
Software Evolution
Through Rapid

Pro t o typing
Luqi

Naval Postgraduate School

oftware evolution refers to all ac-
tivities that change a software sys-
tem, including responses to re-

quirements changes, improvements to per-
formance or clarity, and repairs for bugs.
The older term “maintenance” refers to the
same activities in the context of the tradi-
tional life cycle, with a connotation that
maintenance is done after the initial devel-
opment. In more recent process models
such as rapid prototyping, evolution activi-
ties are interleaved with the initial develop-
ment and continue after the delivery of the
initial version of the system. Since soft-
ware evolution accounts for more than half
of the total software cost, great interest has
focused on reducing the effort required.
Prototyping provides one promising ap-
proach to achieving this goal.’,’

In this article, a prototype is a concrete
executable model of selected aspects of a
proposed system. Rapid prototyping is the
process of quickly building and evaluating
a series of prototypes.

Figure 1 illustrates the iterative proto-
typing cycle. The user and the designer
work together to define the requirements
and specifications for the critical parts of
the envisioned system. The designer then
constructs a model or prototype of the
system in a prototype description language
at the specification level. The resulting
prototype is a partial representation of the
system, including only those attributes
necessary for meeting the requirements. I t
serves as an aid in analysis and design

Rapid prototyping
supports software

evolution as well as
initial development.

Computer-aided
prototyping tools and
object-based methods
support evolution of
both prototypes and
production software.

rather than as production software.
During demonstrations of the prototype,

the user evaluates the prototype’s actual
behavior against its expected behavior. If
the prototype fails to execute properly, the
user identifies problems and works with
the designer to redefine the requirements.
This process continues until the user deter-
mines that the prototype successfully cap-
tures the critical aspects of the envisioned
system.

The designer uses the validated require-
ments as a basis for designing the produc-

tion software. Additional work is often
needed to construct a production version of
the system. For example, the prototype

(I) might not include all aspects of the
intended system,

(2) might have been implemented using
resources that will not be available
in the actual operating environment.

(3) might not be able to handle the full
workload of the intended system, or

(4) might meet its timing constraints
only with respect to linearly scaled
simulated time.

Experience with production use of a deliv-
ered system often leads to new customer
goals, triggering further iterations of the
prototyping cycle.

The traditional model of software devel-
opment relied on the assumption that de-
signers could stabilize and freeze the re-
quirements. In practice, however, the de-
sign of accurate and stable requirements
cannot be completed until users gain some
experience with the proposed software
system. Thus, requirements often must
change after the initial implementation.

In traditional approaches, these require-
ments changes trigger changes to the pro-
duction version of the system during the
maintenance phase. In prototyping ap-
proaches, an appreciable fraction of the
requirements changes trigger changes in a
prototype version of the system. This is
useful because a prototype description

May 1989 0018-Y162/8Y/0500 0013%01 00 1989 lttt 13

(1) is significantly simpler than the
production code,

(2) is expressed in a notation tailored to
support modifications, and

(3) is suitable for processing by soft-
ware tools in a computer-aided
prototyping environment.

,

These factors make it possible to modify a
prototype more easily than a production
version of the system. They make proto-
typing especially attractive for unfamiliar
application areas with uncertain require-
ments.

In the approach to rapid prototyping we
will look at here, software systems are
delivered incrementally and requirements
analysis continues throughout the process,
interleaved with implementation and evo-
lution.) We will focus on reducing require-
ments errors through prototyping before
undertaking the incremental implementa-
tion effort for each deliverable version of
the system. Incremental delivery lets users
gain early experience with the software in
the actual production environment. It also
lets developers adjust the requirements to
reflect the effects of the initial versions of
the system on the customers’ perceptions
of their problems. Thus, incremental deliv-
ery extends the advantages of prototyping
to the production environment.

The problems of software evolution are
especially prominent during rapid proto-
typing because prototypes are subject to
frequent and repeated changes. The poten-
tial benefits of prototyping depend criti-
cally on the ability to modify the proto-
type’s behavior with substantially less
effort than required to modify the produc-
tion software. Computer-aided prototyp-
ing and object-based prototyping provide
the solutions to this problem. Computer-
aided prototyping provides mechanical
assistance, and object-based prototyping
provides conceptual simplicity.

Computer-aided rapid prototyping im-
proves the efficiency and accuracy of
evolutionary development by introducing
software tools that assist the designer in
constructing and executing the prototype
quickly and systematically. These tools
make it attractive to use prototypes for
evaluating evolutionary changes after a
version of the system has been delivered as
well as for the initial version.

Object-based prototyping is based on
data abstraction and inheritance. Objects
encapsulating the data in the prototype
system serve as the basis for design and
implementation. Since the data in an appli-
cation is generally more stable than the

Praductsorr
use

Initial I goals

I Problems I Prototype

New

Figure 1. The prototyping cycle.

processing steps, this leads to system de-
scriptions that are easier to modify than
those based primarily on procedural ab-
stractions. Inheritance helps to reduce the
labor involved in constructing a system by
allowing inclusion of common aspects of
the code in many different contexts with-
out explicitly repeating the details. Objects
also provide convenient components for
code reuse, parallel execution, and version
control. Thus, object-based approaches
make prototypes more flexible and auto-
mation easier to a ~ h i e v e . ~

Evolution based on the bare program
code is very difficult or impossible to
achieve, because we need information
about the requirements, specifications, and
design to change the code without damag-
ing it. Most tools supporting evolution at
the program level are primitive and lan-
guage specific, such as facilities for gener-
ating cross-reference listings and for edit-
ing and storing different versions of pro-
gram documentation. While such facilities
can reduce the mechanical work involved,
few software maintenance tools operate on
the semantic level and few good ideas

address the general software maintenance
problem. To support the software evolu-
tion process, tools operating at the seman-
tic level should help manage the relation-
ships among the implementation, the
prototype description, and the require-
ments.

Computer-aided
prototyping tools for
evolution

An integrated set of computer-aided
software tools, the Computer- Aided Proto-
typing System (CAPS),5 has been designed
to support prototyping of complex soft-
ware systems, such as control systems with
hard real-time constraints. The require-
ments for such systems are especially dif-
ficult to determine, and their feasibility is
hard to establish without constructing an
executable model of the envisioned sys-

If carried out manually, the prototyping
process has limited benefits because of the

14 COMPUTER

time and effort involved. CAPS can in-
crease the leverage of the prototyping strat-
egy by reducing the effort the designer puts
into producing and adapting a prototype to
perceived user needs.

The evolution of a prototype starts after
one pass through the prototyping cycle
shown in Figure 1 . The analysts have de-
termined the initial requirements by talk-
ing to the customer, constructed an initial
prototype, and demonstrated it to the cus-
tomer, who finds some of the prototype’s
behavior unacceptable and requests modi-
fications.

Initially, the facilities provided by
CAPS help adapt the prototype to the new
requirements. We can implement modifi-
cations to the production software by using
CAPS to

(I) add changes to prototype systems,
(2) retrieve software components from

(3) generate production code if needed,
(4) assemble production systems

through the prototyping cycle, and
(5) manage the process using the proto-

typing database.

the software base,

The main components of CAPS are a
special prototyping language and a set of
tools, illustrated in Figure 2 . The main
subsystems of CAPS are the user interface,
the software database system, and the
execution support system. The rest of this
section describes these components in
detail.

Prototyping language features sup-
porting modifications. CAPS tools com-
municate by means of the Prototype Sys-
tem Description Language (PSDL),’
which integrates the tools and provides the
prototype designer with a uniform concep-
tual framework and a high-level descrip-
tion of the system. PSDL supports frequent
design modifications by meeting the fol-
lowing subgoals.

Modularity. The language must make it
easy for the system designer to create a
prototype with a high degree of module
independence and to preserve its good
modularity properties across many modifi-
cations. Good modularity is essential for
easy modification.

An experimental study showed many of
the problems that arise in modifying soft-
ware result from interactions between
widely separated pieces of code.’ Locality
of information was an important design
goal of PSDL. The underlying computa-

(UMnI interface

Debugger Browser Syntax Ex* Graphical
directed system editor
editor

I I

Software
database
system

software
design
management
system

scheduler Translator

rn subsystem

Figure 2. Main Computer-Aided Prototyping System tools.

tional model was chosen to make all inter-
actions between components explicit. This
model supports a system decomposition
criterion that combines dataflow and con-
trol flow considerations.*

Good modularity means the prototype
should be realized by a set of independent
modules with narrow and explicitly speci-
fied interfaces. PSDL supports this con-

cept via operators and data streams. An
important property of the language is that
two distinct operators can communicate or
affect each other’s behavior only by means
of the data streams explicitly connecting
them, either directly or indirectly.

This locality property is important for
maintenance. It allows the set of modules
that can potentially interact with a given

May 1989 15

module to be determined through a simple
mechanical analysis of the dataflow net-
work. This allows the software tools to
guarantee that all aspects of a proposed
change have been covered. The locality
property also encourages designs contain-
ing an independent component for each
major design decision. Such designs are
easier to modify because the information
required to change a design decision is
localized in one region of the code.

The locality property is embodied by the
PSDL scoping rules and mechanically
enforced. The implementation of an opera-
tor can only refer to the explicitly declared
input and output streams of the operator
and to data streams local to the implemen-
tation of the operator. Implementations of
operators representing state machines can
contain closed loops consisting of local
data streams.

Simplicity. The language should be
simple and easy to use. PSDL is simple and
easy to use because it contains a small
number of powerful constructs. Designs
are described in PSDL as networks of
operators connected by data streams.

Such networks can be represented as
dataflow diagrams augmented with timing
and control constraints. The user interface
uses the diagrams to provide a convenient
means for presenting the system structure
to the designer. The operators in the net-
work can be either functions or state ma-
chines. The data streams can carry excep-
tion conditions or values of arbitrary ab-
stract data types.

Reuse. The language should be suitable
for specifying the retrieval of reusable
modules from a software base. PSDL sup-
ports reusable components with uniform
specifications suitable for retrieving mod-
ules from a software base. The specifica-
tion part of a PSDL component contains
several attributes that describe the inter-
face and behavior of the component. These
attributes help automatically generate a
uniform specification for the reusable
component? These uniform specifications
are used both for retrieval of reusable
components and for organizing the soft-
ware base.

Adaptability. The language should sup-
port small modifications to the behavior of
a module without the need to examine its
implementation. PSDL supports small
modifications to modules by means of
control constraints. We can use control
constraints to impose preconditions on the

execution of a module, to add filters to the
output of a module, to suppress or raise
exceptions in specified conditions, and to
control timers. These facilities allow small
modifications to the behavior of a module
to be expressed independently of its im-
plementation.

For example, a common problem dis-
covered in prototype demonstrations is
that an operator has the intended behavior
most of the time but not always. The PSDL
control constraints governing conditional
execution of operators can help solve the
problem. Wecould add acontrol constraint
in the form of an input guard predicate,
where the guard predicate describes the
circumstances in which the execution of
the operator will produce the intended
result and disables the execution of the
operator in cases where i t would not. This
allows the addition of another operator for
producing the correct output in the remain-
ing cases, controlled by a complementary
guard predicate.

Abstraction. The language should sup-
port a set of abstractions suitable for de-
scribing complex software systems with
real-time constraints. PSDL provides ab-
stractions suitable for describing large
systems and real-time constraints. These
include the nonprocedural control con-
straints mentioned above, timing con-
straints, timers, functional abstractions,
and data abstractions.

Examples of timing constraints include
the maximum execution time, the maxi-
mum response time, and the minimum
calling period. Timing constraints implic-
i t ly determine when operators with hard
real-time constraints will execute. This
simplifies evolution by removing explicit
scheduling decisions from the design, thus
allowing a software tool rather than the
designer to handle rescheduling caused by
design changes.

Requirements tracing. The language
should support requirements tracing.
PSDL supports requirements tracing by
means of a construct for declaring the
requirements associated with each part of
the prototype. Requirements tracing is
important because the prototype must
adapt to the changing perceptions of the
requirements resulting from demonstra-
tions of prototype behavior. The links be-
tween each requirement and the parts of
the prototype realizing the requirement
determine which parts of the prototype to
modify when a requirement is changed or
dropped.

To prevent the structure of the design
from being corrupted by multiple modifi-
cations, we must remove parts of the code
no longer supported by an updated set of
requirements. This cannot be done safely
unless the correspondence between the
requirements and the code is recorded and
kept up to date.

The facilities for recording require-
ments trace information in PSDL are used
by software tools in CAPS to provide auto-
mated aid in maintaining and using this
information.

User interface for interactive control
of prototypes. The user interface aids
evolution by providing facilities for enter-
ing information about the requirements
and design, presenting the results of proto-
type execution to the customer, guiding the
choice of which aspects of the prototype to
demonstrate, and helping the designer
propagate the effects of a change. The user
interface consists of a syntax-directed edi-
tor with graphics capabilities, an expert
system for communicating with end users,
a browser, and a debugger.

The editor enables convenient entry of
PSDL descriptions into the system while
preventing syntax errors. It also supports
displaying graphical summary views of
the prototype, maintaining the require-
ments trace, and locating parts of the proto-
type design related to particular require-
ments or data streams.

The expert system provides a paraphras-
ing capability that generates English text
from PSDL descriptions. This allows end
users to directly examine the prototype
without being familiar with PSDL.

The browser allows the designer to inter-
act with the software database. It has facili-
ties for retrieving and examining reusable
components stored in the software data-
base system.

The debugger allows the designer to
interact with the execution support system.
It has facilities for initiating execution of
the prototype, displaying results or trace
information, and gathering statistics about
prototype behavior and performance. A
facility for recording test case coverage
information helps guide the choice of sce-
narios for a demonstration run.

The user interface helps the prototype
design team identify the tasks required to
update the prototype. The user interface
maintains the correspondence between
requirements and parts of the prototype,
along with lists of unresolved new require-
ments and unresolved modified require-
ments. Whenever a member of the design

16 COMPUTER

team is ready for a new task, the system
presents the lists and lets the designer pick
an item to resolve. If the designer chooses
a modified requirement, the interface re-
turns a list of modules previously support-
ing the requirement and lets the designer
check them off as they are adapted or
determined to be still valid.

The effort required for this task coordi-
nation is minimized by presenting the lists
as menus and allowing the designer to pick
items using a pointing device. Choosing an
item results in a summary view of the
affected modules, which can be browsed
and updated as required.

The user interface speeds up the process
of adapting the prototype by

(1) helping to coordinate tasks per-
formed by a team of designers,

(2) helping to focus the designer’s at-
tention on the information relevant
to a task,

(3) providing summary views of the
system or selected components, and

(4) locating all potentially relevant
parts of the prototype.

Software database for managing de-
scriptions and building blocks. The soft-
ware database system consists of a design
database, a software base, a software de-
sign-management system, and a rewrite
subsystem. The design database contains
the PSDL prototype descriptions for each
software development project using
CAPS. The software base contains PSDL
descriptions and code for all available
reusable software components. The soft-
ware design-management system manages
and retrieves the versions, refinements,
and alternatives of the prototypes in the
design database and the reusable compo-
nents in the software base. The rewrite
subsystem translates PSDL specifications
into a normalized form used by the design-
management system to retrieve reusable
components from the software base.’

The components of the software data-
base actively contribute to the process of
adapting the prototype to new require-
ments. The software design-management
system helps maintain the design history
and locate relevant reusable software
components. The design history consists
of the relationship between each version of
the requirements and the corresponding
versions of parts of the prototype. This
information is useful because the customer
will sometimes retreat to previous versions
of the requirements. Situations in which

customer gives up on an ambitious require-
ment in response to cost or performance
estimates resulting from examination of
the prototype. In such cases, parts of the
requirements revert to previous configura-
tions. The system helps restore the corre-
sponding parts of the prototype to their
previous configurations.

The design database also provides con-
currency control functions that allow mul-
tiple designers to update parts of the proto-
type without unintentional interference. In
the interest of minimizing delay, the de-
sign database will not lock out read-only
access to any part of the design, even while
the design is being updated. Instead, the
system will allow examination of the pre-
vious version of the component, with a
warning that a new version is currently in
preparation. On request, the system will
provide information about the reason for
modification of the component (such as a
new or modified requirement). Enhance-
ments to alternative versions can be ex-
plored in parallel, thus speeding up ex-
ploratory evolution.

The software base provides reusable
software components for realizing given
PSDL specifications. The software base
speeds up evolution by providing many
different versions of commonly used
components, making i t easier to try out
alternative designs. In the PSDL prototyp-
ing method,* modules are realized by three
main mechanisms:

(1) Retrieval of a suitable component
from the software base. The software base
contains generic modules with parameters
determined as part of the retrieval process.
It also contains rules for matching a speci-
fication by means of a composite operator
realized by a network of operators, at least
one of which must be an available reusable
component.’ The retrieval mechanism can
therefore perform some routine aspects of
bottom-up design, freeing the designer
from the need to be familiar with all the
reusable components in the software base.

(2) Decomposition of the component
into a network of simpler components. The
designer does this if the component cannot
be retrieved directly from the software
base and if the component is sufficiently
complex to benefit from decomposition
into simpler parts.

(3) Direct implementation in a program-
ming language. The designer does this if
the software base does not contain a com-
ponent that performs the required function
with the required speed.

tion of object-based databases for manag-
ing reusable components is to allow the
representation and retrieval of an un-
bounded number of components given
finite memory and processor speed. We
must consider an unbounded number of
components because software designs can
contain arbitrary user-defined abstract
data types, and, to be useful, the reusable
components in the component database
must be applicable to all of the types in this
infinite set.

A practical approach to this problem
regards the database as containing all the
components that can be generated from a
finite set of explicitly stored components
by finite combinations of a set of primitive
component constructors. Examples of
component constructors are transforma-
tions that instantiate generic parameters or
that create a composite component by
interconnecting a pair of available compo-
nents.

Retrievals from such databases will
generally involve a limited degree of logi-
cal inference, to determine whether a
component matching the query can be
constructed from available components
within a given limited number of construc-
tor applications. Limits are needed to make
sure retrievals will always terminate.
These logical inferences are performed
according to rules stored in the knowledge
base associated with the component li-
brary.’

Execution support for demonstrating
effects of changes. The PSDL execution
support system contains a translator, a
static scheduler, and a dynamic scheduler.’
The translator generates code that binds
together the reusable components ex-
tracted from the software base. Its main
functions are to implement data streams,
control constraints, and timers. The static
scheduler allocates time slots for operators
with real-time constraints before execu-
tion begins. If the allocation succeeds, all
operators are guaranteed to meet their
deadlines even with worst-case execution
times. As execution proceeds, the dynamic
scheduler invokes operators without real-
time constraints in the time slots not used
by operators with real-time constraints.

The execution support system helps
speed up design changes by providing a
localized view of the processes in the
prototype, analyzing the prototype’s tim-
ing properties, and providing the ability to
quickly demonstrate the consequences of

this might happen include cases where the The essential problem in the organiza- design decisions through prototype execu-

May 1989 17

Pr6totyping
obiect . . . Localized information

... Semantic independence

... Component specification

... Version control

. . . Unit for concurrency

. ..Reusable component

... Consistency rules

object

Figure 3. Objects and general properties.

tion. These features are especially impor-
tant for prototyping real-time systems.

At the programming language level,
implementations of real-time systems are
difficult to understand because the instruc-
tions of several logically independent
processes must often be interleaved to meet
timing constraints.’O PSDL presents a view
to the designer in which logically distinct
processes are represented as separate inde-
pendent components. The PSDL execution
support system contains a translator that
mechanically transforms this independent
representation into the corresponding pro-
gramming language representation, add-
ing the necessary interleaving in a fashion
transparent to the designer.’ ’

If the static scheduler succeeds in con-
structing a schedule, the operators in the
schedule are guaranteed to meet their tim-
ing constraints even under worst-case
operating conditions. If the static sched-
uler fails to find a valid schedule, i t pro-
vides diagnostic information useful for
determining the cause of the difficulty and
whether or not the difficulty can be re-
solved by adding more processors.” These
functions are important because the timing
constraints in complex systems can have
complicated interactions that are difficult
to analyze manually.

Software evolution
through rapid
prototyping

CAPS supports software evolution
through object-based prototyping and re-
usable software components. Object-
based prototyping is the rapid construction
of software systems using objects that

encapsulate data as building blocks. PSDL
includes two kinds of objects, correspond-
ing to abstract data types (PSDL types) and
abstract state machines (PSDL operators).
Figure 3 shows the general properties of
the PSDL objects.

The most important function of objects
used in prototyping is to localize informa-
tion. This design principle allows us to
understand, analyze, and execute each
object independently of other objects,
reducing the conceptual complexity of the
prototype system. Since the semantics of
such objects is independent of the context
in which they appear, they are likely to be
reusable. They also provide a convenient
basis for version control in an evolving
system.

Objects can also serve as natural units of
work in a parallel implementation, since
they can execute without interfering with
each other. Parallel implementations are
attractive in systems with tight real-time
constraints because multiprocessor sched-
ules exist for many real-time constraints
that cannot be met on a single processor.

One of the main difficulties of software
evolution in traditional contexts is the lack
of accurate requirements, specifications,
and design documents.’’ We need precise
documentation to reliably change the sys-
tem. Especially for older systems, infor-
mation other than the source code is often
unavailable or obsolete because of the
large amount of time and effort required to
manually create and maintain it.

In PSDL, specifications and justifica-
tion links to the requirements are part of
the prototype description, and the imple-
mentation descriptions are provided at a
design level. This information can be sys-
tematically recorded and kept in the tools
during the prototyping process and auto-
matically supplied by the tools during evo-

lution. In other words, CAPS tools use the
higher level information to aid the designer
in modifying the prototype.

PSDL can describe both the prototype and
the production versions of the system. A
PSDL implementation has two parts: a
skeleton consisting of the modules in the
system and their interconnections, and a set
of reusable components containing imple-
mentations of the atomic components in a
conventional programming language such
as Ada. The main activities in the system
implementation phase involve refining par-
tially defined facilities and optimizing im-
plementations. These activities take place at
both the PSDL level and the programming
language level.

Refinements are initially expressed in
PSDL by (1) adding more constraints to the
specifications and retrieving new reusable
components or (2) doing further decomposi-
tions to make the implementation corre-
spond to the refined specification.

Optimizations are performed at the PSDL
level by introducing alternative decomposi-
tions that eliminate unnecessary processing
or allow more efficient algorithms.

The performance tuning process contin-
ues at the programming language level.
There, efficient custom implementations for
operators with tight real-time constraints or
frequently executed non-time-critical op-
erators are created and added to the software
base together with corresponding PSDL
specifications. This process maintains the
correspondence between the implementa-
tion, design, specifications, and require-
ments. In addition, we can use the same
tools and techniques to develop the produc-
tion version of the system.

Changes to the production version of the
system require changes in the PSDL specifi-
cations. We can meet the changed specifica-
tions by using reusable components from

18 COMPUTER

Figure 4. Tool usage in the prototyping cycle.

(a) (b)

Figure 5. Regrouping the operators in a design, showing (a) the initial architec-
ture and (b) the regrouped architecture.

the software base in a flexible manner.
After the design stabilizes, we can opti-
mize the modified portions of the system.

Figure 4 summarizes the phases of the
prototyping cycle where each class of
CAPS tools is used.

Designer’s viewpoint. We can classify
the modifications to a prototype performed
by a designer as either static changes or
dynamic changes. Static changes result

from modifying the PSDL source code.
They are tested by a complete regeneration
of the executable model of the system.
Dynamic changes are made using the de-
bugging system during the demonstration
run of a prototype. They provide immedi-
ate feedback to the customer about the
effects of proposed alternatives. Both
static and dynamic changes are necessary
to effectively carry out the prototyping
cycle.

Static changes are done off line, when
the customer is not waiting and there is
time for careful design, mechanical check-
ing. scheduling, and translation. There are
four kinds of static changes: regrouping,
tuning an object, custom programming,
and specification changes.

Regrouping refers to a change that rear-
ranges a set of atomic operators. This kind
of change localizes information and im-
proves the logical coherence of a design.
Figure 5 shows an example of this kind of
change. Figure 5a shows the initial group-
ing, and 5b shows the modified grouping
for a subsystem. The operators B and D are
moved into the same subsystem B because
both of them use the same input stream a ,
and this stream is not needed in any other
part of the system.

Regrouping simplifies the interfaces of
the major subsystems and makes them
more coherent. Exploratory prototyping
often requires this kind of change because,
in the initial stages, the functions of the
proposed system are not clear. Once we
know the parts of the system, the relation-
ships between them become clearer. We
then want to regroup the parts of the system
so that related parts appear in the same sub-
systems and higher level groupings corre-
spond to abstractions meaningful to the
users.

Another common kind of regrouping
transformation gathers all of the operators
that use a state variable into a single state
machine object, which then hides the state
variable from the rest of the system.

Tuning refers to design changes that
affect the implementation but not the speci-
fication of a composite object. Tuning is
done at the PSDL level, by supplying an
alternative decomposition for an object.
The purpose is usually to simplify the
implementation or to improve its perform-
ance. Figure 6 illustrates this kind of
change, where 6a shows the initial decom-
position for a composite object and 6b
shows a simplified decomposition.

Custom programming refers to design
changes that replace part of the implemen-
tation of the prototype system with an
atomic object implemented directly in the
programming language. The new atomic
object produced in this way is added to the
software base as a reusable component.
While, in principle, changes in this cate-
gory do not affect the specification of the
object, in practice they might trigger some
additional specification changes because
the new object must fit into the software
base.

The specification of the object might

May 1989 19

Figure 6. Tuning the implementation of an object, showing (a) the initial decom-
position and (b) the simplified decomposition.

need refining to include additional con-
straints that distinguish i t from similar
objects already in the software base, since
the specifications of the reusable compo-
nents serve as keys (unique identifiers).
This kind of refinement is needed if an
object matching the specification of the
subsystem is already present in the soft-
ware base, was retrieved at an earlier stage,
was included in the design, or was found
lacking in some respect. For example, the
original reusable component might per-
form the correct function but take too long
to execute. The additional constraints
added to the specifications describe the
performance characteristics that distin-
guish the original implementation from a
new, optimized implementation.

Specification changes are needed when
the customer finds the demonstrated be-
havior of the prototype unacceptable.
Consequently, the behavior of some ob-
jects in the prototype require adjustment.
PSDL provides statements for recording
which requirements justify each attribute
of an object in the prototype. These links
can be used in both directions, depending
on the designer’s working style. For ex-
ample, the designer might be familiar with
the design of the prototype and thus easily
able to trace a complaint about an inappro-
priate response to a particular object. The
system can automatically follow the re-
quirements links to show the list of re-
quirements supported by the offending
object. The designer can then identify the
subset of those requirements affected by
the change, and the system can trace the
requirements links in the other direction to

generate a list of objects potentially af-
fected by the change.

The CAPS system aids the designer in
propagating the effects of changes by
maintaining a list of operators potentially
affected by a change. The system guides
the designer through the process of review-
ing the operators on the list by presenting a
task menu.

A PSDL prototype has a hierarchical
structure, which shows the decomposition
of each composite object into more primi-
tive objects. Specification changes must
maintain the consistency of this hierarchy.
If the specification of a subcomponent
changes, the change can affect the specifi-
cation of each composite object containing
the subcomponent. The CAPS system adds
all of the ancestors of a modified object in
the subcomponent hierarchy to the list of
objects reviewed by the designer. The
system also has a set of heuristic rules for
automatically propagating the effects of
some types of specification changes, in-
cluding changes to the maximum execu-
tion time, maximum response time, mini-
mum calling period, and data types associ-
ated with the input streams and output
streams of an object.

An example of automatic constraint
propagation appears in Figure 7. In this
example, the maximum execution time of
the subcomponent B had to increase be-
cause i t could not be implemented within
the originally specified deadline. The
object B is part of the implementation of
the composite object A , as shown in Figure
7c. The operators in the graphical form of
the implementation are annotated with the

maximum execution times, and when the
specification of B changes, the CAPS sys-
tem automatically reflects the change in
the implementation of a , as shown in Fig-
ure 7d. The constraint associated with
maximum execution times requires the
maximum execution time of a composite
operator not to exceed the sum of the
maximum execution times along the long-
est path in its dataflow graph. The change
violates this constraint and causes the
maximum execution time of the operatorA
to increase, as shown in Figure 7f.

Another reason for specification
changes is to increase the probability that
an object in the software base can be
reused. A specification change designed to
improve the reusability of a component
usually involves a generalization, such as
introducing some generic parameters for
the object. This class of changes prevents
cluttering the software base with large
numbers of similar objects.

Dynamic changes are made using the
debugger as the prototype executes, to
quickly and roughly test out new ideas
without going through complete recom-
pilation and rescheduling. A classical
problem caused by installing patches using
debuggers is the danger of an undocu-
mented divergence between the execut-
able version of the system and the source
code. CAPS protects the designer against
this possibility by maintaining a record of
the dynamic changes. This record allows
the original version and each of the alterna-
tives explored in a demonstration run to be
restored at will during the demonstration.
It also allows automatic insertion of se-
lected changes into the PSDL source code.

The set of dynamic changes supported
by CAPS includes standard debugger func-
tions such as examining and modifying the
contents of data streams, displaying execu-
tion traces, setting breakpoints, and setting
conditional data traps. Some less conven-
tional capabilities include controlling the
real-time clock, selectively disabling some
threads of a parallel implementation, in-
serting parallel consistency checking op-
erators, modifying triggering conditions of
operators, and saving execution states so
that the prototype can be restarted many
times from the same intermediate point.

To allow meaningful debugging, the
deadlines of the time-critical operators
have to be set back by the sken, time, which
equals the time spent in the debugger plus
the amount of time required to restore the
execution state and resume execution. The
execution support system dynamically
monitors the execution of the prototype

20 COMPUTER

OPERATOR B INPUT x: real OUTPUT y: real

END
MAXIMUM EXECUTION TIME 25 ms

(a)

OPERATOR B INPUT x: real OUTPUT y: real

END

(b)

MAXIMUM EXECUTION TIME 35 ms

25 40

35 40

OPERATOR A INPUT x: real OUTPUT z: real

END
MAXIMUM EXECUTION TIME 65 rns

(e)

OPERATOR A INPUT x: real OUTPUT z: real

END

(f)

MAXIMUM EXECUTION TIME 75 rns

Figure 7. Automatic constraint propagation, showing (a) the original subcomponent specification, (b) the modified subcompo-
nent specification, (c) the original supercomponent implementation, (d) the modified supercomponent implementation, (e) the
original supercomponent specification, and (0 the modified supercomponent specification.

and automatically traps to the debugger
when a time-critical operator misses its
deadline. At that point the designer can
examine the state of the system to see if
there is something wrong. The designer
has the option of (1) resetting the real-time
clock to give the operator some extra CPU
time before its deadline arrives, (2) allow-
ing i t to exceed its deadline by a specified
amount. or (3) abandoning execution.

Consider the example in Figure 8. In the
example, the execution of operator A has
exceeded its allotted time and control has
passed to the debugger. If the designer
chooses to allow A to pass its deadline and
complete execution, then operator B will
be delayed by the excess execution time e
and will have that much less time to com-
plete before its time slot runs out at time
130+s. Such an experiment will help deter-
mine whether the circumstances that cause
A to exceed its deadline allow B to finish
earlier to compensate. If the designer had
decided to reset the real-time clock in-
stead, the operator A would have gotten
some invisible extra time, so B would still
have a full 20 time units to meet its dead-
line after A completed execution.

Selectively disabling some threads of a
parallel program helps get the maximum
possible information out of a demonstra-
tion run. Figure 9 shows an example of this
situation. Suppose that the output stream c
from operator A is hopelessly in error and
that a data trap has detected the problem
and passed control to the debugger. If the
designer is unable or unwilling to substi-

A B C

100 110
. 7

130

A Debugger A B C

100 110 11 O+s 11 O+s+e 130+s
(b)

maximum-execution-time(A)= 10
maximum_execution~time(B)=20
s=skew time
e=excess execution time for A

Figure 8. Debugging a real-time prototype. (a) Scheduled execution. (b) Actual
execution.

/@ %@ f ,

b

Figure 9. Disabling a parallel thread.

May 1989 21

operator operator

Figure 10. Class structure for prototype components.

CLASS Component
SUPERCLASSES {]
ATTRIBUTES

name: string
generic: set[parameter]
description: string
support: set[requirement]

END Component

CLASS Operator
SUPERCLASSES {Component }
ATTRIBUTES

input, output, states: set[parameter]
max-exec-time, max-resp-time,

min-call-period, period,
finish-within: time

spec: assertion
END

CLASS Atomicoperator
SUPERCLASSES {Operator)
ATTRIBUTES

language, code: string
END

CLASS CompositeOperator
SUPERCLASSES {Operator}
ATTRIBUTES

dfd: graph
constraints: set[control-constraint]

END

Figure 11. Attributes of prototype
components.

tute a correct value for c , he or she can
temporarily disable the execution of C and
restart the system to see the results of
executing B and D using the value of b,
which was not affected by the fault in A .
This is equivalent to removing a faulty data

value from the data stream c and will not
cause any further faults if operator E is
triggered by the arrival of new input data.
If E is triggered by a temporal event, then
disabling C might cause another fault if E
requires a fresh value of e every time i t
executes.

Consistency checking, as performed by
dynamically inserted data traps, must not
interfere with the timing properties of
normal prototype execution. In a single-
processor implementation this requires
stopping the real-time clock while the con-
sistency checks are performed. In multi-
processor implementations such consis-
tency checks can be performed in real time
if enough processors are available and if
the consistency checks are shorter than the
primary computations.

Tool viewpoint. The tools in CAPS are
organized around an object-oriented data-
base management system used to realize
the design database and the software
base.I4 The components of a prototype de-
scription are instances of the subclass hier-
archy shown in Figure 10. Selected attrib-
utes of a representative subset of these
object classes appear in Figure 11.

To effectively support modifications,
the tools in CAPS must address several
consistency problems. Some of the prob-
lems of consistency with respect to the
subcomponent hierarchy were discussed
in the previous section. Another problem is
maintaining consistency between the gra-
phical and textual views of a prototype.

Graphical views arise as part of the
implementation of a composite object,
while text views arise for the specification
parts of the immediate components of a
composite object. The graphical view and
the textual view contain different forms of
the same information, so when the de-
signer changes one view, the other one
must be automatically updated to maintain
consistency. This process requires some

care, since each view contains information
not visible in the other view. Different
strategies are appropriate for each.

If a new operator is added in the graphi-
cal view, it will lack information such as
control constraints and the types of the
values on its input and output streams.
Since control constraints are optional, that
part of the text view can be left empty.
Since the data types of streams are not
optional and an accurate value is not avail-
able, the corresponding slot in the textual
view must be filled by a completion term.
A completion term is a special value recog-
nized by the syntax-directed editor as a
placeholder for a missing part of the proto-
type. Its distinctive display reminds the
designer that more information must be
supplied before the prototype can execute.

If a new operator is added in the text
view, it will lack information about the
position of the corresponding icon in the
graphical view. Since an icon cannot be
displayed without choosing a particular
position, a heuristic generates a default po-
sition.

One method for doing this is to put the
new icon at the center of gravity of the
sources and destinations of all the inputs
and outputs of the new operator. Next, cut
the old display into two parts with a hori-
zontal line through the position of the new
icon, moving the old icons outward until
the new icon has a minimum clearance
from all the old ones. Then reconnect the
broken arrows. Finally, do the same with a
vertical line through the position of the
new icon.

Figure 12 illustrates this process. Figure
12a shows the old text view, 12b shows the
new text view, 12c shows the old graphical
view with the default position and vertical
expansion axis, and 12d shows the new
graphical view. This heuristic has a global
effect, since potentially it can transform
the layouts of all the objects in the graphi-
cal view.

22 COMPUTER

OPERATOR A INPUT x,s:t OUTPUT y:t END
OPERATOR B INPUT y:t OUTPUT z,s:t END

(a)

OPERATOR A INPUT x,s:t OUTPUT y 1 :t END
OPERATOR B INPUT y2:t OUTPUT z,s:t END
OPERATOR C INPUT y l : t OUTPUT y2:t END

(b)

’ Expansion axis w
S I

(C) i ‘Center of gravity

s

Figure 12. Consistency between text and graphical views, showing (a) the initial
text view, (b) the modified text view, (c) the initial graphical view, and (d) the
modified graphical view.

A change to the specification of an op-
erator invalidates its implementation. Such
changes signal the project database man-
agement system to save the previous ver-
sion of the operator. This prevents losing
the results of previous efforts should the
designer later want to restore the previous
version. The tree of suboperators rooted at
the modified operator is then removed
from the new version of the prototype, and
the software base is searched for an im-
plementation of the new specifications.
Since the operators containing the modi-
fied operator are invalidated by such a
change, the system adds them to a list of
action items for the designer.

Evolution of a
hyperthermia system

To illustrate some typical prototype
modifications, this section discusses part
of the prototyping cycle for a hyperthermia
system. The hyperthermia system treats
brain tumors by using microwaves to heat
the affected area to a temperature that will
kill tumors but not normal tissue. An

embedded software system controls the
microwave power based on feedback from
a temperature sensor inserted into the pa-
tient’s brain. The goals of the prototyping
effort are to evaluate the safety of the
proposed system and to establish the feasi-
bility of implementing the required control
functions.

The initial PSDL specification for the
top level of this system appears in Figure
13. The details of a PSDL decomposition
for the initial version of this prototype can
be found elsewhere,’ so I will not repeat
them here, although the information they
contain is necessary to make the prototype
executable. I have provided informal de-
scriptions of lower level details as needed
to explain the effects of the proposed
modifications. The second-level decom-
position of the brain tumor treatment sys-
tem contains a simulated patient and the
proposed software system for controlling
the microwave power level.

Demonstration of the initial version of
the prototype led to a question about the
safety of the proposed system. In the initial
version of the prototype design, informa-
tion about the size of the tumor was ex-
tracted from the patient chart using an

operation of the abstract data type
medicalphistory called get-tumor-diu-
meter. This information determines the
initial microwave power level. The
,qet-tirmor-diameter operation raises an
exception called no-tumor if the patient’s
chart does not contain a description of a
tumor in the patient’s brain. The response
to the exception in the initial version of the
prototype sets the microwave power level
to zero and issues an immediate
treatmentfinished signal, which is plau-
sible given the initial system interface
specified in Figure 13. However, when this
behavior was demonstrated, the potential
users of the system pointed out that such a
response can hardly be considered safe. If
a healthy patient was mistakenly sent for
hyperthermia treatment, the system would
produce a response indicating something
was wrong (an early treatment-finished
signal) only after the srart-treatment
switch was pressed, which happens only
after the temperature probe has been in-
serted into the patient’s brain. A safe de-
sign should prevent such a dangerous pro-
cedure if not medically necessary.

Figure 14 shows a PSDL specification
of the revised top level of the prototype,
and Figure 15 shows the corresponding
implementation. A new layer has been
introduced because the safety question has
changed the boundaries of the system to
include the central hospital database. This
change addresses the issue of how the
patient is identified to the brain tumor
treatment system.

The original version of the brain tumor
treatment system has been included as a
subsystem, as shown in Figure 15. This
change minimizes the effects on the previ-
ously developed prototype and allows a
quick demonstration to validate the newly
proposed interface. However, i t leaves
some dead code in the original design,
since the patient charts entering the brain
tumor treatment system are now guaran-
teed to contain the description of a brain
tumor.

In preparation for further refinements,
the prototype design is cleaned up after the
initial demonstration, as shown in Figure
16. Note that the specification part of the
top level is not affected by the change. The
new version reflects the restriction men-
tioned above, which has been used to
tighten up the design by keeping unneces-
sary information out of the brain tumor
treatment system (the system does not use
information in the patient’s chart other
than the tumor’s diameter).

The change affects the interface of both

May 1989 23

OPERATOR brain-tumor-treatment-system
SPECIFICATION

INPUT patient-chart: medical-history,
treatment-switch: boolean

OUTPUT treatment-finished: boolean
STATES temperature: real

DESCRIPTION
{ The brain tumor treatment system kills tumor cells

by means of hyperthermia induced by microwaves.

INITIALLY 37.0

I
END

Figure 13. Initial top-level specification.

the hospital database and the brain tumor
treatment system. It also ripples through
the lower levels of the system, resulting in
the removal from the brain tumor treat-
ment system of the medical-history type,
the no-tumor exception, and the associ-
ated exception handlers.

Such simplifications help keep future
modifications easy to make and prevent
remnants of abandoned alternatives from
contaminating the design of the production

OPERATOR hospital-system
SPECIFICATION

INPUT patient-id: string,

OUTPUT treatment-finished: boolean,

DESCRIPTION
(The hospital system provides hyperthermia treatment

treatment-switch: boolean

tumor-location: string

for brain tumors.
I

END

Figure 14. Revised top-level specification.

version of the system. They often improve
the performance of the system as well. The
CAPS designers are exploring the feasibil-
ity of providing high-level editing com-
mands for reducing the designer effort
needed for such simplifications.

he effort required for evolution of
a software system can be reduced T through prototyping. Prototyping

can stabilize the requirements for both new

IMPLEMENTATION GRAPH

DATA STREAM patient-chart: medical-history

CONTROL CONSTRAINTS
OPERATOR brain-tumor-treatment-system

TRIGGERED BY ALL treatment-switch, patient-chart
END

Figure 15. PSDL implementation of the revised top level.

24

systems and proposed enhancements to ex-
isting systems. Feedback from demonstra-
tions of proposed system behavior is es-
sential for effectively validating complex
requirements, such as those for large or
embedded real-time systems. The cus-
tomer and the developer must examine a
series of changes to proposed system be-
havior and perceived requirements to reach
a common understanding. It costs less to
use a prototype than production-quality
code to support this process because proto-
types are simpler and easier to modify than
production-quality implementations.

The effectiveness of prototyping is lim-
ited if carried out manually. A high-level
language, a systematic prototyping
method, and an integrated set of computer-
aided prototyping tools are important for
realizing the potential benefits of prototyp-
ing. Simplicity was the primary goal in
designing the Computer-Aided Prototyp-
ing System, since the feasibility and effi-
ciency of rapid prototyping depend on
simplifying the tasks of the software engi-
neer.

Prototyping is also aided by a powerful
set of abstractions appropriate for a prob-
lem domain, especially if these abstrac-
tions are embodied in a set of reusable
software components that can be automati-
cally retrieved based on specifications of
the desired behavior. We can save effort in
the long run by building up a comprehen-
sive library of such components for an
application area if more than one software
system must be developed for the same
problem domain. An essential part of any
practical computer-aided prototyping en-
vironment is a design database that main-
tains the hierarchical structure of a proto-
type and the relationships between mul-

COMPUTER

Hawaii Int’I Conf. System Sciences, IEEE
Computer Society, CS Press, Los Alamitos,
Calif., Jan. 1989, pp. 417-424.

7. Luqi, V. Berzins, and R. Yeh, “A Prototyp-
ing Language for Real-Time Software,”
IEEE Trans Software Eng , Oct. 1988, pp.
1,409- 1,423.

IMPLEMENTATION GRAPH

8. S. Letovsky and E. Soloway, “Delocalized
Plans and Program Comprehension,” IEEE
Software, Vol. 3, No. 3, May 1986, pp. 41-

tumor-diameter 49.

9. Luqi, “Knowledge Base Support for Rapid
Prototyping,” IEEE Expert, Vol. 3, No. 4,
Nov. 1988, pp. 9-18.

I O S. Faulk and D. Parnas, “On Synchroniza-
tion in Hard-Real-Time Systems,” Comm
ACM, Vol 31, No. 3, Mar. 1988, pp. 274-
187

DATA STREAM tumor-diameter: real

CONTROL CONSTRAINTS
OPERATOR brain-tumor-treatment-system

1 1. C. Altizer, “Implementation of a Language
Translator for a Computer-Aided Prototyp-
ing System,” master’s thesis, Computer
Science, Naval Postgraduate School, Mon-
terey, Calif., Dec. 1988.

TRIGGERED BY ALL treatment-switch, tumor-diameter
END 12. L. Marlowe, “A Scheduler for Critical

Timing Constraints,” master’s thesis,
Computer Science, Naval Postgraduate
School, Monterey, Calif., Dec. 1988. Figure 16. Cleaned-up implementation.

tiple versions developed during prototyp-
ing. An advanced design database should
automatically propagate consequences of
decisions made by a designer.

A group of people must work concur-
rently to evolve a typical software system
within practical time schedules. We need
better automatic methods and tools for
coordinating the efforts of many people
working on the same software system.
Automatic means for combining compo-
nents designed by different people and
detecting potential conflicts would help to
solve this problem. When coupled with a
means for producing sets of alternative
components compatible in all combina-
tions, such tools would enable rapid tailor-
ing of a prototype to match a user’s needs.

In the future, systems will be maintained
using prototype descriptions as the pri-
mary representation. To automatically
generate production code, these represen-
tations will be augmented with descrip-
tions of expected operating loads, environ-
mental characteristics, optimization crite-
ria, and design advice. This will preserve
flexibility and enable global optimiza-
tions, which might block further evolution
of the system if applied manually. 0

13. V. Berzins and Luqi, Software Engineering
with Abstractions: An Integrated Approach
to Sofrware Development Using Ada, Ad-
dison-Wesley Publishing Co., Reading,
Mass., 1989.

14. H. Raum, “Design and Implementation of
an Expert User Interface for the Computer- Acknowledement
Aided Prototyping System,” master’s the-
sis, Computer Science, Naval Postgraduate

~ 0 ~ - ~ ~ -

This research was supported in part by the
National Science Foundation under grant num- School, Monterey, Calif,, 1988,
ber CCR-87 10737.

References
1. B. Boehm, “A Spiral Model of Software

Development and Enhancement,” Com-
puter, Vol. 2 1, No. 5, May 1988, pp. 61 -72.

2. Luqi and V. Berzins, “Rapidly Prototyping
Real-Time Systems,” IEEE Software, Vol.
5, No. 5, Sept. 1988, pp. 25-36.

3. R. Yeh and T. Welch, “Software Evolution:
Forging a Paradigm,” Proc. Fall Joint
Computer Conf. .. ACM and IEEE Computer
Society, CS Press, Los Alamitos, Calif.,
Order No. FJ811, Oct. 1987, pp. 10-12.

4. V. Berzins, “Object-Oriented Rapid Proto-
typing,” NPS 52-88-044, Computer Sci-
ence Dept., Naval Postgraduate School,
Sept. 1988.

5. Luqi and M. Ketabchi, “A Computer-Aided
Prototyping System.” IEEE Sofrware, Vol.
5, No. 2, March 1988, pp. 66-72.

6. Luqi, “Handling Timing Constraints in
Rapid Prototyping,” Proc. 22nd Ann.

Luqi is an assistant professor at the Naval
Postgraduate School. She has also worked on
software research and development and taught
at the University of Minnesota. Her recent work
includes rapid prototyping, real-time lan-
guages, design methodology, and software
development tools.

Luqi received a BS in computational mathe-
matics from Jilin University, China, and an MS
and PhD in computer science from the Univer-
sity of Minnesota.

Address questions to the author at Naval
Postgraduate School 052, Monterey, CA 93943.

May 1989 25

