is made whether to do a load of laundry or not. 
Random numbers that fall beneath the curve represent a load 
of laundry being completed and a subsequent reduction of the 
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queue, and those above the curve represent no laundry being 
done. Even though every laundry event is randomly assigned, 
a histogram of all laundry events for all homes approaches the 
shape of the original PDF curve as the number of homes 
increases. 

Consider the implementation of a price responsive load 
using this Monte-Carlo process. If the likelihood graph in Fig. 
6 represents the response to a residential spot price for 
electricity, then a curtailment strategy can be applied as 
follows. A curtailment curve is selected as a scaled and 
capped version of the spot market price (see Fig. 7, bottom 
graph). This signal is used to reduce the Likelihood curve, 
thus lowering the probability of an appliance usage event from 
occurring. This scheme results in the same number of events 
occurring on average, but the timing of events will be 
attracted to the lower priced hours, resulting in reduced 
consumer cost. For the scenario presented here, the cost per 
event was lowered by over 6%. 

Non-Thermostatically Controlled Appliance Opemtion 
0.2 4 c 

F O . l -  

01 
n 2 4 5 fi 7 

- .  
0 1 6 

:; 
0 1 2 3 4  5 6  7 

Time (days) 

Fig 6 .  Load shape generation 

Precisely which curtailment strategy is selected is much 
less important than the ability to perform sensitivity studies by 
varying the related parameters. 
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Fig. 7: Load shape generation with curtailment 

C. Human Behavior 
Human behavior can be approximated using a load-shape 

(i.e., diurnal and seasonal behaviors). The importance of 
economic decision-making behavior in the long-term 
evolution of power systems must also be considered. 

The mechanism of contract selection is based on the 
modified Roth-Erev choice logic shown in Fig. 8. This 
method was chosen based principally on the analysis in [9]. 
Consumers receive a bill over an integrated period of time 
(for simplicity we assume this period is a month). Because 
consumers are different in their socio-economic 
characteristics (e.g., income, age, family size, region and 
climate, ownership) they have different expected utility 
functions. Expected utility functions reflect the deviation of 
the household consumption pattern from the average 
consumption as a result of differences in socio-economic 
characteristics drawn from the Consumer Expenditures 
Survey [lo]. Consumers every month make a comparison 
between this month's bill and the expected electricity bill 
considering weather and past consumption. If the bill is less 
than the expected bill, the consumer will do nothing and wait 
until next month; otherwise, the consumer will assess the 
dollar value of the difference between the expected bill and 
the actual bill. If the difference is less than some critical 
value, the consumer will do nothing. If the difference exceeds 
a critical threshold of fitness, the consumer will explore the 
options for switching contracts and choose the option that 
would have yielded the lowest cost based on their history of 
consumption. 

Elapst 
Time = 
1 month 

Change 
Receive Bill Conbad 

Fig. 8: Residential rate contract selection strategy 

IV. EXOGENOUS INPUTS 
The residential appliances within a region show various 

levels of sensitivity to their ambient conditions. This 
exogenous information is configured as inputs to a residential 
feeder simulation system. 

A. Weather 

residential loads. 
Weather has important impacts on the behavior of 

The models accept weather data, which 
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influences their behavior as they run in the simulation 
environment. Real, simulated, or even constant weather data 
can be easily used. The current implementation uses only 
temperature; however other weather parameters such as 
insolation, humidity, and wind can be added. Insolation 
affects the total heat gain, humidity primarily affects the 
cooling load, and wind affects the overall ventilation rate of 
the residence. 

B. System Voltage & Frequency 
The voltage and frequency experienced at the head of the 

feeder is primarily driven by the system state at the 
transmission level. Voltage impacts are reflected in models of 
distribution system infrastructure and an associated power 
flow. The residential appliance models presently respond to 
nominal values of voltage and frequency, but are designed to 
be sensitive to changes in these values in the future. As an 
initial step, we plan to include the effect of voltage on 
induction motors and the effect of frequency on under- 
frequency controlled devices. 

C. Economic Conditions 
Wholesale power and fuel prices, as well as borrowing 

rates, all contribute parameters that drive the economic 
models used in the simulation. These economic models 
represent the contract choices to the consumer, which drive 
their behavior. Examples include fixed price, time of day, and 
spot market contracts. 

D. Time of Day, Day Type, Season 
The time of day, day type, and seasonal parameters are 

governed by a simulation clock that is advanced as the 
simulation proceeds in time. Every component of system has 
access to the clock and many use the clock to determine 
schedule-based changes in control and synchronization to 
playback tapes (e.g., weather, wholesale power prices, time of 
day rates). 

V. AGGREGATED, FEEDER-LEVEL BEHAVIOR 
To analyze the aggregated behavior of residential demand 

models, a distribution system simulation environment was 
constructed. Early experience with the simulator 
demonstrates complex load behavior that is not modeled in 
classical approaches. 

A. Simulation Environment 
A simulation environment packaged under the name Power 

Distribution System Simulation (PDSS) has been developed 
that makes use of the detailed residential demand models. A 
dialog-based interface provides users with access to the 
system model and various commands for controlling the 
simulator (see Fig. 9). Among other dialogs are a rate 
contract design tool, and an output selection tool (Fig. 10 and 
11). 

B. Preliminary Simulation Experiences 
Initial runs of the simulator demonstrate behavior not 

supported by traditional load modeling methods. A prime 
example is the impact of abrupt rate changes on the diversity 
of load usually experienced at the head of a feeder. - -  

Fig. 9: PDSS main dialog 

I 
Fig.10: PDSS rate structure dialog 

pbts Sdktad AvaWe pbls 

Load forecast 

I Day 2*-! " 2 . . " A  I 
Fig. 1 1 : PDSS output selection dialog 

Simulations of significant penetrations of customers on 
time of day or spot market contracts demonstrate that abrupt 
price increases cause many appliances to curtail load as 
expected; however, once the prices return to lower levels, the 
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equipment resumes its consumption pattern. Much like the 
effect on resumption of service after a feeder outage, if all 
appliances on the feeder experience the same signal, then 
these economic signals can have the effect of synchronizing 
the demand patterns until load diversity is gradually restored 
over the course of a few hours. This can put unanticipated 
stress on the distribution system infrastructure. 

In other simulations, time of day contracts were 
demonstrated to help “flatten” the load duration curve; 
however, preliminary indications from simple curtailment 
schemes reveal that peak conditions may not drop as 
dramatically as hoped. One reason appears to be the 
displacement of the peak to another time slot, instead of 
removing it all together. 

VI. FUTUREWORK 

Further work is needed to calibrate these residential load 
models with other actual data sets besides the ELCAP data. 
Though each home’s electric consumption is small relative to 
other building types, the number of different types of 
appliances is great. Models of commercial buildings are 
expected to be developed from the cornerstones laid down by 
the residential models. Similarly, large industrial consumers 
need to be modeled. Though some of the residential load 
modeling work may also apply to them, the custom nature of 
their equipment and configurations means that modeling such 
loads will likely require significant customization for each 
one. 

To round out the distribution system simulator 
environment, the modeling must extend beyond load. Other 
areas for modeling include distributed generation and storage, 
more elaborate market economic models, simulated forecasts, 
as well as models for the communications systems that 
support information exchange and control. These models can 
benefit from work already being done by other researchers. 

Finally, the complex interactive behavior that emerges on 
the distribution system will also have bulk transmission level 
impacts. Discovering reduced ordered equivalents of 
distribution feeders that adequately represent the behavior of 
load to changes in system conditions will become necessary 
for analyzing the implications of these feeders on the power 
grid. In addition, such equivalents can bring understanding to 
the influence of electrical and economic signal interactions 
between the transmission level and the distribution level of 

system. 
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