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The stochastic dynamical behavior of a well-stirred mixture ofN molecular species that chemically
interact throughM reaction channels is accurately described by the chemical master equation. It is
shown here that, whenever two explicit dynamical conditions are satisfied, the microphysical
premise from which the chemical master equation is derived leads directly to an approximate
time-evolution equation of the Langevin type. This chemical Langevin equation is the same as one
studied earlier by Kurtz, in contradistinction to some other earlier proposed forms that assume a
deterministic macroscopic evolution law. The novel aspect of the present analysis is that it shows
that the accuracy of the equation depends on the satisfaction of certain specific conditions that can
change from moment to moment, rather than on a static system size parameter. The derivation
affords a new perspective on the origin and magnitude of noise in a chemically reacting system. It
also clarifies the connection between the stochastically correct chemical master equation, and the
deterministic but often satisfactory reaction rate equation.@S0021-9606~00!50925-8#

I. INTRODUCTION

We consider here a well-stirred mixture ofN>1 mo-
lecular species$S1 ,...,SN% that chemically interact, inside
some fixed volumeV and at constant temperature, through
M>1 reaction channels$R1 ,...,RM%. We specify the dy-
namical state of this system byX(t)[(X1(t),...,XN(t)),
where

Xi~ t ![the number ofSi molecules in the system

at time t ~ i 51,...,N!. ~1!

Our goal is to describe the evolution ofX(t) from some
given initial stateX(t0)5x0 . ~All boldface vectors in this
paper are species indexed, withN components.!

The molecular populationsXi(t) will actually berandom
variables, because we choose not to track the positions and
velocities of all the molecules in the system. Indeed, we in-
tend to rely heavily on the occurrence of many nonreactive
molecular collisions to ‘‘stir’’ the system between successive
reactive collisions. Under these conditions, it can be shown
that there will exist for each reaction channelRj a well-
defined functionaj , henceforth referred to as thepropensity
function for Rj , which is such that

aj~x!dt[the probability, givenX~ t !5x,

that one Rj reaction will occur

somewhere insideV in the next

infinitesimal time interval@ t,t1dt!

~ j 51,...,M !. ~2!

The propensity functionaj and thestate-change vectornj ,
whoseith component is defined by

n j i [the change in the number ofSi

molecules produced by oneRj reaction
~ j 51,...,M ; i 51,...,N!, ~3!

together completely specify the reaction channelRj .
Equation~2! provides the logical basis for ‘‘stochastic

chemical kinetics,’’ as exemplified for instance by the
chemical master equation1 and the stochastic simulation
algorithm.2 It will be shown in this paper that Eq.~2! also
leads directly to an approximating chemical Langevin equa-
tion, and hence also an approximating chemical Fokker–
Planck equation.

Since all of our arguments will be based on premise~2!,
we shall begin in Sec. II by briefly reviewing the rationale
for regarding that premise to be firmly grounded in kinetic
theory. In Sec. III we shall review, for later reference, how
the chemical master equation and several other important
results follow from premise~2!, either rigorously or heuris-
tically. In Sec. IV we develop our main result: We show that,
provided two dynamical conditions are satisfied, premise~2!
implies an approximate Langevin equation forX(t), and
hence also an approximate Fokker–Planck equation. We
highlight some salient implications of this result in Sec. V.
We conclude in Sec. VI by discussing the connection be-
tween our analysis and earlier works on this subject, noting
in particular how our analysis seems to mollify some earlier
objections to the use of Langevin and Fokker–Planck equa-
tions in chemical kinetics.

II. THE PROPENSITY FUNCTION

Early discussions of premise~2! regarded it as a kind of
ad hoc stochastization of deterministic chemical kinetics,3

but it was later demonstrated that Eq.~2! actually has a solid
microphysical basis.4 Its derivation, although not proceeding
directly from the Liouville equation, uses arguments whosea!Electronic mail: GillespieDT@navair.navy.mil
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rigor is quite on par with theStosszahlansatz5 that underlies
the Boltzmann transport equation. Recent numerical studies
comparing the predictions of the chemical master equation
with those of molecular dynamics simulations6 have only
confirmed the validity of the theoretical arguments underly-
ing Eq. ~2!.

The derivation of Eq.~2! for a bimolecular gas-phase
reaction is superficially similar to the elementary kinetic
theory derivation of the mean bimolecular collision fre-
quency; however, the former has a higher degree of rigor
because it deals with probabilities instead of average num-
bers, and so can make use of the well-established laws of
probability theory. The functionaj in Eq. ~2! is found to
have the mathematical form2,4,7

aj~x!5cjhj~x!. ~4!

Here,cj is thespecific probability rate constantfor channel
Rj , defined so thatcj dt gives the probability that a ran-
domly chosen pair ofRj reactant molecules will react ac-
cordingly in the next infinitesimal time intervaldt. This
probability cj dt is in turn equal to the probability that a
randomly chosen combination ofRj reactant molecules will
collide in the nextdt, multiplied by the probability that a
colliding pair of reactant molecules will actuallyreact ac-
cording toRj . The first~collision! probability is found to be
directly proportional to the average relative speed and colli-
sion cross section of a reactant pair, and inversely propor-
tional to the total system volumeV. The second~collision-
conditioned reaction! probability is typically calculated as
the probability that the collision energy will exceed a certain
threshold value; it turns out to be a factor with the familiar
Arrhenius exponential form. The final expression for the bi-
molecularcj turns out to be the same as that for the conven-
tional bimolecular ‘‘reaction rate constant’’kj , except di-
vided byV, and also multiplied by 2 if the reactant species
happen to be identical.

The functionhj (x) in Eq. ~4! is defined to be the number
of distinct combinations ofRj reactant molecules available in
the statex. It can be easily deduced by simply inspecting the
left hand side of reactionRj . So, for example, ifR1 were the
reactionX11X2→2X1 we would havea1(x)5c1x1x2 , and
if R2 were the inverse of that reaction we would have
a2(x)5c2x1(x121)/2. @Note that, for these two hypothetical
reactions, we would have from Eq.~3! that n15(11,
21,0,...,0) andn252n1 .#

If Rj is a monomolecularreaction, Eq.~4! still applies,
but cj will then be equal to some quantum mechanically
determined ‘‘decay probability’’ per unit time;cj will then
be independent ofV, and in fact equal to the conventional
monomolecular reaction rate constantkj . The functionhj (x)
will be simply the population of the~single! reactant species.
Thus, if R1 were the reactionS2→S3 we would havea1(x)
5c1x2 .

Genuinelytrimolecularreactions do not physically occur
in dilute fluids with any appreciable frequency.Apparently
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomolecular
reaction, and involve an additional short-lived species. For

such an ‘‘effectively trimolecular’’ reaction, it can be shown7

that Eq.~4! still applies, but with anapproximate cj that is
proportional toV22.

In virtually all time-evolution equations,cj andhj occur
together in the product from~4!. That is why it is convenient
to designate that product by a special symbol,aj , and to give
it a special name, the propensity function~it evidently mea-
sures the propensity for reactionRj to occur in the next mo-
ment!.

III. SOME NOTABLE CONSEQUENCES OF EQ. „2…

The evolution law~2! implies that the state vectorX(t)
is a jump-type Markov process on the non-negative
N-dimensional integer lattice. The traditional way of analyz-
ing such a process is to focus on its singly conditioned prob-
ability function,

P~x,tux0 ,t0![Prob$X~ t !5x, given that X~ t0!5x0%.

~5!
~Whenever possible, we use an upper case letter to denote a
random variable, and the corresponding lower case letter to
denote a possible value of that random variable.!

To derive a time evolution equation for this function, we
take a time incrementdt that is so small that the probability
for two or more reactions to occur indt is negligible com-
pared to the probability for only one reaction. We then use
Eq. ~2! and the addition and multiplication laws of probabil-
ity theory to write the probability of the system being in state
x at time t1dt as the sum of the probabilities of all the
mutually exclusive ways in which that can happen via either
zero or one reaction in@ t,t1dt):

P~x,t1dtux0 ,t0!5P~x,tux0 ,t0!3F12(
j 51

M

aj~x!dtG
1(

j 51

M

@P~x2nj ,tux0 ,t0!aj~x2nj !dt#.

A few simple algebraic rearrangements and a passage to the
limit dt→0 then yields thechemical master equation:1,4

]

]t
P~x,tux0 ,t0!5(

j 51

M

@aj~x2nj !P~x2nj ,tux0 ,t0!

2aj~x!P~x,tux0 ,t0!#. ~6!

Equation~6! is an exact consequence of Eq.~2!. If it can be
solved for P, then we can in principle find out everything
there is to know about the processX(t). But in practice,
exact solutions of Eq.~6! can rarely be obtained.

Another exact consequence of Eq.~2! is the existence
and form of thenext-reaction density function p(t, j ux,t),2

which is defined by

p~t, j ux,t !dt[probability that, givenX~ t !5x,
the next reaction inV will occur
in the infinitesimal time interval
@ t1t,t1t1dt!, and will be an
Rj reaction. ~7!

Since ( jaj (x)dt is the probability thatsomereaction will
occur in the nextdt, then an elementary probability argu-
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ment shows that exp((jaj(x)t) is the probability that a time
t will elapse without any reaction occurring. This probability
multiplied by the probability in Eq.~2! then gives the prob-
ability in Eq. ~7!; thus, the functionp is given by

p~t, j ux,t !5aj~x!expS (
k51

M

ak~x!t D
~0<t,`; j 51,...,M !. ~8!

This formula provides the basis for thestochastic simulation
algorithm,2 in which one uses rigorous Monte Carlo tech-
niques to generate random pairs (t, j ) according to the joint
density function~8!; those random pairs in turn allow one to
construct ‘‘unbiased realizations’’ of the processX(t). Such
realizations are fully consistent with the chemical master
equation~6!, since Eqs.~6! and ~8! are both exact conse-
quences of premise~2!. But note that the stochastic simula-
tion algorithm isnot a procedure for numerically solving the
chemical master equation; that is usually a vastly more chal-
lenging task.

If Eqs. ~6! and ~8! are exact consequences of the dy-
namical premise~2!, a ‘‘semiexact’’ consequence is the
chemical Kramers–Moyal equation. Its somewhat shady lin-
eage arises from the fact that it requires us to regard the
components ofX(t) as real numbers, instead of the integers
that Nature stipulates. This is not an entirely innocuous
presumption, since the propensity functions usually do not
make sense when their arguments are nonintegers, especially
such between 0 and 1. Intuitively, we expect that this real
number assumption should be warranted if all the compo-
nents ofX(t) are very large compared to 1. But that just
shows that we are moving here into the realm of a ‘‘large
number’’ approximation. A second assumption we have to
make for this calculation is that the functionf j (x)
[aj (x)P(x,tux0 ,t0) must be analytic~infinitely differen-
tiable! in the real variablex. Given these two assumptions,
we can use Taylor’s theorem to write

f j~x2nj !5 f j~x!1 (
n51

`

(
m1 ,...,mN50

@m11¯1mN5n#

n
1

m1!¯mN!

3~2n j 1!m1
¯~2n jN!mN

]nf j~x!

]x1
m1
¯]xN

mN
.

Substituting this into the master equation~6!, reordering the
summations, and rearranging a few factors, we immediately
obtain thechemical Kramers–Moyal equation,

]

]t
P~x,tux0 ,t0!

5 (
n51

`

~21!n (
m1 ,...,mN50

@m11¯1mN5n#

n
1

m1!¯mN!

]n

]x1
m1
¯]xN

mN

3H F (
j 51

M

~n j 1
m1
¯n jN

mN!aj~x!GP~x,tux0 ,t0!J . ~9!

We shall return to this ‘‘semirigorous’’ consequence of
premise~2! in Sec. VI.

If we multiply the chemical master equation~6! through
by xi , sum over allx, and then re-index the first summation
on the right-hand side, keeping in mind that the propensity
functions will ensure that no component of the process can
ever become negative, we can deduce the following formula
for the time derivative of themeanof Xi(t):

d^Xi~ t !&
dt

5(
j 51

M

n j i ^aj~X~ t !!& ~ i 51,...,N!. ~10!

This exact consequence of Eq.~2! is sometimes taken as
heuristic justification for assuming that, whenever fluctua-
tions are not important, the species populations evolvedeter-
ministically according to the set of ordinary differential
equations

dXi~ t !

dt
5(

j 51

M

n j i aj~X~ t !! ~ i 51,...,N!, ~11!

where the components ofX(t) are now regarded assure, real
variables. Equation~11! is essentially the macroscopicreac-
tion rate equationof conventional chemical kinetics. But the
reasoning we have used here to infer it obviously is not an
honest derivation. The legitimacy of Eq.~11! would appear
to require, at the very least, that the populations of all species
be very large compared to 1.

The reaction rate equation~11! is more commonly writ-
ten in terms of the species concentrations,

Zi~ t ![Xi~ t !/V ~ i 51,...,N!. ~12!

If we examine theV dependence of Eq.~4! for monomolecu-
lar, bimolecular, and trimolecular reactions~see the discus-
sion in Sec. II!, we find that in each case we have, at least
approximately for sufficiently large molecular population
numbers,

aj~x!5Vã j~z!. ~13!

Here, ã j is functionally identical toaj except that the reac-
tion probability rate constantcj has been replaced by the
reaction rate constantkj , and any combinatorial factors aris-
ing from identical species are omitted. When Eq.~13! is
substituted into Eq.~11!, we obtain the more familiar ‘‘con-
centration’’ form of the reaction rate equation:

dZi~ t !

dt
5(

j 51

M

n j i ã j~Z~ t !! ~ i 51,...,N!. ~14!

From a theoretical standpoint though, the difference between
the two versions~14! and ~11! of the deterministic reaction
rate equation is minor. Neither form, at this stage anyway,
can claim to be a rigorous consequence of Eq.~2!.

Finally, we must take note of the intriguing effect that
the variable change~12! and the scaling relation~13! has on
the chemical Kramers–Moyal equation~9!. Since the singly
conditioned density functionP of the ~assumed real! random
variablesX(t) will be related to that of the random variables
Z(t) in Eq. ~12! by P̃(z)5VNP(x), we multiply both sides
of Eq. ~9! by VN to convert theP’s to P̃’s. Then we com-
plete thexi→zi[xi /V transformation on the right-hand side
of Eq. ~9! by invoking Eq.~13! and taking note of the fact
that themk’s sum ton. The result is8–10
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]

]t
P̃~z,tuz0 ,t0!

5 (
n51

`

~21!nS 1

V D n21

3 (
m1 ,...,mN50

@m11¯1mN5n#

n
1

m1!¯mN!

]n

]z1
m1
¯]zN

mN

3H F (
j 51

M

~n j 1
m1
¯n jN

mN!ã j~z!G P̃~z,tuz0 ,t0!J . ~15!

What is intriguing about this ‘‘concentration’’ form of the
Kramers–Moyal expansion is this: If we go to thethermody-
namic limit, in which the number of molecules in the system
and the system volumeV both go to` in such a way that the
species concentrations remain constant~a feat that theoreti-
cians perform much more casually than either experimental-
ists or numerical simulators!, the factors ofV21 tend to kill
off the higher terms in Eq.~15!. If V can be taken so large
that only then51 term need be retained, then the resulting
equation forP̃ would imply that the processZ(t) evolves
according to thedeterministicevolution equation~14!.9,10 A
slightly less drastic truncation at then52 term would yield a
Fokker–Planck equation, implying thatZ(t) is approxi-
mately a continuous~or diffusion! Markov process; that ap-
proximation might be computationally convenient, since the
Fokker–Planck equations that governcontinuousMarkov
processes are generally more tractable11 than the master
equations that governjump Markov processes. We shall re-
turn to these points later in Sec. VI.

We have enumerated here several known consequences
of the fundamental premise~2!, some of which are rigorous
and exact, and some of which are not. We turn now to de-
velop a new consequence of Eq.~2!, one whose validity will
be seen to depend entirely on the degree to which two spe-
cific dynamical conditions are satisfied.

IV. AN APPROXIMATING CHEMICAL LANGEVIN
EQUATION

Suppose the system’s stateX(t) at the current timet is
known to bext . Let K j (xt ,t), for any t.0, be the number
of Rj reactions that occur in the subsequent time interval
@ t,t1t#. Since each of those reactions will increase theSi

population byn j i , the number ofSi molecules in the system
at time t1t will be

Xi~ t1t!5xti1(
j 51

M

K j~xt ,t!n j i ~ i 51,...,N!. ~16!

K j (xt ,t) is of course arandom variable.To compute it
for arbitrary t.0 would be quite as difficult as solving the
master equation~6!. But we can obtain an excellentapproxi-
mation to K j (xt ,t) rather easily if we impose the following
conditions.

Condition (i): Require t to be small enough that the
change in the state during@ t,t1t# will be so slight that none
of the propensity functions changes its value ‘‘appreciably;’’
i.e., the propensity functions then satisfy

aj~X~ t8!!>aj~xt!, ;t8P@ t,t1t#, ; j P@1,M #.
~17!

Of course, we could easily satisfy Eq.~17! if we simply
took t to be so small thatzero reactions would be likely to
occur in @ t,t1t#. But usually we need not be that extreme.
Since the propensity functions generally depend on non-
negative integer powers of the molecular species popula-
tions, and the latter practically never change by more than
two molecules in any one reaction event, then we need only
require that the likely number of reactions occurring in
@ t,t1t# be much smaller than the population of the least
populous reactant species. So condition~i! can always be
satisfied if all the reactant molecule populations are suffi-
ciently large compared to 1.

Since the reactions that occur in the time interval
@ t,t1t# do not appreciably change the values of any of the
propensity functions, then all reaction events occurring in the
time interval@ t,t1t# will be essentiallyindependentof each
other. SoK j (xt ,t) will simply be the number of times reac-
tion channelRj would occur in a durationt if its propensity
function remained constant at the valueaj (xt). In light of
our fundamental premise~2!, this means, as is shown in Ap-
pendix A, that eachK j (xt ,t) will be a statistically indepen-
dent Poissonrandom variable,Pj (aj (xt),t). So the net ef-
fect of condition~i! is to allow Eq.~16! to be approximated
by

Xi~ t1t!5xti1(
j 51

M

n j i Pj~aj~xt!,t! ~ i 51,...,N!. ~18!

Next we impose a second condition ont.

Condition (ii): Require t to be large enough that the
expected number of occurrences of each reaction channelRj

in @ t,t1t# be much larger than 1, i.e.,~see Appendix A!

^Pj~aj~xt!!,t!&5aj~xt!t@1, ; j P@1,M #. ~19!

This condition obviously runs counter to condition~i!, and it
may very well happen that both conditions cannot be satis-
fied simultaneously; in that case, the scheme being devised
here will fail. But there will be many practical circumstances
in which conditions~i! and ~ii ! can be simultaneously satis-
fied. As with condition~i!, satisfaction of condition~ii ! is
greatly facilitated by having large molecular population
numbers: Sinceaj (xt), through the combinatorial function
hj (xt), will typically be proportional to one or more compo-
nents of xt , sufficiently large molecular populations can
make it is possible for the inequalities~19! to hold even
whent is quite small.

As explained in Appendix A, condition~ii !, or more pre-
cisely the inequality~19!, allows us toapproximateeach
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Poissonrandom variablePj (aj (xt),t) by a normal random
variable with the same mean and variance. That brings Eq.
~18! into the form

Xi~ t1t!5xti1(
j 51

M

n j i Nj~aj~xt!t,aj~xt!t!

~ i 51,...,N!, ~20!

where N(m,s2) denotes the normal random variable with
meanm and variances2. Notice that in replacing theinteger
Poissonrandom variables in Eq.~18! by the real normal
random variables in Eq.~20!, we in effect convert the mo-
lecular populationsXi from discretely changing integer vari-
ables to continuously changing real variables. Notice also
that theM normalsNj in Eq. ~20! will be statistically inde-
pendent, this in consequence of the statistical independence
of the M Poisson’sPj in Eq. ~18!.

The linear combination theorem for normal random vari-
ables,

N~m,s2!5m1sN~0,1!,

can now be invoked to bring Eq.~20! into the form

Xi~ t1t!5xti1(
j 51

M

n j i aj~xt!t

1(
j 51

M

n j i @aj~xt!t#1/2Nj~0,1! ~ i 51,...,N!,

~21!

where again theM normalsNj (0,1) are all statistically inde-
pendent. We conclude by making some purely notational
changes in this result: First, let us regard any time intervalt
that satisfiesboth conditions ~i! and ~ii ! as amacroscopic
infinitesimal, and denote it simply bydt. Second, let us write
the ‘‘unit normal’’ random variableNj (0,1) asNj (t), with
the understanding thatNj (t) andNj 8(t8) will be statistically
independent if eitherj Þ j 8 or tÞt8. And finally, let us recall
that xt stands forX(t). Equation~21! becomes

Xi~ t1dt!5Xi~ t !1(
j 51

M

n j i aj~X~ t !!dt

1(
j 51

M

n j i aj
1/2~X~ t !!Nj~ t !~dt!1/2

~ i 51,...,N!. ~22!

As explained in Appendix B, Eq.~22! has the canonical
form of a ‘‘standard-form Langevin equation’’ for a multi-
variate continuous Markov process. Equation~22! thus im-
plies the equivalent ‘‘white-noise form’’ Langevin equation

dXi~ t !

dt
5(

j 51

M

n j i aj~X~ t !!1(
j 51

M

n j i aj
1/2~X~ t !!G j~ t !

~ i 51,...,N!, ~23!

where theG j (t) are temporally uncorrelated, statistically in-
dependent Gaussian white noises. Equation~22! also implies

~see Appendix B! that the singly conditioned density func-
tion for X(t) obeys the~forward! Fokker–Planck equation

]

]t
P~x,tux0 ,t0!

5 2(
i 51

N
]

]xi
F S (

j 51

M

n j i aj (x) D P(x,tux0 ,t0G
1

1

2 (
i 51

N
]2

]xi
2 F S (

j 51

M

n j i
2 aj~x!D P~x,tux0 ,t0!G

1 (
i ,i 851
i , i 8

N
]2

]xi]xi 8
F S (

j 51

M

n j i n j i 8aj~x!D P~x,tux0 ,t0!G .

~24!

V. SOME SALIENT IMPLICATIONS

Equation~22! was derived from Eq.~2! subject only to
conditions~i! and ~ii !. Condition ~i! allowed us to approxi-
mate the generally inscrutable random variablesK j (xt ,t) in
Eq. ~16! by the much more benign Poisson random variables
Pj (aj (xt),t), and condition~ii ! allowed us to approximate
those in turn by the normal random variables
Nj (aj (xt)t,aj (xt)t). The immediate result of those two ap-
proximations was shown to be Eq.~22!. Since it has the
canonical form of the standard-form Langevin equation, it
implies that thejump Markov processX(t) defined by the
master equation~6! has beenapproximatedas acontinuous
Markov process. The white-noise form Langevin equation
~23! and the Fokker–Planck equation~24! then follow as
straightforward consequences of Eq.~22! via continuous
Markov process theory.12

The requirements that are imposed by conditions~i! and
~ii ! can be summarized as follows: The system must be such
that there exists adomain of macroscopically infinitesimal
time intervals, which is defined so that during any time in-
tervaldt in that domain, no propensity function will suffer a
noticeable change in its value, yet every reaction channel can
be expected to fire many more times than once. The validity
of Eqs. ~22!–~24! is solely contingent on the existence of
such a domain, and of course on our willingness to confine
our ‘‘infinitesimal time increments’’ to that domain. Large
molecular populations for the reactant species will normally
be conducive to the existence of a macroscopically infinitesi-
mal time scale, but it is the existence of that time scale, and
not the size of the system per se, that ultimately validates the
continuous approximation underlying Eqs.~22!–~24!.

The imposition of a lower limit on the infinitesimaldt,
which is the effect of condition~ii !, is not at all unprec-
edented in physics. It has obvious close ties to the ‘‘coarse-
grained time’’ arguments used by Einstein13 in his pioneer-
ing analysis of Brownian motion, although a careful
examination of those arguments will reveal that they are ac-
tually much more heuristic than those employed here. In
electromagnetic theory, electrical current is defined as the
ratio of dq, the charge passing in timedt, to dt, in the limit
thatdt→0. But it is tacitly understood that the limitdt→0 is
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‘‘macroscopic’’ in the sense thatdt is not allowed to become
so small that shot noise effects due to the quantized nature of
electrical charge become important. In practice this con-
straint usually poses no problem: We usuallycan find a do-
main of macroscopically infinitesimal time intervals relative
to which the definition of electrical current as the ‘‘macro-
scopic derivative’’dq/dt turns out to be quite serviceable. A
similar lower limit on the infinitesimal of lengthdl would be
required to define the ‘‘mass per unit length’’dm/dl of a
metal wire, this in order to accommodate the atomistic struc-
ture of the metal.

When conditions~i! and~ii ! are satisfied, the result~22!
shows that each reaction channelRj contributes to the
dt-incrementXi(t1dt)2Xi(t) in the population of species
Si a deterministiccomponentn j i aj (X(t))dt and a zero-mean
randomly fluctuatingcomponentn j i aj

1/2(X(t))Nj (t)(dt)1/2.
To compare the expected sizes of these two components, we
must first recall from continuous Markov process theory12

that, over asuccessionof small time stepsdt, the cumulative
contribution of the factorNj (t)(dt)1/2 in the random compo-
nent will be comparable to that of the factordt in the deter-
ministic component; in effect, the imbalance (dt)1/2@dt gets
compensated over a succession of steps by the frequent
changes in sign of the sample values ofNj (t)5N(0,1). It
follows that theratio of $the size of therandomcomponent
of Rj ’s contribution to thedt increments% to $the size of the
deterministiccomponent ofRj ’s contribution to thedt incre-
ments% is simply aj

1/2(X(t))/aj (X(t)), or aj
21/2(X(t)). Re-

calling from Sec. II thataj (X(t)) is, owing to the combina-
torial functionhj in Eq. ~4!, directly proportional to products
of the molecular populations of theRj reactant species, we
may conclude thatthe relative fluctuations in the time-
evolving species populations scale as the inverse square root
of the reactant populations.It is satisfying to see how this
well-known rule-of-thumb in chemical kinetics emerges as a
direct consequence of premise~2!. In fact, a careful exami-
nation of our derivation in Sec. IV@see Eq.~18!# reveals that
this quantitative relation between deterministic drift and ran-
dom noise in a chemically reacting system follows simply
from the fact that the standard deviation of a Poisson random
variable is always equal to the square root of its mean.

An extrapolation of the foregoing line of reasoning to
infinitely large reactant molecular populations shows that, in
the thermodynamic limit, the contributions to the changes in
the species populations from the random terms in Eqs.~22!
and~23! will usually becomevanishingly smallcompared to
the contributions from the deterministic terms. In that case,
Eq. ~23! reduces straightaway to the conventional reaction
rate equation~11!. So we now have a direct logical linking of
that cornerstone formula of conventional chemical kinetics to
the fundamental stochastic premise~2!. But it must be kept
in mind that both the reaction rate equation~11! and the rule
of thumb for fluctuation scaling followonly if conditions~i!
and~ii ! are satisfied, i.e., only if the system admits a domain
of macroscopically infinitesimal time intervals.

VI. CONNECTIONS WITH EARLIER WORKS

A careful inspection of our chemical Fokker–Planck
equation~24! reveals that it is precisely the equation that

would be obtained by simply truncating the chemical
Kramers–Moyal equation~9! at n52. The temptation to
make that truncation has long been recognized, but the legiti-
macy of doing so has been seriously doubted. Has our
present derivation of Eqs.~22!–~24! allayed those doubts?

Gardiner has observed that ‘‘a confused history@has
arisen# out of repeated attempts to find a limiting form of the
master equation in which a Fokker–Planck equation
arises.’’14 Although it has been apparent since the 1905 pa-
per of Einstein13 that a perfunctory second-order truncation
of the chemical Kramers–Moyal equation~9! will result in a
Fokker–Planck equation, we really are not entitled to do that
without reasoned justification. Arguing that there is no such
justification, van Kampen in 1961 offered instead his
‘‘system-size expansion’’:15,10,9 Starting with the chemical
Kramers–Moyal equation~9!, van Kampen makes the vari-
able change~12! from X(t) to Z(t)5X(t)/V, invokes the
scaling relation~13!, and then in effect assumes that the so-
lution Z(t) to that equation will differ from the deterministic
processZ* (t) defined by the reaction rate equation~14! by
the amountV21/2Y(t). van Kampen then proceeds to de-
duce, in the limit of largeV, a well-defined Fokker-Planck
equation for the processY(t), an equation in which the drift
and diffusion functions both depend strongly on the deter-
ministic solutionZ* (t).

In 1973, Kubo, Matsuo, and Kitahara8 pointed out that
the scaling relation~13! by itself transforms the chemical
Kramers–Moyal equation~9! into the form ~15!, which in
turn suggests that a straightforward second-order truncation
might actually be reasonable in the limit of largeV. But later
in their paper, Kubo, Matsuo, and Kitahara8 back away from
that position, and instead voice agreement with van Kampen
that some sort of explicit time dependence@like that provided
by Z* (t) in van Kampen’s analysis# seems to be needed in
the drift and diffusion functions, in order to ‘‘reproduce a
correct equilibrium solution.’’16

From a present-day perspective, this dismissal of a
second-order truncation of Eq.~15! for largeV is difficult to
understand. It appears to be motivated by the view that a
Fokker–Planck equation ‘‘is generally meaningless except
under the simple situation where@the drift function# is linear
in x and @the diffusion function# is constant.’’16 But in fact,
many Fokker–Planck equations with nonlinear drift and dif-
fusion functions are now known that give perfectly legiti-
mate results.17 Furthermore, the following result for a single-
species chemical system has been demonstrated by the
present writer:18 If the population of the time-varying species
can change by no more than one molecule in any one reac-
tion event, then an order-consistent discretization of the
second-order truncated Kramers–Moyal equation~9!—
which is a finite-difference equation that could legitimately
be used to numerically solve that partial differential
equation—is precisely the corresponding chemical master
equation. This result does require that the population of the
time-varying species be large compared to 1; however, there
is no requirement that the propensity functions of the various
reaction channels be constant or linear in the species popu-
lation.

Another indication that a second-order truncation of the
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chemical Kramers–Moyal equation might actually be rea-
sonable, at least for finite times and in the thermodynamic
limit, can be found in the highly mathematical works of
Kurtz.19 As explicated by Gardiner,20 Kurtz analyzes the dif-
ference between the processX(t) defined by the chemical
master equation~6!, and the processX8(t) defined by the
Langevin equation corresponding to a second-order trunca-
tion of the Kramers–Moyal equation~9!, i.e., our Eq.~22!
@or ~23!#. He proves that the difference between those two
processes becomes proportional to logV in the limit V→`.
It follows that the difference between the corresponding con-
centration processesZ(t) andZ8(t), obtained by dividing by
V, asymptotically approaches zero with increasingV like
~logV!/V, again for finite times.

One is tempted to conclude from all this that the early
summary rejection of the second-order truncated Kramers–
Moyal equation may have been too hasty.

A quite different approach to the chemical Langevin
equation, often attributed to Grossmann,21 seems to mediate
between van Kampen’s system size expansion and the
second-order Kramers–Moyal truncation. Using arguments
based on the fluctuation-dissipation theorem of linear irre-
versible thermodynamics, Grossmann21 infers the structure
of the noise terms that should be added to the deterministic
reaction rate equation~14! to convert it into a stochastic
Langevin equation. His result appears to be equivalent to a
second-order Kramers–Moyal truncation, but with the im-
portant difference that the propensity functions in the
second-order derivative terms now have argumentZ* (t) in-
stead ofz, whereZ* (t) is again the solution of the determin-
istic reaction rate equation~14!. This is the chemical Lange-
vin equation that was used by Baras, Malek Mansour, and
Pearson6 in their numerical study of the differences between
it, the chemical master equation, and molecular dynamics
simulation. For a model chemical system with multiple
stable states, they found good agreement between the chemi-
cal master equation and molecular dynamics, but significant
differences between those and their Langevin equation.
Baras, Malek Mansour, and Pearson observed that this fail-
ure of their Langevin equation is not really so surprising,
since the deterministic functionZ* (t) that guides their noise
terms is not globally accurate in the presence of multiple
stable states.22,23

This last point is important, and deserves elaboration. In
the presence of multiple stable states, the solution to the
deterministic reaction rate equation will simply follow the
gradient to the first-encountered stable state, and there come
to rest. But the process described by the chemical master
equation will be forever on the move, occasionally making
spontaneous transitions between the stable states, and thus
exploring a large region of the state space. It follows that any
particular solution of the deterministic reaction rate equation
cannot provide an accurate picture of the long-time behavior
of a system with multiple stable states. We should therefore
expect that any chemical Langevin or Fokker–Planck equa-
tion that makes significant use of the deterministic
solution—and this would include not only the Grossmann
equation but also the van Kampen equation—would prob-
ably not give a very accurate description of such a system.

The aforementioned results of Baras, Malek Mansour, and
Pearson6 seem to confirm this suspicion. But note that the
Langevin equation considered by Kurtz,19 namely our
Langevin equation~22!, does not use the solution of the de-
terministic reaction rate equation, and therefore should not
be expected to have this problem.

An unsettling footnote to all this is a comment by Gar-
diner to the effect that the second-order truncated Kramers–
Moyal equation and van Kampen’s system size expansion
will usually give the same results ‘‘to lowest order in
V21/2 . . . and each will only be valid to this order.’’24

To understand what our present analysis contributes to
this ‘‘confused’’ history, we begin by making three observa-
tions. First, all the cited earlier works have focused strongly
on what happens in the thermodynamic limit, often devoting
considerable attention to the order in which the two limits
V→` and t→` ought to be taken. Second, the underlying
motivation for that focus is essentially to prove that what
emerges in the thermodynamic limit is the deterministic re-
action rate equation; indeed, that result is virtually a fore-
gone conclusion in the van Kampen and Grossman ap-
proaches, since they essentially assume it at the outset. But
that of course poses a problem for systems with multiple
steady states, since for those systems the determininistic re-
action rate equation doesnot provide a good description of
the system’s long time behavior in the thermodynamic limit.
And finally, all the earlier cited works have tacitly assumed
that the accuracy of any Langevin or Fokker–Planck ap-
proximation will be determined by a single, static, system
size parameter, typicallyV.

The focus of our efforts here is rather different. Our goal
is to describe the evolution of a finite system over a finite
time. An example would be the genetic-enzymatic reactions
that take place inside a living cell,25 where the molecular
populations of some key reactants can at times be less than
100. The population levels in such systems are not available
to be ‘‘taken to the thermodynamic limit;’’ they are whatever
they are. For such systems as these, the stochasticity implicit
in Eq. ~2! can play an important role, and a careful stochastic
analysis is essential. But passing to thermodynamic and
infinite-time limits are academic exercises with little practi-
cal import.

For such systems, we have shown in this paper that cir-
cumstances may arise in which the exact chemical master
equation ~6! can be satisfactorilyapproximated by the
Langevin equation~22! @or ~23!# and hence also the Fokker–
Planck equation~24!. This possibility may in retrospect not
be surprising in view of the ‘‘largeV’’ implications of the
Kramers–Moyal expansion~15!,8 the convergence results of
Kurtz,19 and the well-known fact that the deterministic reac-
tion rate equation quite oftenis accurate. However, our
present analysis has demonstrated, apparently for the first
time, that it is not sufficient to predicate a Langevin approxi-
mation on the value of a single parameter likeV. Instead, it
is necessary to verify that the system evolution possesses a
macroscopically infinitesimal time scale, or more specifi-
cally, that from moment to moment there exists a time inter-
val during which none of the system’s propensity functions
will suffer a noticeable change of value, yet every reaction
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channel will be expected to fire many more times than once.
It is true that satisfying these conditions will nearly always
require ‘‘large’’ molecular populations; however, the practi-
cal question of ‘‘how large’’ can be answered only by ap-
pealing directly to those dynamic conditions. And we must
be prepared to find that, forsomesystems, there will besome
time periods during which a macroscopically infinitesimal
time scale will not exist, i.e., the shortest time interval in
which all reaction channels can be expected to fire many
more times than once is nevertheless so long that some pro-
pensity function will suffer a ‘‘noninfinitesimal’’ change in
value during that interval. Whenever that happens, we must
simply acknowledge that a Langevin or Fokker–Planck ap-
proximation is not feasible, and return to the exact chemical
master equation or its companion stochastic simulation algo-
rithm.

Finally, there are two current criticisms of Langevin and
Fokker–Planck equations in a chemical kinetics context that
need to be addressed directly.

First, it was pointed out long ago by van Kampen that
noise in ajump Markov process is ‘‘internal,’’ in that ‘‘it is
inherent in the very mechanism by which the state of the
system evolves and cannot be divorced from its equations of
motion.’’26 By contrast, the noise in acontinuousMarkov
process usually appears to be ‘‘external,’’ since it manifests
itself in the canonical Langevin equation~B1! as a seemingly
independent enhancement to the deterministic drift. These
observations were originally delivered as a warning to some
early investigators who were proposing to accommodate the
stochasticity in chemical systems by simply tacking on some
generic noise to the deterministic reaction rate equation. In
that context, van Kampen’s observation is quite valuable.
But over the years, this observation seems to have evolved
into a general criticism ofany Langevin or Fokker–Planck
equation in a chemical kinetics context. So it is important to
underscore the fact that the chemical Langevin and Fokker–
Planck equations~22!–~24! derived in this paper arenot sub-
ject to that criticism: Our derivation in Sec. IV of the Lange-
vin equation~22! demonstrates quite clearly that the drift and
diffusion terms in that equation arise from acommon source,
namely the Poisson random variables in Eq.~18!. And it is
easy to see from the very forms of Eqs.~22!–~24! that the
noise component in the process defined by those equations
‘‘cannot be divorced’’ from the deterministic component.
Nor should this be surprising, since Eqs.~22!–~24! have
been derived from the same fundamental premise~2! that
gave rise to the chemical master equation~6!.

We conclude by addressing some claims made in the
recent work of Baras, Malek Mansour, and Pearson.6 As
mentioned earlier, that work examines numerically the time
evolutions predicted for a multistable-state chemical system
by a molecular dynamics method, the chemical master equa-
tion, and a chemical Langevin equation. Baras, Malek Man-
sour, and Pearson find excellent agreement between the pre-
dictions of molecular dynamics and the chemical master
equation; however, they claim that their results ‘‘demon-
strate the failure of the Langevin approach.’’6 But in fact,
their results demonstrate the failure of only theGrossmann-
type chemical Langevin equation, whose noise terms utilize

the solution of the deterministic reaction rate equation.27

Baras, Malek Mansour, and Pearson never numerically ex-
amine theKurtz-type chemical Langevin equation that is de-
rived in this paper. Their restricted focus in this regard is
evident from their statement that ‘‘a Langevin formalism is
always characterized by a macroscopic law of evolution to
which a noise term is added@whose amplitude# is directly
related to the macroscopic law through a fluctuation-
dissipation theorem... .’’28 But a quite different perspective is
provided by our present analysis: Our Langevin formalism is
characterized by drift and noise terms thatboth follow di-
rectly from the fundamental premise~2! whenever the sys-
tem possesses a macroscopically infinitesimal time domain.
We require neither a ‘‘macroscopic law’’ nor a ‘‘fluctuation-
dissipation theorem,’’ but only the well-known mathematical
facts~see Appendix A! that a Poisson random variable has a
variance that is equal to its mean, and approaches normality
whenever that mean is large compared to 1.

A repetition of the study of Baras and co-workers6 using
the Langevin equation~22! instead of the Grossmann version
should show the chemical Langevin equation in a fairer light,
provided one additional precaution is taken. In their investi-
gation, Baras and co-workers assume that by taking the total
number of molecules~which is conserved in their system! to
be 2000, they will satisfy all the conditions required for the
Langevin approximation to apply. In light of our work here,
that does not seem to be a safe assumption: Since their sys-
tem has three time-varying species, then with a total molecu-
lar population of 2000 it seems quite possible that the popu-
lation of at least one of those species might at times become
so small that a macroscopically infinitesimal time domain
will not exist for the system. In such a case, a Langevin
approximation will not be justified. Of course, it may not be
easy to continually monitor the system to ensure that condi-
tions ~i! and~ii ! of Sec. IV are satisfied. But that will not be
the first time that Nature has proved to be unaccommodating
to our purposes.

The present work grew out of an ongoing effort to de-
velop approximate methods of speeding up the stochastic
simulation algorithm. Results of that broader effort will be
reported on in the near future.
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APPENDIX A: THE POISSON RANDOM VARIABLE

The Poisson random variableP(a,t) is understood here
to be the number of ‘‘events’’ that occur in a time intervalt
given that the probability for an event to occur in any infini-
tesimal time intervaldt is adt. Letting Q(n;a,t) denote the
probability thatP(a,t) has the~integer! valuen, it is easy to
show thatQ(0;a,t)5e2at. And by the laws of probability,
we have for anyn>1,

Q~n;a,t !5E
t850

t

Q~n21;a,t8!3adt83Q~0;a,t2t8!.
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Using this recursion relation and then50 formula, one can
easily establish by induction the well-known general formula

Q~n;a,t !5
e2at~at!n

n!
~n50,1,2,...!. ~A1!

It can be shown from this formula that the mean and variance
of P(a,t) are

^P~a,t !&5var$P~a,t !%5at. ~A2!

By invoking Stirling’s factorial approximation along
with the small-e approximation for ln~11e!, one can prove
that

e2at~at!n

n!
'~2pat!21/2expS 2

~n2at!2

2at D if at@1.

This implies that, whenat@1, the Poisson random variable
P(a,t) can be approximated by thenormal random variable
with the same mean and variance:

P~a,t !'N~at,at! if at@1. ~A3!

APPENDIX B: THE MULTIVARIATE LANGEVIN AND
FOKKER–PLANCK EQUATIONS

The general multivariate Langevin and Fokker-Planck
equations have been derived in different ways by different
writers.9–12 We adopt here the approach and notation devel-
oped in Ref. 12. There it is shown that anN-component
processX(t) which evolves in acontinuous, memoryless
manner—i.e., a continuous Markov processX(t)—must for
reasons of self-consistency obey an ‘‘infinitesimal updating’’
formula of the form

Xi~ t1dt!

5Xi~ t !1Ai~X~ t !,t !dt1(
j 51

M

bi j ~X~ t !,t !Nj~ t !~dt!1/2

~ i 51,...,N!. ~B1!

Here the N functions Ai and the NM functions bi j are
smooth but otherwise arbitrary. AndNj (t) is a zero-mean,
unit-variance normal random variableN~0,1!, with Nj (t) and
Nj 8(t8) statistically independent if eitherj Þ j 8 or tÞt8;
thus, ^Nj (t)Nj 8(t8)& equals 1 ifboth j5 j 8 and t5t8, and
equals 0 otherwise.

Equation ~B1! is called the standard-form Langevin
equation for the continuous Markov processX(t). In the
derivation of Eq.~B1! given in Ref. 12, the numberM of
statistically independent unit normals is assumed to be equal
to the number of process componentsN. Although M must
be no less thanN to accommodate the most general such
process, nothing in the derivation precludes a continuous
Markov processX(t) being defined withM either greater or
less thanN. A comparison of Eq.~B1! with Eq. ~22! shows
the latter to be a standard-form Langevin equation with

Ai~x,t !5(
j 51

M

n j i aj~x!, bi j ~x,t !5n j i aj
1/2~x!. ~B2!

A derivative-type limit of the standard-form Langevin
equation ~B1! will formally bring that equation into the
white-noise form,

dXi~ t !

dt
5Ai~X~ t !,t !1(

j

M

bi j ~X~ t !,t !G j~ t !. ~B3!

Here, theG j (t) are temporally uncorrelated, statistically in-
dependentGaussian white noises.They are formally defined
by

G j~ t ![ lim
dt→0

N~0,1/dt!. ~B4!

This definition, together with the properties of temporal and
statistical independence, can be shown to imply

^G j~ t !G j 8~ t8!&5d~ j , j 8!d~ t2t8!, ~B5!

where the first delta function is Kronecker’s and the second
is Dirac’s. When Eq.~B2! is substituted into Eq.~B3!, the
result is Eq.~23!.

Strictly speaking, genuinely stochastic continuous Mar-
kov processes, while indeed continuous, arenot differen-
tiable; therefore, all white-noise form Langevin equations are
in the nature of heuristic stand-ins for their corresponding
standard forms. This caveat applies especially to our chemi-
cal problem here, where the limit that transforms Eq.~22!
into Eq.~23! must be tempered by the fact thatdt in this case
is, owing to our condition~ii !, a macroscopicinfinitesimal.

Finally, it is proven in Ref. 12 that the standard-form
Langevin equation ~B1! together with the Chapman–
Kolmogorov equation7,9–11imply, without any extra assump-
tions, that the singly conditioned probability density function
of X(t) obeys the partial differential equation

]

]t
P~x,tux0 ,t0!52(

i 51

N
]

]xi
@Ai~x,t !P~x,tux0 ,t0!#

1
1

2 (
i 51

N
]2

]xi
2 @Di~x,t !P~x,tux0 ,t0!#

1 (
i ,i 851
i , i 8

N
]2

]xi]xi 8
@Cii 8~x,t !P~x,tux0 ,t0!#,

~B6!

with

Di~x,t ![(
j

bi j
2 ~x,t !, Cii 8~x,t ![(

j
bi j ~x,t !bi 8 j~x,t !.

~B7!

Equation~B6! is called theforward Fokker-Planck equation
for the continuous Markov processX(t). If the formulas
~B2! are substituted into Eqs.~B6! and~B7!, the result is Eq.
~24!.
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