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oftware evolution refers to all ac- 
tivities that change a software sys- 
tem, including responses to re- 

quirements changes, improvements to per- 
formance or clarity, and repairs for bugs. 
The older term “maintenance” refers to the 
same activities in the context of the tradi- 
tional life cycle, with a connotation that 
maintenance is done after the initial devel- 
opment. In more recent process models 
such as rapid prototyping, evolution activi- 
ties are interleaved with the initial develop- 
ment and continue after the delivery of the 
initial version of the system. Since soft- 
ware evolution accounts for more than half 
of the total software cost, great interest has 
focused on reducing the effort required. 
Prototyping provides one promising ap- 
proach to achieving this goal.’,’ 

In this article, a prototype is a concrete 
executable model of selected aspects of a 
proposed system. Rapid prototyping is the 
process of quickly building and evaluating 
a series of prototypes. 

Figure 1 illustrates the iterative proto- 
typing cycle. The user and the designer 
work together to define the requirements 
and specifications for the critical parts of 
the envisioned system. The designer then 
constructs a model or prototype of the 
system in a prototype description language 
at the specification level. The resulting 
prototype is a partial representation of the 
system, including only those attributes 
necessary for meeting the requirements. I t  
serves as an aid in analysis and design 

Rapid prototyping 
supports software 

evolution as well as 
initial development. 

Computer-aided 
prototyping tools and 
object-based methods 
support evolution of 
both prototypes and 
production software. 

rather than as production software. 
During demonstrations of the prototype, 

the user evaluates the prototype’s actual 
behavior against its expected behavior. If  
the prototype fails to execute properly, the 
user identifies problems and works with 
the designer to redefine the requirements. 
This process continues until the user deter- 
mines that the prototype successfully cap- 
tures the critical aspects of the envisioned 
system. 

The designer uses the validated require- 
ments as a basis for designing the produc- 

tion software. Additional work is often 
needed to construct a production version of 
the system. For example, the prototype 

( I )  might not include all aspects of the 
intended system, 

(2 )  might have been implemented using 
resources that will not be available 
in the actual operating environment. 

(3) might not be able to handle the full 
workload of the intended system, or 

(4) might meet its timing constraints 
only with respect to linearly scaled 
simulated time. 

Experience with production use of a deliv- 
ered system often leads to new customer 
goals, triggering further iterations of the 
prototyping cycle. 

The traditional model of software devel- 
opment relied on the assumption that de- 
signers could stabilize and freeze the re- 
quirements. In practice, however, the de- 
sign of accurate and stable requirements 
cannot be completed until users gain some 
experience with the proposed software 
system. Thus, requirements often must 
change after the initial implementation. 

In traditional approaches, these require- 
ments changes trigger changes to the pro- 
duction version of the system during the 
maintenance phase. In prototyping ap- 
proaches, an appreciable fraction of the 
requirements changes trigger changes in a 
prototype version of the system. This is 
useful because a prototype description 
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(1) is significantly simpler than the 
production code, 

( 2 )  is expressed in a notation tailored to 
support modifications, and 

(3) is suitable for processing by soft- 
ware tools in a computer-aided 
prototyping environment. 

, 

These factors make it possible to modify a 
prototype more easily than a production 
version of the system. They make proto- 
typing especially attractive for unfamiliar 
application areas with uncertain require- 
ments. 

In the approach to rapid prototyping we 
will look at here, software systems are 
delivered incrementally and requirements 
analysis continues throughout the process, 
interleaved with implementation and evo- 
lution.) We will focus on reducing require- 
ments errors through prototyping before 
undertaking the incremental implementa- 
tion effort for each deliverable version of 
the system. Incremental delivery lets users 
gain early experience with the software in 
the actual production environment. It also 
lets developers adjust the requirements to 
reflect the effects of the initial versions of 
the system on the customers’ perceptions 
of their problems. Thus, incremental deliv- 
ery extends the advantages of prototyping 
to the production environment. 

The problems of software evolution are 
especially prominent during rapid proto- 
typing because prototypes are subject to 
frequent and repeated changes. The poten- 
tial benefits of prototyping depend criti- 
cally on the ability to modify the proto- 
type’s behavior with substantially less 
effort than required to modify the produc- 
tion software. Computer-aided prototyp- 
ing and object-based prototyping provide 
the solutions to this problem. Computer- 
aided prototyping provides mechanical 
assistance, and object-based prototyping 
provides conceptual simplicity. 

Computer-aided rapid prototyping im- 
proves the efficiency and accuracy of 
evolutionary development by introducing 
software tools that assist the designer in 
constructing and executing the prototype 
quickly and systematically. These tools 
make it attractive to use prototypes for 
evaluating evolutionary changes after a 
version of the system has been delivered as 
well as for the initial version. 

Object-based prototyping is based on 
data abstraction and inheritance. Objects 
encapsulating the data in the prototype 
system serve as the basis for design and 
implementation. Since the data in an appli- 
cation is generally more stable than the 
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Figure 1. The prototyping cycle. 

processing steps, this leads to system de- 
scriptions that are easier to modify than 
those based primarily on procedural ab- 
stractions. Inheritance helps to reduce the 
labor involved in constructing a system by 
allowing inclusion of common aspects of 
the code in many different contexts with- 
out explicitly repeating the details. Objects 
also provide convenient components for 
code reuse, parallel execution, and version 
control. Thus, object-based approaches 
make prototypes more flexible and auto- 
mation easier to a ~ h i e v e . ~  

Evolution based on the bare program 
code is very difficult or impossible to 
achieve, because we need information 
about the requirements, specifications, and 
design to change the code without damag- 
ing it. Most tools supporting evolution at 
the program level are primitive and lan- 
guage specific, such as facilities for gener- 
ating cross-reference listings and for edit- 
ing and storing different versions of pro- 
gram documentation. While such facilities 
can reduce the mechanical work involved, 
few software maintenance tools operate on 
the semantic level and few good ideas 

address the general software maintenance 
problem. To support the software evolu- 
tion process, tools operating at the seman- 
tic level should help manage the relation- 
ships among the implementation, the 
prototype description, and the require- 
ments. 

Computer-aided 
prototyping tools for 
evolution 

An integrated set of computer-aided 
software tools, the Computer- Aided Proto- 
typing System (CAPS),5 has been designed 
to support prototyping of complex soft- 
ware systems, such as control systems with 
hard real-time constraints. The require- 
ments for such systems are especially dif- 
ficult to determine, and their feasibility is 
hard to establish without constructing an 
executable model of the envisioned sys- 

If carried out manually, the prototyping 
process has limited benefits because of the 
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time and effort involved. CAPS can in- 
crease the leverage of the prototyping strat- 
egy by reducing the effort the designer puts 
into producing and adapting a prototype to 
perceived user needs. 

The evolution of a prototype starts after 
one pass through the prototyping cycle 
shown in Figure 1 .  The analysts have de- 
termined the initial requirements by talk- 
ing to the customer, constructed an initial 
prototype, and demonstrated it to the cus- 
tomer, who finds some of the prototype’s 
behavior unacceptable and requests modi- 
fications. 

Initially, the facilities provided by 
CAPS help adapt the prototype to the new 
requirements. We can implement modifi- 
cations to the production software by using 
CAPS to 

( I )  add changes to prototype systems, 
(2) retrieve software components from 

(3) generate production code if needed, 
(4) assemble production systems 

through the prototyping cycle, and 
( 5 )  manage the process using the proto- 

typing database. 

the software base, 

The main components of CAPS are a 
special prototyping language and a set of 
tools, illustrated in Figure 2 .  The main 
subsystems of CAPS are the user interface, 
the software database system, and the 
execution support system. The rest of this 
section describes these components in 
detail. 

Prototyping language features sup- 
porting modifications. CAPS tools com- 
municate by means of the Prototype Sys- 
tem Description Language (PSDL),’ 
which integrates the tools and provides the 
prototype designer with a uniform concep- 
tual framework and a high-level descrip- 
tion of the system. PSDL supports frequent 
design modifications by meeting the fol- 
lowing subgoals. 

Modularity. The language must make it 
easy for the system designer to create a 
prototype with a high degree of module 
independence and to preserve its good 
modularity properties across many modifi- 
cations. Good modularity is essential for 
easy modification. 

An experimental study showed many of 
the problems that arise in modifying soft- 
ware result from interactions between 
widely separated pieces of code.’ Locality 
of information was an important design 
goal of PSDL. The underlying computa- 
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Figure 2. Main Computer-Aided Prototyping System tools. 

tional model was chosen to make all inter- 
actions between components explicit. This 
model supports a system decomposition 
criterion that combines dataflow and con- 
trol flow considerations.* 

Good modularity means the prototype 
should be realized by a set of independent 
modules with narrow and explicitly speci- 
fied interfaces. PSDL supports this con- 

cept via operators and data streams. An 
important property of the language is that 
two distinct operators can communicate or 
affect each other’s behavior only by means 
of the data streams explicitly connecting 
them, either directly or indirectly. 

This locality property is important for 
maintenance. It allows the set of modules 
that can potentially interact with a given 

May 1989 15 



module to be determined through a simple 
mechanical analysis of the dataflow net- 
work. This allows the software tools to 
guarantee that all aspects of a proposed 
change have been covered. The locality 
property also encourages designs contain- 
ing an independent component for each 
major design decision. Such designs are 
easier to modify because the information 
required to change a design decision is 
localized in one region of the code. 

The locality property is embodied by the 
PSDL scoping rules and mechanically 
enforced. The implementation of an opera- 
tor can only refer to the explicitly declared 
input and output streams of the operator 
and to data streams local to the implemen- 
tation of the operator. Implementations of 
operators representing state machines can 
contain closed loops consisting of local 
data streams. 

Simplicity. The language should be 
simple and easy to use. PSDL is simple and 
easy to use because it contains a small 
number of powerful constructs. Designs 
are described in PSDL as networks of 
operators connected by data streams. 

Such networks can be represented as 
dataflow diagrams augmented with timing 
and control constraints. The user interface 
uses the diagrams to provide a convenient 
means for presenting the system structure 
to the designer. The operators in the net- 
work can be either functions or state ma- 
chines. The data streams can carry excep- 
tion conditions or values of arbitrary ab- 
stract data types. 

Reuse. The language should be suitable 
for specifying the retrieval of reusable 
modules from a software base. PSDL sup- 
ports reusable components with uniform 
specifications suitable for retrieving mod- 
ules from a software base. The specifica- 
tion part of a PSDL component contains 
several attributes that describe the inter- 
face and behavior of the component. These 
attributes help automatically generate a 
uniform specification for the reusable 
component? These uniform specifications 
are used both for retrieval of reusable 
components and for organizing the soft- 
ware base. 

Adaptability. The language should sup- 
port small modifications to the behavior of 
a module without the need to examine its 
implementation. PSDL supports small 
modifications to modules by means of 
control constraints. We can use control 
constraints to impose preconditions on the 

execution of a module, to add filters to the 
output of a module, to suppress or raise 
exceptions in specified conditions, and to 
control timers. These facilities allow small 
modifications to the behavior of a module 
to be expressed independently of its im- 
plementation. 

For example, a common problem dis- 
covered in prototype demonstrations is 
that an operator has the intended behavior 
most of the time but not always. The PSDL 
control constraints governing conditional 
execution of operators can help solve the 
problem. Wecould add acontrol constraint 
in the form of an input guard predicate, 
where the guard predicate describes the 
circumstances in which the execution of 
the operator will produce the intended 
result and disables the execution of the 
operator in cases where i t  would not. This 
allows the addition of another operator for 
producing the correct output in the remain- 
ing cases, controlled by a complementary 
guard predicate. 

Abstraction. The language should sup- 
port a set of abstractions suitable for de- 
scribing complex software systems with 
real-time constraints. PSDL provides ab- 
stractions suitable for describing large 
systems and real-time constraints. These 
include the nonprocedural control con- 
straints mentioned above, timing con- 
straints, timers, functional abstractions, 
and data abstractions. 

Examples of timing constraints include 
the maximum execution time, the maxi- 
mum response time, and the minimum 
calling period. Timing constraints implic- 
i t ly determine when operators with hard 
real-time constraints will execute. This 
simplifies evolution by removing explicit 
scheduling decisions from the design, thus 
allowing a software tool rather than the 
designer to handle rescheduling caused by 
design changes. 

Requirements tracing. The language 
should support requirements tracing. 
PSDL supports requirements tracing by 
means of a construct for declaring the 
requirements associated with each part of 
the prototype. Requirements tracing is 
important because the prototype must 
adapt to the changing perceptions of the 
requirements resulting from demonstra- 
tions of prototype behavior. The links be- 
tween each requirement and the parts of 
the prototype realizing the requirement 
determine which parts of the prototype to 
modify when a requirement is changed or 
dropped. 

To prevent the structure of the design 
from being corrupted by multiple modifi- 
cations, we must remove parts of the code 
no longer supported by an updated set of 
requirements. This cannot be done safely 
unless the correspondence between the 
requirements and the code is recorded and 
kept up to date. 

The facilities for recording require- 
ments trace information in PSDL are used 
by software tools in CAPS to provide auto- 
mated aid in maintaining and using this 
information. 

User interface for interactive control 
of prototypes. The user interface aids 
evolution by providing facilities for enter- 
ing information about the requirements 
and design, presenting the results of proto- 
type execution to the customer, guiding the 
choice of which aspects of the prototype to 
demonstrate, and helping the designer 
propagate the effects of a change. The user 
interface consists of a syntax-directed edi- 
tor with graphics capabilities, an expert 
system for communicating with end users, 
a browser, and a debugger. 

The editor enables convenient entry of 
PSDL descriptions into the system while 
preventing syntax errors. It also supports 
displaying graphical summary views of 
the prototype, maintaining the require- 
ments trace, and locating parts of the proto- 
type design related to particular require- 
ments or data streams. 

The expert system provides a paraphras- 
ing capability that generates English text 
from PSDL descriptions. This allows end 
users to directly examine the prototype 
without being familiar with PSDL. 

The browser allows the designer to inter- 
act with the software database. It has facili- 
ties for retrieving and examining reusable 
components stored in the software data- 
base system. 

The debugger allows the designer to 
interact with the execution support system. 
It has facilities for initiating execution of 
the prototype, displaying results or trace 
information, and gathering statistics about 
prototype behavior and performance. A 
facility for recording test case coverage 
information helps guide the choice of sce- 
narios for a demonstration run. 

The user interface helps the prototype 
design team identify the tasks required to 
update the prototype. The user interface 
maintains the correspondence between 
requirements and parts of the prototype, 
along with lists of unresolved new require- 
ments and unresolved modified require- 
ments. Whenever a member of the design 
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team is ready for a new task, the system 
presents the lists and lets the designer pick 
an item to resolve. If the designer chooses 
a modified requirement, the interface re- 
turns a list of modules previously support- 
ing the requirement and lets the designer 
check them off as they are adapted or 
determined to be still valid. 

The effort required for this task coordi- 
nation is minimized by presenting the lists 
as menus and allowing the designer to pick 
items using a pointing device. Choosing an 
item results in a summary view of the 
affected modules, which can be browsed 
and updated as required. 

The user interface speeds up the process 
of adapting the prototype by 

(1 ) helping to coordinate tasks per- 
formed by a team of designers, 

(2) helping to focus the designer’s at- 
tention on the information relevant 
to a task, 

(3) providing summary views of the 
system or selected components, and 

(4) locating all potentially relevant 
parts of the prototype. 

Software database for managing de- 
scriptions and building blocks. The soft- 
ware database system consists of a design 
database, a software base, a software de- 
sign-management system, and a rewrite 
subsystem. The design database contains 
the PSDL prototype descriptions for each 
software development project using 
CAPS. The software base contains PSDL 
descriptions and code for all available 
reusable software components. The soft- 
ware design-management system manages 
and retrieves the versions, refinements, 
and alternatives of the prototypes in the 
design database and the reusable compo- 
nents in the software base. The rewrite 
subsystem translates PSDL specifications 
into a normalized form used by the design- 
management system to retrieve reusable 
components from the software base.’ 

The components of the software data- 
base actively contribute to the process of 
adapting the prototype to new require- 
ments. The software design-management 
system helps maintain the design history 
and locate relevant reusable software 
components. The design history consists 
of the relationship between each version of 
the requirements and the corresponding 
versions of parts of the prototype. This 
information is useful because the customer 
will sometimes retreat to previous versions 
of the requirements. Situations in which 

customer gives up on an ambitious require- 
ment in response to cost or performance 
estimates resulting from examination of 
the prototype. In such cases, parts of the 
requirements revert to previous configura- 
tions. The system helps restore the corre- 
sponding parts of the prototype to their 
previous configurations. 

The design database also provides con- 
currency control functions that allow mul- 
tiple designers to update parts of the proto- 
type without unintentional interference. In 
the interest of minimizing delay, the de- 
sign database will not lock out read-only 
access to any part of the design, even while 
the design is being updated. Instead, the 
system will allow examination of the pre- 
vious version of the component, with a 
warning that a new version is currently in 
preparation. On request, the system will 
provide information about the reason for 
modification of the component (such as a 
new or modified requirement). Enhance- 
ments to alternative versions can be ex- 
plored in parallel, thus speeding up ex- 
ploratory evolution. 

The software base provides reusable 
software components for realizing given 
PSDL specifications. The software base 
speeds up evolution by providing many 
different versions of commonly used 
components, making i t  easier to try out 
alternative designs. In the PSDL prototyp- 
ing method,* modules are realized by three 
main mechanisms: 

(1)  Retrieval of a suitable component 
from the software base. The software base 
contains generic modules with parameters 
determined as part of the retrieval process. 
It also contains rules for matching a speci- 
fication by means of a composite operator 
realized by a network of operators, at least 
one of which must be an available reusable 
component.’ The retrieval mechanism can 
therefore perform some routine aspects of 
bottom-up design, freeing the designer 
from the need to be familiar with all the 
reusable components in the software base. 

(2) Decomposition of the component 
into a network of simpler components. The 
designer does this if the component cannot 
be retrieved directly from the software 
base and if the component is sufficiently 
complex to benefit from decomposition 
into simpler parts. 

(3) Direct implementation in a program- 
ming language. The designer does this if 
the software base does not contain a com- 
ponent that performs the required function 
with the required speed. 

tion of object-based databases for manag- 
ing reusable components is to allow the 
representation and retrieval of an un- 
bounded number of components given 
finite memory and processor speed. We 
must consider an unbounded number of 
components because software designs can 
contain arbitrary user-defined abstract 
data types, and, to be useful, the reusable 
components in the component database 
must be applicable to all of the types in this 
infinite set. 

A practical approach to this problem 
regards the database as containing all the 
components that can be generated from a 
finite set of explicitly stored components 
by finite combinations of a set of primitive 
component constructors. Examples of 
component constructors are transforma- 
tions that instantiate generic parameters or 
that create a composite component by 
interconnecting a pair of available compo- 
nents. 

Retrievals from such databases will 
generally involve a limited degree of logi- 
cal inference, to determine whether a 
component matching the query can be 
constructed from available components 
within a given limited number of construc- 
tor applications. Limits are needed to make 
sure retrievals will always terminate. 
These logical inferences are performed 
according to rules stored in the knowledge 
base associated with the component li- 
brary.’ 

Execution support for demonstrating 
effects of changes. The PSDL execution 
support system contains a translator, a 
static scheduler, and a dynamic scheduler.’ 
The translator generates code that binds 
together the reusable components ex- 
tracted from the software base. Its main 
functions are to implement data streams, 
control constraints, and timers. The static 
scheduler allocates time slots for operators 
with real-time constraints before execu- 
tion begins. If the allocation succeeds, all 
operators are guaranteed to meet their 
deadlines even with worst-case execution 
times. As execution proceeds, the dynamic 
scheduler invokes operators without real- 
time constraints in the time slots not used 
by operators with real-time constraints. 

The execution support system helps 
speed up design changes by providing a 
localized view of the processes in the 
prototype, analyzing the prototype’s tim- 
ing properties, and providing the ability to 
quickly demonstrate the consequences of 

this might happen include cases where the The essential problem in the organiza- design decisions through prototype execu- 
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Figure 3. Objects and general properties. 

tion. These features are especially impor- 
tant for prototyping real-time systems. 

At the programming language level, 
implementations of real-time systems are 
difficult to understand because the instruc- 
tions of several logically independent 
processes must often be interleaved to meet 
timing constraints.’O PSDL presents a view 
to the designer in which logically distinct 
processes are represented as separate inde- 
pendent components. The PSDL execution 
support system contains a translator that 
mechanically transforms this independent 
representation into the corresponding pro- 
gramming language representation, add- 
ing the necessary interleaving in a fashion 
transparent to the designer.’ ’ 

If the static scheduler succeeds in con- 
structing a schedule, the operators in the 
schedule are guaranteed to meet their tim- 
ing constraints even under worst-case 
operating conditions. If the static sched- 
uler fails to find a valid schedule, i t  pro- 
vides diagnostic information useful for 
determining the cause of the difficulty and 
whether or not the difficulty can be re- 
solved by adding more processors.” These 
functions are important because the timing 
constraints in complex systems can have 
complicated interactions that are difficult 
to analyze manually. 

Software evolution 
through rapid 
prototyping 

CAPS supports software evolution 
through object-based prototyping and re- 
usable software components. Object- 
based prototyping is the rapid construction 
of software systems using objects that 

encapsulate data as building blocks. PSDL 
includes two kinds of objects, correspond- 
ing to abstract data types (PSDL types) and 
abstract state machines (PSDL operators). 
Figure 3 shows the general properties of 
the PSDL objects. 

The most important function of objects 
used in prototyping is to localize informa- 
tion. This design principle allows us to 
understand, analyze, and execute each 
object independently of other objects, 
reducing the conceptual complexity of the 
prototype system. Since the semantics of 
such objects is independent of the context 
in which they appear, they are likely to be 
reusable. They also provide a convenient 
basis for version control in an evolving 
system. 

Objects can also serve as natural units of 
work in a parallel implementation, since 
they can execute without interfering with 
each other. Parallel implementations are 
attractive in systems with tight real-time 
constraints because multiprocessor sched- 
ules exist for many real-time constraints 
that cannot be met on a single processor. 

One of the main difficulties of software 
evolution in traditional contexts is the lack 
of accurate requirements, specifications, 
and design documents.’’ We need precise 
documentation to reliably change the sys- 
tem. Especially for older systems, infor- 
mation other than the source code is often 
unavailable or obsolete because of the 
large amount of time and effort required to 
manually create and maintain it.  

In PSDL, specifications and justifica- 
tion links to the requirements are part of 
the prototype description, and the imple- 
mentation descriptions are provided at a 
design level. This information can be sys- 
tematically recorded and kept in the tools 
during the prototyping process and auto- 
matically supplied by the tools during evo- 

lution. In other words, CAPS tools use the 
higher level information to aid the designer 
in modifying the prototype. 

PSDL can describe both the prototype and 
the production versions of the system. A 
PSDL implementation has two parts: a 
skeleton consisting of the modules in the 
system and their interconnections, and a set 
of reusable components containing imple- 
mentations of the atomic components in a 
conventional programming language such 
as Ada. The main activities in the system 
implementation phase involve refining par- 
tially defined facilities and optimizing im- 
plementations. These activities take place at 
both the PSDL level and the programming 
language level. 

Refinements are initially expressed in 
PSDL by ( 1 )  adding more constraints to the 
specifications and retrieving new reusable 
components or (2) doing further decomposi- 
tions to make the implementation corre- 
spond to the refined specification. 

Optimizations are performed at the PSDL 
level by introducing alternative decomposi- 
tions that eliminate unnecessary processing 
or allow more efficient algorithms. 

The performance tuning process contin- 
ues at the programming language level. 
There, efficient custom implementations for 
operators with tight real-time constraints or 
frequently executed non-time-critical op- 
erators are created and added to the software 
base together with corresponding PSDL 
specifications. This process maintains the 
correspondence between the implementa- 
tion, design, specifications, and require- 
ments. In  addition, we can use the same 
tools and techniques to develop the produc- 
tion version of the system. 

Changes to the production version of the 
system require changes in the PSDL specifi- 
cations. We can meet the changed specifica- 
tions by using reusable components from 
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Figure 4. Tool usage in the prototyping cycle. 

(a) (b) 

Figure 5. Regrouping the operators in a design, showing (a) the initial architec- 
ture and (b) the regrouped architecture. 

the software base in a flexible manner. 
After the design stabilizes, we can opti- 
mize the modified portions of the system. 

Figure 4 summarizes the phases of the 
prototyping cycle where each class of 
CAPS tools is used. 

Designer’s viewpoint. We can classify 
the modifications to a prototype performed 
by a designer as either static changes or 
dynamic changes. Static changes result 

from modifying the PSDL source code. 
They are tested by a complete regeneration 
of the executable model of the system. 
Dynamic changes are made using the de- 
bugging system during the demonstration 
run of a prototype. They provide immedi- 
ate feedback to the customer about the 
effects of proposed alternatives. Both 
static and dynamic changes are necessary 
to effectively carry out the prototyping 
cycle. 

Static changes are done off line, when 
the customer is not waiting and there is 
time for careful design, mechanical check- 
ing. scheduling, and translation. There are 
four kinds of static changes: regrouping, 
tuning an object, custom programming, 
and specification changes. 

Regrouping refers to a change that rear- 
ranges a set of atomic operators. This kind 
of change localizes information and im- 
proves the logical coherence of a design. 
Figure 5 shows an example of this kind of 
change. Figure 5a shows the initial group- 
ing, and 5b shows the modified grouping 
for a subsystem. The operators B and D are 
moved into the same subsystem B because 
both of them use the same input stream a ,  
and this stream is not needed in any other 
part of the system. 

Regrouping simplifies the interfaces of 
the major subsystems and makes them 
more coherent. Exploratory prototyping 
often requires this kind of change because, 
in the initial stages, the functions of the 
proposed system are not clear. Once we 
know the parts of the system, the relation- 
ships between them become clearer. We 
then want to regroup the parts of the system 
so that related parts appear in the same sub- 
systems and higher level groupings corre- 
spond to abstractions meaningful to the 
users. 

Another common kind of regrouping 
transformation gathers all of the operators 
that use a state variable into a single state 
machine object, which then hides the state 
variable from the rest of the system. 

Tuning refers to design changes that 
affect the implementation but not the speci- 
fication of a composite object. Tuning is 
done at the PSDL level, by supplying an 
alternative decomposition for an object. 
The purpose is usually to simplify the 
implementation or to improve its perform- 
ance. Figure 6 illustrates this kind of 
change, where 6a shows the initial decom- 
position for a composite object and 6b 
shows a simplified decomposition. 

Custom programming refers to design 
changes that replace part of the implemen- 
tation of the prototype system with an 
atomic object implemented directly in the 
programming language. The new atomic 
object produced in this way is added to the 
software base as a reusable component. 
While, in principle, changes in this cate- 
gory do  not affect the specification of the 
object, in practice they might trigger some 
additional specification changes because 
the new object must fit into the software 
base. 

The specification of the object might 
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Figure 6. Tuning the implementation of an object, showing (a) the initial decom- 
position and (b) the simplified decomposition. 

need refining to include additional con- 
straints that distinguish i t  from similar 
objects already in the software base, since 
the specifications of the reusable compo- 
nents serve as keys (unique identifiers). 
This kind of refinement is needed if an 
object matching the specification of the 
subsystem is already present in the soft- 
ware base, was retrieved at an earlier stage, 
was included in the design, or was found 
lacking in some respect. For example, the 
original reusable component might per- 
form the correct function but take too long 
to execute. The additional constraints 
added to the specifications describe the 
performance characteristics that distin- 
guish the original implementation from a 
new, optimized implementation. 

Specification changes are needed when 
the customer finds the demonstrated be- 
havior of the prototype unacceptable. 
Consequently, the behavior of some ob- 
jects in the prototype require adjustment. 
PSDL provides statements for recording 
which requirements justify each attribute 
of an object in the prototype. These links 
can be used in both directions, depending 
on the designer’s working style. For ex- 
ample, the designer might be familiar with 
the design of the prototype and thus easily 
able to trace a complaint about an inappro- 
priate response to a particular object. The 
system can automatically follow the re- 
quirements links to show the list of re- 
quirements supported by the offending 
object. The designer can then identify the 
subset of those requirements affected by 
the change, and the system can trace the 
requirements links in the other direction to 

generate a list of objects potentially af- 
fected by the change. 

The CAPS system aids the designer in 
propagating the effects of changes by 
maintaining a list of operators potentially 
affected by a change. The system guides 
the designer through the process of review- 
ing the operators on the list by presenting a 
task menu. 

A PSDL prototype has a hierarchical 
structure, which shows the decomposition 
of each composite object into more primi- 
tive objects. Specification changes must 
maintain the consistency of this hierarchy. 
If the specification of a subcomponent 
changes, the change can affect the specifi- 
cation of each composite object containing 
the subcomponent. The CAPS system adds 
all of the ancestors of a modified object in 
the subcomponent hierarchy to the list of 
objects reviewed by the designer. The 
system also has a set of heuristic rules for 
automatically propagating the effects of 
some types of specification changes, in- 
cluding changes to the maximum execu- 
tion time, maximum response time, mini- 
mum calling period, and data types associ- 
ated with the input streams and output 
streams of an object. 

An example of automatic constraint 
propagation appears in Figure 7. In this 
example, the maximum execution time of 
the subcomponent B had to increase be- 
cause i t  could not be implemented within 
the originally specified deadline. The 
object B is part of the implementation of 
the composite object A ,  as shown in Figure 
7c. The operators in the graphical form of 
the implementation are annotated with the 

maximum execution times, and when the 
specification of B changes, the CAPS sys- 
tem automatically reflects the change in 
the implementation of a ,  as shown in Fig- 
ure 7d. The constraint associated with 
maximum execution times requires the 
maximum execution time of a composite 
operator not to exceed the sum of the 
maximum execution times along the long- 
est path in its dataflow graph. The change 
violates this constraint and causes the 
maximum execution time of the operatorA 
to increase, as shown in Figure 7f. 

Another  reason for  specification 
changes is to increase the probability that 
an object in the software base can be 
reused. A specification change designed to 
improve the reusability of a component 
usually involves a generalization, such as 
introducing some generic parameters for 
the object. This class of changes prevents 
cluttering the software base with large 
numbers of similar objects. 

Dynamic changes are made using the 
debugger as the prototype executes, to 
quickly and roughly test out new ideas 
without going through complete recom- 
pilation and rescheduling. A classical 
problem caused by installing patches using 
debuggers is the danger of an undocu- 
mented divergence between the execut- 
able version of the system and the source 
code. CAPS protects the designer against 
this possibility by maintaining a record of 
the dynamic changes. This record allows 
the original version and each of the alterna- 
tives explored in a demonstration run to be 
restored at will during the demonstration. 
It also allows automatic insertion of se- 
lected changes into the PSDL source code. 

The set of dynamic changes supported 
by CAPS includes standard debugger func- 
tions such as examining and modifying the 
contents of data streams, displaying execu- 
tion traces, setting breakpoints, and setting 
conditional data traps. Some less conven- 
tional capabilities include controlling the 
real-time clock, selectively disabling some 
threads of a parallel implementation, in- 
serting parallel consistency checking op- 
erators, modifying triggering conditions of 
operators, and saving execution states so 
that the prototype can be restarted many 
times from the same intermediate point. 

To  allow meaningful debugging, the 
deadlines of the time-critical operators 
have to be set back by the sken, time, which 
equals the time spent in the debugger plus 
the amount of time required to restore the 
execution state and resume execution. The 
execution support system dynamically 
monitors the execution of the prototype 
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OPERATOR B INPUT x:  real OUTPUT y: real 

END 
MAXIMUM EXECUTION TIME 25 ms 

(a) 

OPERATOR B INPUT x:  real OUTPUT y: real 

END 

(b) 

MAXIMUM EXECUTION TIME 35 ms 

25 40 

35 40 

OPERATOR A INPUT x:  real OUTPUT z: real 

END 
MAXIMUM EXECUTION TIME 65 rns 

( e )  

OPERATOR A INPUT x:  real OUTPUT z: real 

END 

( f )  

MAXIMUM EXECUTION TIME 75 rns 

Figure 7. Automatic constraint propagation, showing (a) the original subcomponent specification, (b) the modified subcompo- 
nent specification, (c) the original supercomponent implementation, (d) the modified supercomponent implementation, (e) the 
original supercomponent specification, and (0 the modified supercomponent specification. 

and automatically traps to the debugger 
when a time-critical operator misses its 
deadline. At that point the designer can 
examine the state of the system to see if 
there is something wrong. The designer 
has the option of ( 1 )  resetting the real-time 
clock to give the operator some extra CPU 
time before its deadline arrives, (2 )  allow- 
ing i t  to exceed its deadline by a specified 
amount. or (3) abandoning execution. 

Consider the example in Figure 8. In the 
example, the execution of operator A has 
exceeded its allotted time and control has 
passed to the debugger. If the designer 
chooses to allow A to pass its deadline and 
complete execution, then operator B will 
be delayed by the excess execution time e 
and will have that much less time to com- 
plete before its time slot runs out at time 
130+s. Such an experiment will help deter- 
mine whether the circumstances that cause 
A to exceed its deadline allow B to finish 
earlier to compensate. If the designer had 
decided to reset the real-time clock in- 
stead, the operator A would have gotten 
some invisible extra time, so B would still 
have a full 20 time units to meet its dead- 
line after A completed execution. 

Selectively disabling some threads of a 
parallel program helps get the maximum 
possible information out of a demonstra- 
tion run. Figure 9 shows an example of this 
situation. Suppose that the output stream c 
from operator A is hopelessly in error and 
that a data trap has detected the problem 
and passed control to the debugger. If the 
designer is unable or unwilling to substi- 

A B C 

100 110 
. 7  

130 

A Debugger A B C 

100 110 11 O+s 11 O+s+e 130+s 
(b) 

maximum-execution-time(A)= 10 
maximum_execution~time( B)=20 
s=skew time 
e=excess execution time for A 

Figure 8. Debugging a real-time prototype. (a) Scheduled execution. (b) Actual 
execution. 

/@ %@ f ,  

b 

Figure 9. Disabling a parallel thread. 
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operator operator 

Figure 10. Class structure for prototype components. 

CLASS Component 
SUPERCLASSES { ] 
ATTRIBUTES 

name: string 
generic: set[parameter] 
description: string 
support: set[requirement] 

END Component 

CLASS Operator 
SUPERCLASSES {Component } 
ATTRIBUTES 

input, output, states: set[parameter] 
max-exec-time, max-resp-time, 

min-call-period, period, 
finish-within: time 

spec: assertion 
END 

CLASS Atomicoperator 
SUPERCLASSES {Operator) 
ATTRIBUTES 

language, code: string 
END 

CLASS CompositeOperator 
SUPERCLASSES {Operator} 
ATTRIBUTES 

dfd: graph 
constraints: set[control-constraint] 

END 

Figure 11. Attributes of prototype 
components. 

tute a correct value for c ,  he or she can 
temporarily disable the execution of C and 
restart the system to see the results of 
executing B and D using the value of b, 
which was not affected by the fault in A .  
This is equivalent to removing a faulty data 

value from the data stream c and will not 
cause any further faults if operator E is 
triggered by the arrival of new input data. 
If E is triggered by a temporal event, then 
disabling C might cause another fault if E 
requires a fresh value of e every time i t  
executes. 

Consistency checking, as performed by 
dynamically inserted data traps, must not 
interfere with the timing properties of 
normal prototype execution. In a single- 
processor implementation this requires 
stopping the real-time clock while the con- 
sistency checks are performed. In multi- 
processor implementations such consis- 
tency checks can be performed in real time 
if enough processors are available and if 
the consistency checks are shorter than the 
primary computations. 

Tool viewpoint. The tools in CAPS are 
organized around an object-oriented data- 
base management system used to realize 
the design database and the software 
base.I4 The components of a prototype de- 
scription are instances of the subclass hier- 
archy shown in Figure 10. Selected attrib- 
utes of a representative subset of these 
object classes appear in Figure 11. 

To effectively support modifications, 
the tools in CAPS must address several 
consistency problems. Some of the prob- 
lems of consistency with respect to the 
subcomponent hierarchy were discussed 
in the previous section. Another problem is 
maintaining consistency between the gra- 
phical and textual views of a prototype. 

Graphical views arise as part of the 
implementation of a composite object, 
while text views arise for the specification 
parts of the immediate components of a 
composite object. The graphical view and 
the textual view contain different forms of 
the same information, so when the de- 
signer changes one view, the other one 
must be automatically updated to maintain 
consistency. This process requires some 

care, since each view contains information 
not visible in the other view. Different 
strategies are appropriate for each. 

If a new operator is added in the graphi- 
cal view, it will lack information such as 
control constraints and the types of the 
values on its input and output streams. 
Since control constraints are optional, that 
part of the text view can be left empty. 
Since the data types of streams are not 
optional and an accurate value is not avail- 
able, the corresponding slot in the textual 
view must be filled by a completion term. 
A completion term is a special value recog- 
nized by the syntax-directed editor as a 
placeholder for a missing part of the proto- 
type. Its distinctive display reminds the 
designer that more information must be 
supplied before the prototype can execute. 

If a new operator is added in the text 
view, it will lack information about the 
position of the corresponding icon in the 
graphical view. Since an icon cannot be 
displayed without choosing a particular 
position, a heuristic generates a default po- 
sition. 

One method for doing this is to put the 
new icon at the center of gravity of the 
sources and destinations of all the inputs 
and outputs of the new operator. Next, cut 
the old display into two parts with a hori- 
zontal line through the position of the new 
icon, moving the old icons outward until 
the new icon has a minimum clearance 
from all the old ones. Then reconnect the 
broken arrows. Finally, do the same with a 
vertical line through the position of the 
new icon. 

Figure 12 illustrates this process. Figure 
12a shows the old text view, 12b shows the 
new text view, 12c shows the old graphical 
view with the default position and vertical 
expansion axis, and 12d shows the new 
graphical view. This heuristic has a global 
effect, since potentially it can transform 
the layouts of all the objects in the graphi- 
cal view. 

22 COMPUTER 



OPERATOR A INPUT x,s:t OUTPUT y:t END 
OPERATOR B INPUT y:t OUTPUT z,s:t END 

(a) 

OPERATOR A INPUT x,s:t OUTPUT y 1 :t END 
OPERATOR B INPUT y2:t OUTPUT z,s:t END 
OPERATOR C INPUT y l : t  OUTPUT y2:t END 

(b) 

’ Expansion axis w 
S I  

(C)  i ‘Center of gravity 

s 

Figure 12. Consistency between text and graphical views, showing (a) the initial 
text view, (b) the modified text view, (c) the initial graphical view, and (d) the 
modified graphical view. 

A change to the specification of an op- 
erator invalidates its implementation. Such 
changes signal the project database man- 
agement system to save the previous ver- 
sion of the operator. This prevents losing 
the results of previous efforts should the 
designer later want to restore the previous 
version. The tree of suboperators rooted at 
the modified operator is then removed 
from the new version of the prototype, and 
the software base is searched for an im- 
plementation of the new specifications. 
Since the operators containing the modi- 
fied operator are invalidated by such a 
change, the system adds them to a list of 
action items for the designer. 

Evolution of a 
hyperthermia system 

To illustrate some typical prototype 
modifications, this section discusses part 
of the prototyping cycle for a hyperthermia 
system. The hyperthermia system treats 
brain tumors by using microwaves to heat 
the affected area to a temperature that will 
kill tumors but not normal tissue. An 

embedded software system controls the 
microwave power based on feedback from 
a temperature sensor inserted into the pa- 
tient’s brain. The goals of the prototyping 
effort are to evaluate the safety of the 
proposed system and to establish the feasi- 
bility of implementing the required control 
functions. 

The initial PSDL specification for the 
top level of this system appears in Figure 
13. The details of a PSDL decomposition 
for the initial version of this prototype can 
be found elsewhere,’ so I will not repeat 
them here, although the information they 
contain is necessary to make the prototype 
executable. I have provided informal de- 
scriptions of lower level details as needed 
to explain the effects of the proposed 
modifications. The second-level decom- 
position of the brain tumor treatment sys- 
tem contains a simulated patient and the 
proposed software system for controlling 
the microwave power level. 

Demonstration of the initial version of 
the prototype led to a question about the 
safety of the proposed system. In the initial 
version of the prototype design, informa- 
tion about the size of the tumor was ex- 
tracted from the patient chart using an 

operation of the abstract data type 
medicalphistory called get-tumor-diu- 
meter. This information determines the 
initial microwave power level. The 
,qet-tirmor-diameter operation raises an 
exception called no-tumor if the patient’s 
chart does not contain a description of a 
tumor in the patient’s brain. The response 
to the exception in the initial version of the 
prototype sets the microwave power level 
to zero and issues an immediate 
treatmentfinished signal, which is plau- 
sible given the initial system interface 
specified in Figure 13. However, when this 
behavior was demonstrated, the potential 
users of the system pointed out that such a 
response can hardly be considered safe. If 
a healthy patient was mistakenly sent for 
hyperthermia treatment, the system would 
produce a response indicating something 
was wrong (an early treatment-finished 
signal) only after the srart-treatment 
switch was pressed, which happens only 
after the temperature probe has been in- 
serted into the patient’s brain. A safe de- 
sign should prevent such a dangerous pro- 
cedure if not medically necessary. 

Figure 14 shows a PSDL specification 
of the revised top level of the prototype, 
and Figure 15 shows the corresponding 
implementation. A new layer has been 
introduced because the safety question has 
changed the boundaries of the system to 
include the central hospital database. This 
change addresses the issue of how the 
patient is identified to the brain tumor 
treatment system. 

The original version of the brain tumor 
treatment system has been included as a 
subsystem, as shown in Figure 15. This 
change minimizes the effects on the previ- 
ously developed prototype and allows a 
quick demonstration to validate the newly 
proposed interface. However, i t  leaves 
some dead code in the original design, 
since the patient charts entering the brain 
tumor treatment system are now guaran- 
teed to contain the description of a brain 
tumor. 

In preparation for further refinements, 
the prototype design is cleaned up after the 
initial demonstration, as shown in Figure 
16. Note that the specification part of the 
top level is not affected by the change. The 
new version reflects the restriction men- 
tioned above, which has been used to 
tighten up the design by keeping unneces- 
sary information out of the brain tumor 
treatment system (the system does not use 
information in the patient’s chart other 
than the tumor’s diameter). 

The change affects the interface of both 
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OPERATOR brain-tumor-treatment-system 
SPECIFICATION 

INPUT patient-chart: medical-history, 
treatment-switch: boolean 

OUTPUT treatment-finished: boolean 
STATES temperature: real 

DESCRIPTION 
{ The brain tumor treatment system kills tumor cells 

by means of hyperthermia induced by microwaves. 

INITIALLY 37.0 

I 
END 

Figure 13. Initial top-level specification. 

the hospital database and the brain tumor 
treatment system. It also ripples through 
the lower levels of the system, resulting in 
the removal from the brain tumor treat- 
ment system of the medical-history type, 
the no-tumor exception, and the associ- 
ated exception handlers. 

Such simplifications help keep future 
modifications easy to make and prevent 
remnants of abandoned alternatives from 
contaminating the design of the production 

OPERATOR hospital-system 
SPECIFICATION 

INPUT patient-id: string, 

OUTPUT treatment-finished: boolean, 

DESCRIPTION 
( The hospital system provides hyperthermia treatment 

treatment-switch: boolean 

tumor-location: string 

for brain tumors. 
I 

END 

Figure 14. Revised top-level specification. 

version of the system. They often improve 
the performance of the system as well. The 
CAPS designers are exploring the feasibil- 
ity of providing high-level editing com- 
mands for reducing the designer effort 
needed for such simplifications. 

he effort required for evolution of 
a software system can be reduced T through prototyping. Prototyping 

can stabilize the requirements for both new 

IMPLEMENTATION GRAPH 

DATA STREAM patient-chart: medical-history 

CONTROL CONSTRAINTS 
OPERATOR brain-tumor-treatment-system 

TRIGGERED BY ALL treatment-switch, patient-chart 
END 

Figure 15. PSDL implementation of the revised top level. 
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systems and proposed enhancements to ex- 
isting systems. Feedback from demonstra- 
tions of proposed system behavior is es- 
sential for effectively validating complex 
requirements, such as those for large or 
embedded real-time systems. The cus- 
tomer and the developer must examine a 
series of changes to proposed system be- 
havior and perceived requirements to reach 
a common understanding. It costs less to 
use a prototype than production-quality 
code to support this process because proto- 
types are simpler and easier to modify than 
production-quality implementations. 

The effectiveness of prototyping is lim- 
ited if carried out manually. A high-level 
language, a systematic prototyping 
method, and an integrated set of computer- 
aided prototyping tools are important for 
realizing the potential benefits of prototyp- 
ing. Simplicity was the primary goal in 
designing the Computer-Aided Prototyp- 
ing System, since the feasibility and effi- 
ciency of rapid prototyping depend on 
simplifying the tasks of the software engi- 
neer. 

Prototyping is also aided by a powerful 
set of abstractions appropriate for a prob- 
lem domain, especially if these abstrac- 
tions are embodied in a set of reusable 
software components that can be automati- 
cally retrieved based on specifications of 
the desired behavior. We can save effort in 
the long run by building up a comprehen- 
sive library of such components for an 
application area if more than one software 
system must be developed for the same 
problem domain. An essential part of any 
practical computer-aided prototyping en- 
vironment is a design database that main- 
tains the hierarchical structure of a proto- 
type and the relationships between mul- 
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DATA STREAM tumor-diameter: real 

CONTROL CONSTRAINTS 
OPERATOR brain-tumor-treatment-system 

1 1. C. Altizer, “Implementation of a Language 
Translator for a Computer-Aided Prototyp- 
ing System,” master’s thesis, Computer 
Science, Naval Postgraduate School, Mon- 
terey, Calif., Dec. 1988. 

TRIGGERED BY ALL treatment-switch, tumor-diameter 
END 12. L. Marlowe, “A Scheduler for Critical 

Timing Constraints,” master’s thesis, 
Computer Science, Naval Postgraduate 
School, Monterey, Calif., Dec. 1988. Figure 16. Cleaned-up implementation. 

tiple versions developed during prototyp- 
ing. An advanced design database should 
automatically propagate consequences of 
decisions made by a designer. 

A group of people must work concur- 
rently to evolve a typical software system 
within practical time schedules. We need 
better automatic methods and tools for 
coordinating the efforts of many people 
working on the same software system. 
Automatic means for combining compo- 
nents designed by different people and 
detecting potential conflicts would help to 
solve this problem. When coupled with a 
means for producing sets of alternative 
components compatible in all combina- 
tions, such tools would enable rapid tailor- 
ing of a prototype to match a user’s needs. 

In the future, systems will be maintained 
using prototype descriptions as the pri- 
mary representation. To automatically 
generate production code, these represen- 
tations will be augmented with descrip- 
tions of expected operating loads, environ- 
mental characteristics, optimization crite- 
ria, and design advice. This will preserve 
flexibility and enable global optimiza- 
tions, which might block further evolution 
of the system if applied manually. 0 

13. V. Berzins and Luqi, Software Engineering 
with Abstractions: An Integrated Approach 
to Sofrware Development Using Ada, Ad- 
dison-Wesley Publishing Co., Reading, 
Mass., 1989. 

14. H. Raum, “Design and Implementation of 
an Expert User Interface for the Computer- Acknowledement 
Aided Prototyping System,” master’s the- 
sis, Computer Science, Naval Postgraduate 
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