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The linear eddy mixing model is used to predict the evolution of a decaying scalar field in 
statistically steady homogeneous turbulent flow over a wide range of Reynolds and 
Schmidt numbers. Model results at low Reynolds number and order unity Schmidt number 
are shown to be in good overall agreement with direct numerical simulations. Results 
at higher Schmidt and Reynolds numbers reproduce conventional scaling properties of the 
scalar statistics. Predictions of Schmidt number and Reynolds number sensitivity of 
the evolution of the scalar concentration probability density function are presented and 
interpreted. 

I. INTRODUCTION 

The decay of a scalar field in a homogeneous turbulent 
flow has emerged as a standard test problem for models of 
mixing in turbulent flow fields. Two broad classes of mod- 
els are commonly considered. The classical treatment of 
turbulent flows is based on a decomposition of the depen- 
dent variables into mean and fluctuating components 
(Reynolds decomposition). Solutions for the mean values 
are sought, with scalar transport modeled by assuming gra- 
dient diffusion. Turbulent transport is handled by intro- 
ducing an e$ixtive d$hivity that is determined by flow 
field conditions. Other approaches are based on solving for 
the probability density function (pdf) of the scalar field. If 
the one-point pdf is known, moments and other one-point 
statistical information on the scalar field can be obtained. 
However, evolution equations for the single-point pdf re- 
quire information on the joint statistics of the scalar and its 
dissipation rate. Several models have been developed in an 
attempt to describe the mixing process.‘12 These models do 
not fully capture the underlying physical mechanisms, and 
none of them satisfactorily predict the scalar rms decay in 
a homogeneous turbulent flow field.3 

The problems associated with modeling molecular 
mixing and chemical reaction can, in part, be traced to the 
difficulty of realistically describing and resolving the phys- 
ical processes of turbulent convection (stirring) and mo- 
lecular diffusion at the smallest scales of the flow-two 
distinctly different physical processes. Turbulent stirring is 
effective at redistributing the scalar field at all length scales 
above the Kolmogorov scale, while molecular diffusion 
acts most effectively at the smallest scalar length scales of 
the flow. An accurate description of mixing thus requires a 
realistic treatment of the flow at the smallest hydrody- 
namic and scalar length scales. Most mixing models in- 
volve an ad hoc treatment of the small-scale processes that 
include no distinction between turbulent stirring and mo- 
lecular diffusion. 

Investigations of mixing in homogeneous turbulence 

using direct numerical simulation have provided an exten- 
sive data set on the evolution of the scalar field statistics3” 
These studies have involved the use of a pseudospectral 
scheme to simulate the evolution of the scalar field on a 643 
grid with periodic boundary conditions. Owing to the ex- 
treme range of length scales in turbulent reacting flows, 
resolution of all relevant length scales is computationally 
demanding. Complete resolution of the dynamic range of 
length and time scales was achieved by restricting the sim- 
ulations to moderate-Reynolds number ( ReA =: 50 or 
Relz 100) and order unity Schmidt number, SC. Since all 
relevant length scales were resolved and highly accurate 
numerical methods were employed, the statistics computed 
can be confidently treated as predictions of the scalar field 
behavior under the condition of moderate Re, homoge- 
neous flow in a periodic domain. 

Eswaran and Pope4 investigated the evolution of the 
scalar field pdf and the effects of various initial scalar 
length scales on the scalar field statistics. Their initial sca- 
lar field consisted of blobs of scalar concentration of - 1 
and + 1, with some smoothing to ensure that the scalar 
field was resolved numerically. The computational domain 
was a three-dimensional box, and the velocity field was 
numerically “forced” to maintain a statistically steady 
state. The initial velocity to scalar length scale ratio was 
shown to have a large effect on the initial rate of scalar rms 
decay, but the decay rate eventually became independent of 
the initial scalar length scale ratio. This observation dif- 
fered from the experimental results of Warhaft and 
Lumley,5 which showed a lasting dependence of the scalar 
rms decay on the initial scalar length scale. It was sug- 
gested by Eswaran and Pope that the difference between 
the experiments and simulation was a physical conse- 
quence of the adoption of a statistically steady velocity field 
in the simulation, in contrast to a decaying turbulence field 
in the experiments. This interpretation is supported by a 
recent DNS study of a similar configuration involving a 
decaying turbulence field.” 
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McMurtry and Givi3 studied a configuration similar to 
Eswaran and Pope using direct simulation. The velocity 
field was forced at the lowest wave numbers, and the initial 
scalar field 4, consisted of two slabs: one with 4 = 1 and the 
other with $= - 1. In addition to pure mixing, they also 
investigated the evolution of the statistics of a reacting 
scalar. The primary objective of this work was to assess a 
number of mixing models”2’7 and study the effect of reac- 
tion on the scalar statistics. None of the models investi- 
gated predicted the correct behavior for the scalar pdf. It 
was shown that the reacting scalar did not tend toward a 
Gaussian distribution. 

For a passive scalar, the question of the asymptotic 
form of the scalar pdf in steady, homogeneous turbulence 
has been addressed in a number of recent modeling studies, 
as well as in DNS studies. Using DNS, Eswaran and Pope 
found that the shape of the scalar pdf as it evolved in time 
was not sensitive to the initial length scale ratio, and it 
evolved from the initial bimodal form toward a Gaussian. 
Valiiio and Dopazo8 obtained a family of pdf’s in good 
agreement with the DNS results, using a model that, by 
construction, yielded a Gaussian pdf in the limit of van- 
ishing rms. Mapping closure9 generates a family of pdf’s 
that is also in good agreement with DNS,“*” yet the scalar 
statistics display persisting non-Gaussian behavior as the 
scalar rms vanishes.“‘t2 Another model indicating non- 
Gaussian behavior has also been developed.t3 

Interpretation of these results is hindered by the nar- 
row range of Re and SC accessible by DNS and by the 
insensitivity of predicted families of pdf’s to these param- 
eters. (In the aforementioned models, these parameters in- 
fluence the rate of evolution, but not the family of pdf’s 
that is obtained.) A complete mechanistic description of 
turbulent mixing, with regard to pdf shape evolution or 
any other measurable property, should reflect the sensitiv- 
ity of the mixing process to all the governing parameters. 
On this basis, it is evident that the analytical and compu- 
tational methods employed to date have not provided a 
complete characterization of the mixing process. 

In this paper, the linear eddy model, developed by 
Kerstein,‘“” is used to study the evolution of a scalar field 
in a steady, homogeneous turbulent flow field over a wide 
range of Reynolds and Schmidt numbers. One of the fea- 
tures that distinguishes the linear eddy model from other 
more commonly used mixing models (e.g., eddy diffusivity, 
coalescence-dispersion models, mapping closure) is that 
all relevant length scales, even for relatively high-Re flows, 
are resolved. This is achieved by reducing the description 
of the scalar field to one spatial dimension. By resolving all 
length scales, the mechanisms of turbulent convection and 
molecular diffusion can be treated distinctly, even at the 
smallest diffusion scales. Parametric sensitivities can there- 
fore be addressed on the basis of the underlying physical 
mechanisms. 

In previous work, the linear eddy model has been ap- 
plied to mixing in spatially developing flows and to a ho- 
mogeneous, statistically steady mixing configuration. 
These applications served both to validate aspects of the 

model and to provide mechanistic interpretations of mea- 
sured properties in a unifying framework. 

A statistically steady configuration can be obtained by 
imposing a uniform scalar gradient on a homogeneous tur- 
bulent Aow field, resulting in relaxation of the mean scalar 
rms to a constant nonzero value after a transient interval 
Computations for this configuration reproduced key fea- 
tures of the scalar power spectrum, including dependences 
of Reynolds and Schmidt numbers, and scaling properties 
of higher-order scalar statistics, thus validating the model 
representation of micromixing kinematics. I5 

The applications to spatially developing flows collec- 
tively demonstrate that the diverse phenomenology ob- 
served in such flows may be viewed as various manifesta- 
tions of a simple underlying kinematic picture. In such 
applications, configuration-specific aspects are reflected in 
the initial and boundary conditions of the computations 
and in the model analogs of quantities, such as Re, SC, and 
Da (Damkiihler number), but the underlying kinematic 
picture is the same in all cases. On this basis, the model 
reproduces the following measured properties: (1) three 
distinct scaling regimes governing turbulent plume growth, 
and spatially resolved scalar fluctuation statistics within 
such plumes; 141t6 (2) the spatially resolved cross- 
correlation of diffusive scalars in a three-stream mixing 
contiguration;‘6 (3) Da dependences of reactant concen- 
trations in a two-stream configuration;16 (4) spatially re- 
solved scalar fluctuation statistics in free shear flows, and 
the dependence of local and overall shear-flow mixing on 
Re and Sc,t7-” and (5) scalar fluctuation statistics reflect- 
ing differential molecular diffusion effects.t8 The unifica- 
tion of this diverse phenomenology achieved by linear eddy 
modeling is unprecedented. 

A category of mixing configurations to which the 
model has not previously been applied is spatially homo- 
geneous, transient mixing. Spatial homogeneity facilitates 
the interpretation of results in terms of simple scaling 
ideas, while transient effects introduce some of the phe- 
nomenological richness of spatially developing flows. It is 
largely for these reasons that the DNS study of such a 
configuration by Eswaran and Pope4 has come to be re- 
garded as a paradigm of the turbulent mixing problem, and 
has motivated many subsequent numerical and analytical 
studies. 

The objectives of the present study are twofold. First, 
linear eddy computations, based on a formulation that in- 
corporates high-Re inertial-range scalings, are compared to 
the results of Eswaran and Pope in order to demonstrate 
the applicability of such a picture to their moderate-Re 
results. Second, computations are performed beyond the 
limited range of Re and SC accessible by DNS in order to 
extrapolate the DNS results to other regimes of physical 
interest. Re and SC dependences of computed quantities are 
found to be consistent with simple scalings, based on di- 
mensional considerations, where such considerations are 
applicable. Novel qualitative features of the evolution of 
the concentration probability density function (pdf) for 
high SC are identified. Higher moments of the concentra- 
tion field are found to relax to values that exhibit SC- and 
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Re-dependent deviations from Gaussian values. These fea- 
tures, which are shown to be intuitively reasonable, con- 
stitute experimentally testable predictions. 

II. LINEAR EDDY MODEL 

The development of the linear eddy model has been 
described in detail elsewhere,14’15 and is only briefly out- 
lined here. This approach has a number of unique features 
that distinguish it from other more commonly used mixing 
models (e.g., eddy diffusivity and coalescence-dispersion 
models). In particular, the distinction between molecular 
diffusion and turbulent convection is retained at all scales 
of the flow in a computationally affordable simulation by 
reducing the description of the scalar field to one spatial 
dimension. Diffusion and convection have very different 
effects on scalar field evolution; accounting for these dif- 
ferences is crucial to accurately describe the species field, 
especially when chemical reactions are involved. This dis- 
tinction has not been achieved by any previously proposed 
mixing model. 

Velocity field statistics are inputs into the model, al- 
though no explicit velocity field appears. The required 
model parameters that describe the flow field include the 
turbulent diffusivity (D,), the integral length scale (L), 
the Reynolds number, Re (which determines the Kolmog- 
orov scale, q), and the P&let number, Pe. Thus, the flow 
field properties are inputs to the linear eddy model, not 
predictions of the model. The formulation of the model 
presented here is reparametrized in terms of L, Re, and rL, 
where rL is the large eddy turnover time in the model and 
is defined as rL= L2/DT. 

Reflecting the considerations above, the model in- 
volves two distinct mechanisms implemented concurrently, 
reflecting the distinct influences of molecular diffusion and 
turbulent stirring. The first mechanism acting on the scalar 
field, molecular diffusion, is straightforwardly imple- 
mented by numerical solution of the diffusion equation, 
3$/3t= ( l/Pe) ( d2$/3xZ), over the linear domain. Spatial 
resolution of the discretized linear domain is chosen (as 
elaborated in Sec. III B) so that grid effects are insignifi- 
cant, i.e., the scalar fluctuation lengths are fully resolved. 

The key feature of the model is the manner in which 
turbulent convection is treated. This is implemented by 
random rearrangements of the scalar field along a line. The 
frequency of these rearrangements is determined by requir- 
ing that the stochastic rearrangement events result in a 
turbulent diffusivity consistent with accepted scalings for 
high-Re turbulent flows. Each rearrangement event in- 
volves spatial redistribution of the species field within a 
randomly selected spatial domain. The size of the selected 
domain, representing the eddy size, is sampled from a dis- 
tribution of eddy sizes that is obtained by applying Kol- 
mogorov scaling laws. In this model, the spatial redistri- 
bution of a segment of length I represents the action of an 
eddy of size 1. A rearrangement event is illustrated and 
described in Fig. 1. 

The rearrangement process is governed by two param- 
eters: il, which is a rate parameter with dimensions 
(L-‘t-l), and f(Z), a pdf describing the segment length 
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FIG. 1. The scalar rearrangement (turbulent stirring) process is carried 
out by the use of the “triplet” map. The triplet map involves selecting a 
segment of the linear domain for rearrangement, making three com- 
pressed copies of the scalar field in that segment, replacing the original 
field by the three copies, and inverting the center copy. (a) Initial scalar 
field, chosen in this illustration to be a linear function of spatial location. 
(b) Scalar field after rearrangement. 

distribution. These parameters are determined by recogniz- 
ing that the rearrangement events induce a random walk of 
a marker particle on the linear domain. Equating the dif- 
fusivity of the random process with scalings for the turbu- 
lent diffusivity provides the necessary relationships to de- 
termine /z and f(l). For a high-Re turbulent flow 
described by a Kolmogorov cascade, the result of 
Kerstein15 can be expressed as 

I 
5 l-8/3 

j-(l) = 3 11-5/3- L75/3 3 %l<L, (1) 
I 0, otherwise, 

54 1 L 5/3 
/2=-- - 

0 SLT-LT ) (2) 

where the model turnover time rL is related to a particular 
empirically defined turnover time r10 by a constant factor, 
rL = cr6 (see Sec. III C) . Equation ( 1) defines model Kol- 
mogorov and integral scales 71 and L, respectively, that 
bound the range of segment lengths. 

Given an initial scalar distribution, the evolution of the 
scalar field is governed by the molecular diffusion process, 
punctuated by the random rearrangement events parame- 
trized by f(Z) and il. This formulation provides an approx- 
imate, yet physically sound, description of turbulent mix- 
ing. Namely, molecular diffusion is accounted for explicitly 
by numerical solution of the diffusion equation, while tur- 
bulent stirring (convection) is modeled by the stochastic 
scalar rearrangement events. By limiting application to one 
dimension, all relevant length and time scales can be re- 
solved. 

The scalar information within the linear eddy domain 
provides a statistical description of the scalar field. The 
one-dimensional representation of the three-dimensional 
scalar field can be interpreted as a space curve aligned with 
the local scalar gradient.15 This interpretation is not 
unique, and it can be instructive in other cases to view the 
linear eddy domain as a particular spatial coordinate in the 
flow field. l6 
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Having thus formulated the model, some of the fea- 
tures that render it a valid representation of multidimen- 
sional turbulent mixing are noted. 

First, the mathematical formulation of the model in- 
volves a one-dimensional spatial domain that is, in princi- 
ple, a continuum. In other words, there is no intrinsic limit 
on the spatial resolution. As in multidimensional flow sim- 
ulations, a practical limit on spatial resolution is computa- 
tional affordability. This consideration highlights a key ad- 
vantage of the linear-eddy approach. Due to the restriction 
of the model to one spatial dimension, it is affordable to 
achieve sufficient resolution, so that an accurate approxi- 
mation to the continuum formulation is obtained in simu- 
lations for Re values of practical interest. 

This observation leads to the second feature, namely, 
the manner in which the physically correct microstructure 
of the scalar mixing field arises as a consequence of the 
continuum formulation of the model. This feature is dis- 
cussed in detail elsewhere,i5 so the discussion here is lim- 
ited to a few pertinent remarks. The continuum formula- 
tion has no predetermined intrinsic resolution, so the finest 
scale of the scalar field fluctuation is determined by the 
ongoing interaction of the two processes, molecular diffu- 
sion and random rearrangements, that are implemented 
concurrently during a linear eddy simulation. 

Molecular diffusion is implemented deterministically 
using a finite difference scheme with sufficient time resolu- 
tion to approximate the continuous-time limit. This ongo- 
ing smoothing process is randomly punctuated by instan- 
taneous rearrangement events illustrated in Fig. 1, and 
parametrized by Eqs. ( 1) and (2). Each event causes a 
multiplicative increase in the scalar gradient within the 
selected segment, analogous to the effect of the compressive 
strain associated with a turbulent eddy of comparable size. 
The parametrization of event frequency as a function of 
segment size is formulated so that the frequency-versus- 
size relation governing the Kolmogorov eddy cascade is, in 
effect, built into the model. 

Since the frequency-versus-size relation implies a char- 
acteristic time associated with each size, the question arises 
as to whether that characteristic time can be interpreted as 
the turnover time for eddies of that size. In the model, this 
is not literally the case, since individual rearrangement 
events are instantaneous. It is nevertheless plausible, 
though not guaranteed, that this interpretation is valid for 
the purpose of analyzing scaling properties of the model in 
the manner of Kolmogorov dimensional analysis, Scaling 
analysis of this sort, supported by numerical results of lin- 
ear eddy simulations, verifies that most of the well-known 
phenomenology of turbulent mixing fields (spectral scaling 
exponents, wave-number ranges of the various scaling re- 
gimes, etc.) is captured by the model.” Additional verifi- 
cation is provided by computed results presented in Sec. 
IV. 

In particular, the length scale at which diffusive and 
convective (i.e., rearrangement) effects balance is found to 
be the Batchelor scale, as defined in terms of its usual 
dependences on Re and SC. Thus, to achieve sufficient spa- 
tial and temporal resolution for given Re and SC, it is nec- 

essary to discretize the linear eddy domain into computa- 
tional elements smaller than the Batchelor length scale (or 
smaller than the Kolmogorov scale if the latter scale is 
smaller, i.e., if SC < 1) . 

A third and final feature is noted. The triplet map 
illustrated in Fig. 1 is formulated so as to avoid causing 
discontinuities in the scalar field, although discontinuous 
derivatives are introduced. The latter artifact is a seem- 
ingly unavoidable consequence of the one-dimensional for- 
mulation. The only apparent impact of this artifact is a 
somewhat slow falloff of the scalar fluctuation intensity in 
the dissipation range (high-wave-number limit) of the sca- 
lar power spectrum.‘5 

The upshot of these observations is that the linear-eddy 
model, though not entirely free of artifacts, has been found 
to provide a remarkably accurate overall representation of 
turbulent mixing phenomenology, despite the substantial 
simplifications necessitated by a one-dimensional represen- 
tation. 

Ill. APPLICATION TO SCALAR MlXlNG IN A 
HOMOGENEOUS TURBULENT FLOW 

A. Scalar field initialization 

The linear eddy model is applied here to mixing of a 
scalar field, 4, in a homogeneous turbulent flow field. (The 
analogous physical configuration is a three-dimensional 
flow field with periodic boundary conditions in a box of 
size B in each spatial dimension.) Within this domain the 
scalar field is initially distributed in blobs of concentration 
-’ 1 and 1, with smooth transition layers at the interfaces. 
The transition layers are necessary to satisfy numerical 
resolution requirements in direct numerical simulations. 
The numerical specification of this scalar field for a three- 
dimensional DNS study is described by Eswaran and 
Pope.” In particular, the initial length scale of the scalar 
field is generated in a manner such that the initial scalar- 
energy spectrum is equal to a specified function, f e(k), 
where f&k) is a top-hat function of width k,, centered on 
a selected integer wave number k, (k, is the smallest non- 
zero wave number resolved in the simulation). The ratio 
kJk,, thus determines the integral length scale of the scalar 
field, 4. In the linear eddy model results presented here, the 
one-dimensional analog of this initialization is applied to a 
linear domain of B=25-. Note that the initialization pro- 
cedure of Eswaran and Pope produces maximum and min- 
imum values of 4 outside the interval - 1, + 1. This is 
reflected in some of the pdf plots presented in Sec. IV. This 
artifact of the initialization does not, in any way, affect the 
integrity of the calculations. 

For comparison with the results of Eswaran and Pope, 
various initial scalar fields with different scalar length 
scales were constructed by varying the ratio kJk,. All ad- 
ditional parameters of the initialization are as specified by 
Eswaran and Pope. The one-dimensional implementation 
of their initialization procedure generates nonrandom sca- 
lar fields, but they are soon randomized by the spatial re- 
arrangement events (eddy action). Figure 2 illustrates two 

1026 Phys. Fluids A, Vol. 5, No. 4, April 1993 McMurtry et al. 1026 



0 1 2 3 4 5 6 

X 

FIG. 2. Typical realizations of the initial scalar field on the linear domain 
[0,2?r]. (--, k&+1; ---, k&kc=4). 

of the different initial one-dimensional scalar fields that 
were used in this modeling study. 

B. Algorithm and Implementation 

The total number of computational elements along the 
domain must be chosen to resolve the largest and smallest 
scales in the flow. The computational domain was selected 
to include one integral scale, i.e., B=L. From Kolmog- 
orov scalings, the ratio of the largest to smallest length 
scales in the flow is approximately L/q=Re3’4. For 
Re=104, this ratio is 1000. By taking six computational 
elements to resolve the eddies at the Kolmogorov scale 
(i.e., n,=6), 6000 elements are needed to resolve the com- 
plete flow field for Re= 104. Scalar field resolution require- 
ments can be more stringent. The Batchelor scale, Za, 
which must be resolved, is smaller than the Kolmogorov 
scale in high-SC tlows. Scaling arguments yield $lu-Scl”. 
A numerical sensitivity analysis indicated that approxi- 
mately twice this number of grid points (2 Sc”‘X n?) is 
needed per Kolmogorov scale before multipoint statistics 
(e.g., scalar dissipation) become insensitive to resolution. 

The molecular diffusion process is implemented by reg- 
ularly advancing the one-dimensional diffusion equation 
using a space-centered finite difference technique. To im- 
plement each rearrangement event, a location is randomly 
selected within the domain. The segment size is also ran- 
domly chosen, but in such a way as to satisfy the proba- 
bility distribution given by f(Z). One rearrangement takes 
place per time interval l//2 B. The process is repeated until 
a desired time has elapsed. 

The complete model is implemented as a Monte Carlo 
simulation of many individual flow field realizations. The 
statistics are then computed by averaging the ensemble of 
realizations. For each of the simulations presented below, 
the scalar field statistics were averaged over 1000 separate 
realizations (except the Re,=lO 000 case, in which 300 
realizations were taken), yielding sufficient statistical pre- 
cision for quantitativecomparison to DNS results. Com- 
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puted pdf’s are generated using 100 bins over the scalar 
range of scalar values. 

C. Model parameters 

The early applications of the linear eddy model in- 
volved no parameter adjustments. The model is built upon 
scaling laws for high Re flows, and order unity coefficients 
implicit in the scale relationships were set equal to unity. 
Here, parameter assignments are based on the selected 
DNS comparison case in order to obtain direct quantitative 
comparisons. In particular, the model analogs of SC, Re, 
and L, must be related to their physical (DNS) counter- 
parts. 

The large-scale Reynolds number in the DNS of Es- 
waren and Pope was calculated to be Reb G u’&/Y 
= 107. The linear eddy analog of Relo is Res- ( L/q)4’3, 
where L is the integral scale of the model. Based on this 
definition, the model Reynolds number Res was selected to 
give approximately the same range of eddy sizes as in the 
DNS. This was achieved as follows: The DNS used here to 
compare model results contained a wave number ratio of 
k,,,/k,= 30, where k,,, and k, are the largest and small- 
est nonzero wave numbers in the simulation. Applying an 
eddy-size-wave-number analogy”’ yields an equivalent 
length scale ratio, L/q= (2~/k,)/(2dk,,,) 
= k,,,/k,,=30, resulting in a model Reynolds number 
Resz90. The Schmidt number of the model Scs is taken to 
be Sc,=O.7, equal to the physical Schmidt number. 

The final consideration is the relationship between the 
integral scale defined in the model, L and the measured 
integral scale in the DNS, le. The two are not equivalent 
since L is defined as the largest allowable eddy for a given 
flow, while I,, represents a “typical” eddy size. As pointed 
out by Kerstein, I6 the relationship between L and Za is not 
universal since the definition of Za for different flows is not 
always consistent. The value of L in the model is taken as 
the domain size, L ==2~-. The data of Eswaran and Pope 
yield I,= 1 .Ol, giving L= 6.22Za. This is close to the value 
of L=5.61, found by Kerstein16 in simulating the concen- 
tration field downstream of a line source in decaying ho- 
mogeneous turbulence. With these model parameters de- 
termined, all computed statistical properties of the scalar 
field are predictions that can be compared directly with the 
simulation results. 

To perform direct quantitative comparisons, the large 
eddy turnover time of the linear eddy model rL- L”/DT, 
must be related to the large eddy turnover time in the 
DNS, r10 3 Z,/u’. This was done by inferring the relation- 
ship between r10 and D, from the data reported in Eswaran 
and Pope. The chosen linear eddy model parameters imply 
a turbulent diffusivity based on the model definition 
DT/DM=Re, Sc,=63. The given molecular diffusivity 
used in the DNS. ( DM=0.035) then implies a turbulent 
diffusivity D,=2.205. From the reported values of u’ and 
I, by Eswaran and Pope, a relationship for the turbulent 
diffusivity of the DNS can be expressed as D,=O.S2u’la. 
The time scale ratio between the linear eddy model and the 
DNS for the runs reported in the following is thus 
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rL/rlo = L’/(O.82$) =: 47. In all model/DNS compari- 
sons reported in Sec. IV A the time axis is scaled by r+,. For 
the Schmidt and Reynolds number effects reported in Sec. 
IV B, time is scaled by the linear eddy turnover time, rL. 

In addition to the comparisons presented in Sec. IV on 
the basis of the foregoing parameter assignments, addi- 
tional comparisons have been performed in which different 
combinations of input parameters were varied by a factor 
of 2 or more. The quality of the agreement with simulation 
results was found to be only mildly sensitive to input pa- 
rameter values, so the inferences drawn in Sec. IV are not 
strongly dependent on the mechanistic basis of the param- 
eter assignments. 

With regard to direct quantitative comparisons, it is 
noted that the parameters defining the linear eddy model 
[see Eqs. ( 1) and (2)] are developed based on Kolmogorov 
inertial range scalings, while the direct simulations that 
have been performed of scalar mixing to date display only 
a barely perceptible inertial range. As a result, the distri- 
bution of eddy sizes and frequencies in the linear eddy 
model and in the direct simulations cannot be made to 
match exactly. This can contribute to differences between 
model results and DNS data. Furthermore, it is expected 
that there will be some inherent limitations when describ- 
ing the full three-dimensional turbulent mixing process in 
one dimension. However, previous results and the compar- 
isons that follow demonstrate the ability of the linear eddy 
model to realistically represent the turbulent mixing pro- 
cess. 

IV. MODEL RESULTS 

Results of the linear eddy model model study are f&t 
directly compared to moderate-Re DNS. The model is 
then applied to study the mixing characteristics over a 
wide range of Reynolds and Schmidt numbers. 

A. Comparison with direct numerical simulation 

The decay of the scalar rms 4 for various initial scalar 
length scales is compared to DNS results in Fig. 3. The 
overall agreement is good, with better agreement seen in 
the cases with the larger initial scalar length scale. A dis- 
cussion of the quantitative differences between the DNS 
and linear eddy results for the smaller initial scalar length 
scales is provided at the end of this section. 

Both linear eddy and DNS indicate that in the final 
state of scalar rms decay, the decay rate becomes indepen- 
dent of the initial scalar length scale. It was suggested by 
Eswaran and Pope, and shown numerically by Mel1 et al. ,6 
that this independence of the initial scalar length scale is a 
characteristic of scalar decay in a statistically steady tur- 
bulent flow. In decaying turbulence this is not observed. 

Another, more subtle qualitative feature of the scalar 
rms decay curves is also captured by the linear eddy model. 
Note that for the case kJk,= 1 the rms decay curve is 
concave prior to the linear region. For higher values of 
kJk,, the concave region is followed by a convex region 
before the linear region. This behavior has been described 
in detail by Ko~al.ly~~ and reflects his conjecture that in 
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FIG. 3. Time evolution of the scalar rms 4’ for simulations at Re,=90 
and Sc,=O.7, compared with DNS of Eswaran and Pope (-, linear eddy 
simulation results) (X, kJkc=l), (*, kJkc=2), (0, k/kc=4), (0, 
k/kc=6), (+, k&,=8). Eswaran and Pope results (solid line, 
h-J/cc= l), (dots, k/1$,=2), (dashes, Q&,=4), (long dash, k/kc=6), 
(dot-dash, k,/k,= 8) Time is normalized by ~6 = 1,/u’. 

stationary turbulence the scalar/velocity length scale ratio 
(la/Z> evolves to a value of unity, independent of initial 
length scale ratio. It has been shown by Kosaly that the 
concave-linear shape of the rms decay curve corresponds to 
Zo(t=O>/Z> 1 and the concave-convex-linear shape corre- 
sponds to Z,(t=O)/Z< 1. In the former case, the scalar 
length scale decreases with time until Z&t)/Z reaches its 
asymptotic values, while in the later case the ratio in- 
creases. This provides additional evidence that the physics 
governing the scalar length scale evolution is realistically 
represented by the linear eddy modeling process. 

Based on the interpretation of the linear eddy compu- 
tational domain as a space curve aligned with the scalar 
gradient, the model analog of the mean scalar dissipation, 
defined by Eswaran and Pope as (E$ = D,(V$ l V+), is 
DM( (~~/c~x)~). This quantity is computed by first differ- 
encing the discretized one-dimensional scalar field. The ev- 
olution of the mean scalar dissipation is shown in Fig. 4. 
The agreement with the DNS data is again good. 

The largest discrepancy is seen to occur at early times, 
where the dissipation computed by the linear eddy model 
consistently grows at a faster rate than in the DNS. At 
later times the dissipation decays at a rate that is approx- 
imately independent of the initial scalar length scale. 

The evolution of the concentration pdf for kJko= 1 is 
shown in Fig. 5(a). At t=O the initial field is approxi- 
mately represented by a double delta distribution, indicat- 
ing the initially unmixed scalar field. As time proceeds, 
turbulent mixing and molecular diffusion yield a mixed 
fluid concentration peaking at 4 = 0. Figure 5 (b) shows the 
development of the pdf, as predicted by the DNS of Es- 
waran and Pope for the same value of kJk,. The family of 
pdf’s evolving from the double delta function distribution 
to the final peak at the mixed fluid concentration is well 
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FTG. 4. Evolution of the mean scalar dissipation rate for same cases as 
Fig. 3. 

represented by the linear eddy model. In particular, the 
transition from a bimodal to unimodal form is found to 
involve an intermediate form (at $J’/&, ;= 0.6) with a broad 
plateau, as in the DNS results. 
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The evolution of the concentration pdf for k,/ko=4 is 
shown in Fig. 5 (c). For this initialization the pdf displays 
some qualitative differences during its evolution from the 
case of k,Jk,= 1. Namely, there is an indication of trimo- 
dality during intermediate stages of the evolution. Some 
differences in the pdf evolution for different values of kJk, 
are also apparent in the higher-order moments (Figs. 6 and 
7), as will be discussed shortly. This behavior was not 
observed by Eswaran and Pope, who found little depen- 
dence of the pdf evolution on kJk,. 

Trimodal pdf’s indicate intermittency in the scalar 
field in the following sense. Sharp scalar interfaces are sub- 
ject to rapid stirring by small eddies acting on relatively 
short time scales. (Recall from Sec. II that the model em- 
ulates the eddy-size-versus-time-scale relationship obeyed 
by inertial-range eddies.) This results in completion of lo- 
cal mixing near interfaces (and hence development of the 
central peak of the pdf) before large-scale mixing depletes 
the initial unmixed peaks. It is evident that the degree of 
sensitivity indicated by the linear eddy results is not sup- 
ported by DNS. Nevertheless, the mechanistic plausibility 
of the trend suggests that a wider-ranging DNS parameter 
study to check the qualitative prediction would be worth- 
while. 

FIG. 5. Computed scalar pdf from (a) the linear eddy model for Res=90 
and Sc,=O.7, k/k,= 1. (Solid line, &/$A = 0X9), (dots. #‘/4; = 0.72), 
(dash, 4’/& = O&3), (long dash, @/q5; = 0.47), (dot-dash. 
&‘/#$ = 0.34); and (b) DNS of Eswaran and Pope for kJb= 1; (solid 
line, +‘/+A = 0.99), (dots, $‘/& = 0.73), (short dash, qY/& = 0.55), 
(long dash, 4’/& = 0.40), (dot-dash, 4’/&, = 0.27). (c) Linear eddy 
model for the same case as (a), except kjk,=4. (Solid line, i’/& 
= 0.93), (dots, +‘/& = 0.78), (dash, $‘/+A = 0.70), (long dash, 4’/&, 
= 0.63), (dot-dash, I$‘/& = 0.40). 
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FIG. 6. Evolution of the kurtosis (normalized fourth moment) from the 
linear eddy model for Res=90, Scs=O.7. (X, k&,=1), (*, k&,=2), 
(0, k,&=4), [O, kJkc=6), and (+, k/&,=8). Eswaran and Pope 
DNS results for kJ+4 are indicated by a dashed line. 

Related considerations bearing on the SC sensitivity of 
pdf evolution are discussed in Sec. IV. 

To analyze the structure of the pdf in more detail, it is 
instructive to examine some of the higher-order moments 
of the concentration field. In Figs. 6 and 7 the standardized 
fourth and sixth moments are presented. Two significant 
features can be pointed out. First, the asymptotic values of 
these moments relax to a constant value that is indepen- 
dent of the initial scalar length scale. However, the manner 
in which the curves approach the tinal value is seen to 
depend on the initial state of the scalar field. At early 
times, the simulations initialized with the smaller scalar 
length scales show a rapid increase in their higher-order 
moments before relaxing to their final state. In the case 
presented here, the final values of the fourth and sixth 

FIG. 7. Evolution of the super-skewness (normalized sixth moment) from 
the linear eddy model for the same cases as Fig. 6. Eswaran and Pope 
DNS results for kJk,=4 are indicated by dashed line. 

CL 

-0.6 

FIG. 8. Evolution of the scalar variance dissipation correlation function 
for the same cases as Fig. 3. 

moment are somewhat less than the corresponding Gauss- 
ian values of 3 and 15. It was indicated both by Eswaran 
and Pope4 and McMurtry and Givi3 in their DNS studies 
that the pdf apparently tended toward Gaussian in the 
limit as the scalar rms became small. However, more re- 
cent analytical workI and simulations’3 suggest that non- 
Gaussian behavior may persist throughout the mixing pro- 
cess. Further discussion of this matter is deferred to Sec. 
IVB 1. 

The dependence of E+, on 4 can be examined by com- 
puting the correlation function p= (@e4>/( (I$~) (e+)) - 1. 
Comparison of this quantity with the DNS results is shown 
in Fig. 8. Quantitative and qualitative differences are ap- 
parent. For the conditions considered (Scs=0.7, 
Res=90), the model predicts that p converges to a non- 
zero value, while DNS indicates eventual convergence to a 
different value. The linear eddy result indicates a lasting 
dependence of e4 on I$, consistent with the persistence of 
non-Gaussian behavior” evident in Figs. 6 and 7. This 
quantity also displays a SC, dependence as shown in Sec. 
IVB 1. 

As mentioned in Sec. III C, the quantitative discrep- 
ancy between the linear-eddy results and the DNS results 
shown in Figs. 6-8 may reflect the use of high-Re scalings 
in a moderate-Re application. High-Re scaling may result 
in a larger contribution of the small scales to the mixing 
process than occurs in a moderate-Re DNS. This is con- 
sistent with the differences observed in the decay of the 
scalar rms at smaller initial scalar length scales and in the 
initial development of the scalar dissipation for all cases. 
On the other hand, the differences between the linear eddy 
results and the DNS may reflect a fundamental limitation 
of the linear eddy model with respect to its representation 
of mixing kinematics. This issue can be resolved on the 
basis of DNS and/or laboratory experiments at higher Re. 

In general, the linear eddy model is found to accurately 
represent important features of the turbulent mixing pro- 
cess. The agreement is particularly remarkable considering 
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FIG. 9. Evolution of the scalar dissipation for Res=90, k&= 1 at 
different values of SC, as computed from linear eddy model. ( X, 
Scs=O.l), (*, Sc,=l.O), (0, Sc,=lO), (0, Sc,=lOO), and (+, 
sc~=lOOO). 

that the scaling laws upon which the model is built are 
based on high-Re turbulent flows, and the DNS results 
have been obtained for relatively moderate-Re flows. 

6. Reynolds and Schmidt number sensitivities 

Owing to the severe computational requirements of 
DNS, previous DNS of turbulent mixing has necessarily 
been limited in the range of Re and SC that could be 
treated. The effects of Re and SC on the overall mixing 
process have not as yet been quantified. However, with the 
computationally economical one-dimensional formulation 
of the linear eddy model, a much wider range of length 
scales can be treated, allowing parametric Re and SC stud- 
ies. In the simulation results that follow, results are param- 
etrized by Res and SC,, whose relation to the physical 
quantities Re and SC is discussed in Sec. III. The initial 
scalar fields for all simulations that follow were initialized 
with a value of kJk,= 1, unless otherwise noted. 

I. Schmidt number dependence 
The linear eddy model was used to perform simula- 

tions spanning a range of Scs=O. l-1000 for Res=90. The 
moderate-Re case was selected for Scs comparisons, as res- 
olution requirements become severe when resolving the 
Batchelor scale for high Schmidt number flows, even in one 
spatial dimension. SC, sensitivities are shown in Figs. 9-12. 

Figure 9 indicates that the initial growth rate of the 
dissipation at a fixed Reynolds number is independent of 
Schmidt number. This SC independence persists until the 
scalar length scale is reduced to the Batchelor scale, where 
molecular diffusion effectively smooths out scalar gradi- 
ents. The time at which the dissipation reaches its maxi- 
mum value (i.e., the time to reach the Batchelor scale) is 
seen to increase with increasing SC. This is quantified in the 
following paragraph. Subsequently, the magnitude of the 
dissipation, when scaled by the large eddy turnover time, 

0.00 0.05 0.10 0.15 0.20 

q 

FIG. 10. Evolution of the scalar field rms for the same cases as Fig. 9. 

TV, is independent of SC for SC,+ 1. This is consistent with 
e4-#“/rL, where 4’ is an order unity quantity. 

The time at which the scalar dissipation peaks is also 
consistent with conventional scaling analysis. The maxi- 
mum dissipation will occur when the scalar length scale is 
reduced to the Batchelor scale, 1,. For SC> 1, this time, i 
can be estimated in two steps: t^=t, +t2, where t, is the time 
to reach the Kolmogorov scale, and t2 is the additional 
time to reach the Batchelor scale. To estimate tl, consider 
the size evolution Z(t) of a scalar blob initially of size I(0) 
= L. Based on dimensional considerations applicable to 
the inertial-range cascade,20 that evolution is governed by 
dl/dt= -Z/t,, where the characteristic eddy time tl scales 
according to tl- (Z/L) 2’3rt. Integrating from the integral 
scale L to n gives t1/rL=[1-(n/L)2’3]=1-Re-1’2. 
(Numerical coefficients are suppressed here, but are re- 
stored shortly. ) This demonstrates the Re sensitivity (van- 
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FIG. 11. Evolution of kurtosis of the scalar field for the same cases as 
Fig. 9. 
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FIG. 12. Evolution of the scalar variance-dissipation correlation function 
for the same cases as Fig. 9. 

ishing at high Re) of the time (in units of TJ for a scalar 
blob to traverse the inertial range. 

Further length scale reduction to the Batchelor scale Zn 
occurs at an exponential rate. For SOL 
In = n exp ( - t2/rK), where rK is the Kolmogorov time and 
v/la = A/SC”~, where A is a coefficient. Since 
rK = B Re-1’2 rL,-where B is another coeftlcient, this gives 
t2/rL==B(lnA+$lnSc)Re- 1’2. Combining t, and t2, t can 
be expressed in the general form 

~/rL=c1+Re-“2(c2+c3 In SC), (3) 
where the coefficients cl and c3 are positive, but c2 can be of 
either sign. This relationship can be interpreted in terms of 
the model quantities Res and SC,. The In SC, dependence 
on the time of peak dissipation is borne out in Fig. 9. 

The decay of the scalar rms (Fig. 10) shows little Scs 
dependence for SC,> 1. The behavior of the scalar rms is 
consistent with the scalings presented above and the be- 
havior of the scalar dissipation shown in Fig. 9. 

The foregoing results are not surprising, in view of the 
fact that the underlying scaling properties are, in effect, 
built into the model, as discussed in Sec. II. They, never- 
theless, serve as further verification that the event fre- 
quency provides a valid basis for estimating an effective 
eddy-turnover time, despite the fact that model events rep- 
resenting individual eddies are, strictly speaking, instanta- 
neous. Furthermore, the plotted results serve as a concrete 
manifestation, in the present context, of well-established 
scaling principles, much as K0sb1y~~ showed that features 
of the rms decay curves are subtle manifestations of those 
principles. 

The higher-order moments display an interesting Scs 
dependence (Fii. 1 1 ), which is also reflected in the scalar 
variance-scalar dissipation correlation function (Fig. 12). 
In general, the low-SC simulations give values of the kur- 
tosis and superskewness well below Gaussian values. As 
Scs is increased, the values of both the kurtosis and super- 
skewness increases. This trend is apparent over the Scs 

0.00 0.04 0.08 0.12 

t/z, 

FIG. 13. Evolution of the scalar rms 4’ for SC,= 1 at different values of 
Re,. (x, Re,=IO), (*, Res=lOO), (0, Res=lOOO), and (+, 
Re,= 10 000). 

range studied. For Scs of order unity, the moments are 
below their Gaussian values, while for high SC,, the final 
values of the higher-order moments are near the Gaussian 
values. 

The occurrence of non-Gaussian pdf’s can be under- 
stood as follows. If fine-scale mixing is fast relative to 
large-scale stirring, small regions will become well mixed 
while large-scale variations of (p are still present. Each 
small, mixed region converges to a Gaussian distribution 
whose mean corresponds to the local mean value of 4, 
which generally differs from the global mean value +=O. 
Therefore the core of the spatially averaged pdf consists of 
a superposition of Gaussians with different mean values, 
yielding a distribution that may be longer tailed or shorter 
tailed than Gaussian. Since this mechanism is predicated 
on the relative efficacy of the fine-scale mixing, it implies 
that the linear eddy results reflect a larger contribution of 
the small scales to the mixing process than occurs in the 
DNS. In this regard, the results for the higher moments are 
consistent with the results for pdf evolution, discussed in 
Sec. IV A. 

2. Reynolds number effects 
The decay rate of the scalar rms is shown in Fig. 13 for 

Re,= 10-10 000 and SC,= 1. With time nondimensional- 
ized for each case by its large eddy turnover time, 7L, all 
curves at or above Re,= 100 collapse. This indicates that, 
in terms of the model parameters, high Reynolds number 
similarity is obtained at Re,= 100. For the case of SC,= 1 
considered here, the scalar dissipation decreases rapidly at 
the Kolmogorov scale. The time to reach this scale, as 
discussed in Sec. IVB 1, is tl=rL(1-Re-“2). This is 
consistent with the small Re, effect, which vanishes at high 
Res, seen in the model results. 

The effects of Res on the scalar dissipation evolution 
are shown in Fig. 14. The maximum value of the scalar 
dissipation is independent of Res when scaled with rL. 
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FIG. 14. Evolution of the scalar dissipation for SC,= 1, kJk,= 1 for the 
same cases as in Fig. 13. 

This agrees with the scaling analysis outlined in Sec. 
IV B 1. Furthermore, the time at which the scalar dissipa- 
tion peaks can also be interpreted by the scaling analysis 
summarized by Eq. (3). First, Rq. (3) indicates there will 
be a unique value of SC, at which the Res dependence will 
vanish. The lack of Res sensitivity in Fig. 14 indicates that 
Scs= 1 is near this value. Second, as SC, is increased above 
this value, the Re, sensitivity should increase. Computed 
results for Scs= 10 exhibit this trend (Fig. 15). 

The evolution of the scalar pdf, as described by the 
higher-order moments, does not show a strong Re depen- 
dence beyond Res= 100 (Fig. 16). This and the foregoing 
results indicate that Re effects may be sufficiently well 
characterized by studying a limited range of Re. However, 
a complete understanding of SC effects may require wider- 
ranging study and improved analytical methods. 

FIG. IS. Initial development of the scalar dissipation for SC,= 10, 
k/k,,= 1 at different values of Res. (X, Re,= IO), (*, Re,= IOO), and 
(0, Res= 1000). 
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FIG. 16. Evolution of the kurtosis of the scalar field for the same cases as 
Fig. 13. 

V. CONCLUSIONS 

Various aspects of the time evolution of a passive sca- 
lar field in steady homogeneous turbulence have been ad- 
dressed here using the linear eddy modeling approach. The 
model formulation in one spatial dimension incorporates 
the mechanisms needed to represent the dependences of 
mixing properties on Re and SC. 

Detailed comparisons with moderate-lie DNS for SC of 
order unity indicate that the model captures the depen- 
dence of scalar rms and scalar dissipation evolution on the 
initial scalar length scale. Principal features of scalar pdf 
evolution are reproduced. Quantitative discrepancies with 
respect to structural properties of the mixing field may 
reflect inherent limitations of the model, or may reflect the 
fact that moderate-Re DNS does not fully conform to the 
inertial-range scaling laws built into the model. DNS or 
laboratory experiments at higher Re could resolve this am- 
biguity. 

Parametric sensitivities were investigated based on SC 
and Re variations over several orders of magnitude. The 
parametric study demonstrates that the computed tran- 
sient evolution of the scalar field obeys the appropriate 
high-Re scaling properties and exhibits finite-Re depar- 
tures from scaling that are consistent with the classical 
picture of mixing kinematics in the inertial and viscous 
subranges. These observations complement a previous 
study,15 which demonstrated conformance of the model to 
that picture in the context of steady-state homogeneous 
mixing. Collectively, these results highlight the common 
origin of the steady-state spectral scalings and the scalings 
governing a transient mixing field in steady homogeneous 
turbulence. Moreover, these results demonstrate that a 
comprehensive picture of turbulent mixing kinematics can 
be embodied in a mathematical formulation of reduced 
spatial dimensionality, provided that the underlying phys- 
ical processes and their associated length and time scales 
are explicitly represented. 

The parametric study provided new insights into the 
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mechanisms underlying the evolution of the scalar pdf. 
Qualitative as well as quantitative features of this evolution 
were found to be sensitive to SC, consistent with a simple 
mechanistic picture. This picture indicates that the shape 
of the pdf in the final stages of mixing depends on mech- 
anistic details not represented in other models that have 
been applied to the question of pdf evolution. Improved 
analytical methods are needed in order to quantify the im- 
pact of these mechanisms, and to determine why models 
lacking the mechanisms governing SC sensitivity agree well 
with DNS results for a particular value of SC. Tests of the 
predicted sensitivities, by means of high-SC laboratory ex- 
periments or DNS, would serve both to check the predic- 
tions and to stimulate further analytical study. 
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