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The stochastic dynamical behavior of a well-stirred mixtur&l@holecular species that chemically
interact throughM reaction channels is accurately described by the chemical master equation. It is
shown here that, whenever two explicit dynamical conditions are satisfied, the microphysical
premise from which the chemical master equation is derived leads directly to an approximate
time-evolution equation of the Langevin type. This chemical Langevin equation is the same as one
studied earlier by Kurtz, in contradistinction to some other earlier proposed forms that assume a
deterministic macroscopic evolution law. The novel aspect of the present analysis is that it shows
that the accuracy of the equation depends on the satisfaction of certain specific conditions that can
change from moment to moment, rather than on a static system size parameter. The derivation
affords a new perspective on the origin and magnitude of noise in a chemically reacting system. It
also clarifies the connection between the stochastically correct chemical master equation, and the
deterministic but often satisfactory reaction rate equatip80021-96060)50925-§

I. INTRODUCTION vji=the change in the number &
We consider here a well-stirred mixture dbf=1 mo- molecules .produced by onB; reaction
lecular speciedS;,...,Sy} that chemically interact, inside (J=1..Mji=1,..N), ()
some fixed volum&) and at constant temperature, throughtogether completely specify the reaction charRel
M=1 reaction channel$R,,....Ry}. We specify the dy- Equation(2) provides the logical basis for “stochastic

namical state of this system bY(t)=(Xy(t),....Xn(t)),  chemical kinetics,” as exemplified for instance by the
where chemical master equatibrand the stochastic simulation
algorithm? It will be shown in this paper that Eq2) also
leads directly to an approximating chemical Langevin equa-
tion, and hence also an approximating chemical Fokker—

X;(t)=the number ofS; molecules in the system

attimet (i=1,..N). @) Planck equation.
Our goal is to describe the evolution &f(t) from some Since all .Of our arguments \-M" be b-ase-d o pren(_@e
given initial statex (to)=xo. (All boldface vectors in this we shall begin in Sec. Il by briefly reviewing the rationale
baper are species indexed, wihcomponents. for regarding that premise to be firmly grounded in kinetic

The molecular population; (t) will actually berandom theory. In Sec. Il we shall review, for later reference, how

variables, because we choose not to track the positions afjeé chemical master equation and several other important

velocities of all the molecules in the system. Indeed, we inf€sults follow from premisé2), either rigorously or heuris-

tend to rely heavily on the occurrence of many nonreactivdic@lly: In Sec. IV we develop our main result: We show that,
molecular collisions to “stir” the system between successiveProVided two dynamical conditions are satisfied, preniye
reactive collisions. Under these conditions, it can be showdMPlies an approximate Langevin equation f(t), and

that there will exist for each reaction chanrig| a well- hgnge also an aF_’P“”f'maFe I.:okker—P.Ianck eq.uatlon. We
defined functiors; , henceforth referred to as tpeopensity highlight some salient |mpI|cat]ons of this result in S'ec. V.
functionfor R;, which is such that We conclude in _Sec. VI by_ discussing the_z Conn_ectlon l?e-

tween our analysis and earlier works on this subject, noting

aj(x)dt=the probability, givenX(t)=x, in particular how our analysis seems to mollify some earlier

. . objections to the use of Langevin and Fokker—Planck equa-
that one R; reaction will occur tions in chemical kinetics.
somewhere insid€) in the next

infinitesimal time interval[t,t+dt)

(1=1,..M). @) Il. THE PROPENSITY FUNCTION
Early discussions of premig@) regarded it as a kind of
ad hoc stochastization of deterministic chemical kinefics,
but it was later demonstrated that E&) actually has a solid
microphysical basié Its derivation, although not proceeding

dElectronic mail: GillespieDT@navair.navy.mil directly from the Liouville equation, uses arguments whose

The propensity functiom; and thestate-change vector;,
whoseith component is defined by
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rigor is quite on par with th&tosszahlansatzhat underlies  such an “effectively trimolecular” reaction, it can be shofvn
the Boltzmann transport equation. Recent numerical studiethat Eq.(4) still applies, but with arapproximate ¢ that is
comparing the predictions of the chemical master equatioproportional to) ~2.

with those of molecular dynamics simulatiGnisave only In virtually all time-evolution equations;; andh; occur
confirmed the validity of the theoretical arguments underly-together in the product fror). That is why it is convenient
ing Eq. (2). to designate that product by a special symbgl,and to give

The derivation of Eq(2) for a bimoleculargas-phase it a special name, the propensity functiohevidently mea-
reaction is superficially similar to the elementary kinetic sures the propensity for reactiét) to occur in the next mo-
theory derivation of the mean bimolecular collision fre- menj.
quency; however, the former has a higher degree of rigof, 'gq\e NOTABLE CONSEQUENCES OF EQ. (2)
because it deals with probabilities instead of average num-
bers, and so can make use of the well-established laws of The evolution law(2) implies that the state vectof(t)

probability theory. The functior; in Eqg. (2) is found to is a jump-type Markov process on the non-negative

have the mathematical fofft’ N-dimensional integer lattice. The traditional way of analyz-
ing such a process is to focus on its singly conditioned prob-
aj(x)=cjh;j(x). (4  ability function,
P(X,t|Xg,to)=ProgX(t)=x, given that X(tq)=Xg}.
Here,c; is the specific probability rate constarior channel (5)

R;, defined so that; dt gives the probability that a ran-  (\whenever possible, we use an upper case letter to denote a
domly chosen pair oR; reactant molecules will react ac- yandom variable, and the corresponding lower case letter to
cordingly in the next infinitesimal time intervalt. This  jenote a possible value of that random varigble.

probability ¢; dt is in turn equal to the probability that a To derive a time evolution equation for this function, we
randomly chosen combination & reactant molecules will - taye a time incremerdt that is so small that the probability
collide in the nextdt, multiplied by the probability that a 5, two or more reactions to occur it is negligible com-
colliding pair of reactant molecules will actualleact ac- pared to the probability for only one reaction. We then use
cording toR; . The first(collision) probability is found to be Eqg. (2) and the addition and multiplication laws of probabil-
directly proportional to the average relative speed and c:olli-,»[y theory to write the probability of the system being in state
sion cross section of a reactant pair, and inversely propor;” at time t+dt as the sum of the probabilities of all the

tional to the total system volum@. The secondcollision-  ytyally exclusive ways in which that can happen via either
conditioned reactionprobability is typically calculated as ,erg or one reaction ift,t+dt):

the probability that the collision energy will exceed a certain
threshold value; it turns out to be a factor with the familiar
Arrhenius exponential form. The final expression for the bi-P(X’Hdt'XO'tO): P(x,t[Xp,to) X
molecularc; turns out to be the same as that for the conven-
tional bimolecular “reaction rate constant;, except di-
vided by Q, and also multiplied by 2 if the reactant species +,Z’1 [P(x=vj,t[xo,to)aj(x—w))dt].
happen to be identical. ) ]

The functionh;(x) in Eq. (4) is defined to be the number A f?W simple algepram fea”anqements and a pqss4age to the
of distinct combinations oR; reactant molecules available in limit dt—0 then yields thechemical master equatiof

M
1- > aj(x)dt
=1

M

the statex. It can be easily deduced by simply inspecting the M

left hand side of reactioR; . So, for example, iR, were the r P(X,t|Xg,tg) = 2 [aj(x—w)) P(Xx—j,t[Xo,to)
reactionX; + X,—2X; we would havea;(x)=cX;X,, and =1

if R, were the inverse of that reaction we would have —a;(X)P(%,t[Xo,to)]- (6)

a,(x) =cyX1(Xx;—1)/2.[Note that, for these two hypothetical ) ) )
reactions, we would have from Ed3) that »,=(+1, EQuation(6) is an exact consequence of E8). If it can be
~1,0,...,0) andv,= —,.] solved forP, then we can in principle find out everything
If R; is amonomoleculareaction, Eq.(4) still applies, ~there is to know about the proce¥{t). But in practice,
but ¢; will then be equal to some quantum mechanically€Xact solutions of Eq(6) can rarely be obtained.
determined “decay probability” per unit timeg; will then Another exact consequence of H@) is the existence
be independent of, and in fact equal to the conventional and form of thenext-reaction density function(p,j|x,t),
monomolecular reaction rate constént The functionh;(x) ~ Which is defined by

will be simply the population of thésingle reactant species. p(7,j|x,t)dr=probability that, givenX(t)=x,
Thus, if R; were the reactiors,— S; we would havea;(x) the next reaction inQ will occur
= CaXa. in the infinitesimal time interval

Genuinelytrimolecularreactions do not physically occur
in dilute fluids with any appreciable frequendipparently
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomoleculaSince Z;a;(x)dt is the probability thatsomereaction will
reaction, and involve an additional short-lived species. Fopbccur in the nextdt, then an elementary probability argu-

[t+7,t+7+d7), and will be an
R; reaction. @
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ment shows that expa;(x) 7) is the probability that a time If we multiply the chemical master equati¢é) through
7will elapse without any reaction occurring. This probability by X; , sum over alk, and then re-index the first summation
multiplied by the probability in Eq(2) then gives the prob- on the right-hand side, keeping in mind that the propensity

ability in Eq. (7); thus, the functiomp is given by functions will ensure that no component of the process can
M ever become negative, we can deduce the following formula
D(7] |x,t):aj(x)exp( S a(x) T) for the time derivative of theneanof X;(t):
k=1 M
d(X;(t)) .
(0<7<x;j=1,..M). (8) T:; vi(a(X(1))  (i=1,...N). (10

This formula provides the basis for tiséochastic simulation  This exact consequence of Eq2) is sometimes taken as

. 2 . . .
algorithm? in which one uses rigorous Monte Carlo tech- heyyistic justification for assuming that, whenever fluctua-
niques to generate random paits |) according to the joint  ions are not important, the species populations evdéter-

density function(8); those random pairs in turn allow one to yinistically according to the set of ordinary differential
construct “unbiased realizations” of the procesét). Such equations

realizations are fully consistent with the chemical master
equation(6), since Eqgs.(6) and (8) are both exact conse- dXi(t) o
quences of premis€2). But note that the stochastic simula- dt _]Zl viigj(X(1)  (1=1,..N),
tion algorithm isnot a procedure for numerically solving the

chemical master equation; that is usually a vastly more chalwhere the components ¥f(t) are now regarded asire real
lenging task. variables. Equatiofill) is essentially the macroscopieac-

If Egs. (6) and (8) are exact consequences of the dy_tion rate equatiorof conventional c_hemi(_:al kin_etics. But the
namical premise(2), a “semiexact’ consequence is the '€asoning we have used hgre to infer it obviously is not an
chemical Kramers—Moyal equation. Its somewhat shady linhonest derivation. The legitimacy of E¢L1) would appear
eage arises from the fact that it requires us to regard thto require, at the very least, that the populations of all species
components oK (t) as real numbers, instead of the integersP® very large compared to 1. _
that Nature stipulates. This is not an entirely innocuous |Ne reaction rate equatidil) is more commonly writ-
presumption, since the propensity functions usually do nof€n in terms of the species concentrations,
make sense when their arguments are nonintegers, especially 7z (t)=X(t)/Q (i=1,...N). (12)
such between 0 and 1. Intuitively, we expect that this real _
number assumption should be warranted if all the compolf We examine the) dependence of E¢4) for monomolecu-
nents ofX(t) are very large compared to 1. But that just Igr, b_lmolecular, anql trlmole_cular reactiofsee the discus-
shows that we are moving here into the realm of a “largeSion in Sec. Il, we find that in each case we have, at least
number” approximation. A second assumption we have i@pproximatelyfor sufficiently large molecular population
make for this calculation is that the functiof;(x) numbers,
=a;(x)P(x,t|xg,t)) must be analytic(infinitely differen- a;(x)=0Q3;(2). (13
tiable) in the real variablex. Given these two assumptions,
we can use Taylor’s theorem to write

M
(13)

Here,'éj is functionally identical toa; except that the reac-
tion probability rate constant; has been replaced by the

B - 1 reaction rate constaht , and any combinatorial factors aris-
fj(x= ”J)_fj(X)Jrnzl ml,.%ﬂN:O Myl --my! ing from identical species are omitted. When E#3) is
[yt +my=n] substituted into Eq(11), we obtain the more familiar “con-
Y centration” form of the reaction rate equation:
X (=)™ (= ViN)mNrj.(:)mN- dz() <
Xy Xy T:-El via(Z(t)  (i=1,..N). (14
=

Substituting this into the master equati@), reordering the _ _ _
summations, and rearranging a few factors, we immediateN]_rom a theoretical standpoint though, the difference between

obtain thechemical KramersMoyal equation the two versiong14) and(11) of the deterministic reaction
rate equation is minor. Neither form, at this stage anyway,

ip(x t|Xo,to) can claim to be a rigorous consequence of 4.

&t L b

Finally, we must take note of the intriguing effect that

1 o the variable changél2) and the scaling relatioflL3) has on

M
m m
2 (- viha ()

- E (—1)" Z - - the chemical Kramers—Moyal equati¢®). Since the singly
n=1 my,. omy=0  Mgl--my! A%y b XN conditioned density functioR of the (assumed rearandom
(my+-+my=n] variablesX(t) will be related to that of the random variables
Z(t) in Eq. (12) by P(2)=Q"P(x), we multiply both sides
X{ P(x,t|x0,t0)]. (9  of Eq. (9) by QN to convert theP’s to P’s. Then we com-
plete thex;— z;=x; /() transformation on the right-hand side
We shall return to this ‘“semirigorous” consequence of of Eq. (9) by invoking Eq.(13) and taking note of the fact
premise(2) in Sec. VI. that them,’s sum ton. The result i§°
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1 "

my..omy=0  Mgl--my! ﬁle...ﬁzr,:N
[my+---+my=n]

d

What is intriguing about this “concentration” form of the
Kramers—Moyal expansion is this: If we go to ttheermody-

M
2, (i va ) E’(z,tle,to)} SENGE

Daniel T. Gillespie

Condition (i} Require 7 to be small enough that the
change in the state durifg,t+ 7] will be so slight that none
of the propensity functions changes its value “appreciably;”
i.e., the propensity functions then satisfy

a(X(t')=aj(x), Vt'e[tt+r], Vje[1M].
(17

Of course, we could easily satisfy EQ.7) if we simply
took 7 to be so small thateroreactions would be likely to
occur in[t,t+ 7]. But usually we need not be that extreme.
Since the propensity functions generally depend on non-
negative integer powers of the molecular species popula-
tions, and the latter practically never change by more than
two molecules in any one reaction event, then we need only
require that the likely number of reactions occurring in

namic limit in which the number of molecules in the system(¢ ¢ 1 7] pe much smaller than the population of the least

and the system volum@ both go tox in such a way that the
species concentrations remain const@nfeat that theoreti-

populous reactant species. So conditioncan always be
satisfied if all the reactant molecule populations are suffi-

cians perform much more casually than either experimentalcienﬂy large compared to 1.

ists or numerical simulatoysthe factors ofQ) " tend to kill
off the higher terms in Eq(15). If Q) can be taken so large

Since the reactions that occur in the time interval
[t,t+ 7] do not appreciably change the values of any of the

that only then=1 term need be retained, then the resultingygpensity functions, then all reaction events occurring in the

equation forP would imply that the procesg(t) evolves
according to theleterministicevolution equatior(14).%° A
slightly less drastic truncation at time=2 term would yield a
Fokker—Planck equation, implying tha(t) is approxi-
mately a continuousor diffusion) Markov process; that ap-

time interval[ t,t + 7] will be essentiallyindependenof each
other. SoK;(x;,7) will simply be the number of times reac-
tion channeR; would occur in a duration if its propensity
function remained constant at the valagx;). In light of
our fundamental premis®), this means, as is shown in Ap-

proximation might be computationally convenient, since thependix A, that each;(x;,7) will be astatistically indepen-

Fokker—Planck equations that govecontinuousMarkov
processes are generally more tractiblhan the master

equations that goverjump Markov processes. We shall re-

turn to these points later in Sec. VI.

dent Poissorrandom variableP;(a;(x;),7). So the net ef-
fect of condition(i) is to allow Eq.(16) to be approximated

by

We have enumerated here several known consequences M

of the fundamental premis®), some of which are rigorous

and exact, and some of which are not. We turn now to de-

velop a new consequence of Eg), one whose validity will

Xi(t+7')=Xti+]§=:1 viPi(aj(x),7) (i=1,.N). (18

be seen to depend entirely on the degree to which two spe-  Next we impose a second condition on

cific dynamical conditions are satisfied.

IV. AN APPROXIMATING CHEMICAL LANGEVIN
EQUATION

Suppose the system’s statét) at the current time is
known to bex;. LetK;(x;,7), for any 7>0, be the number

Condition (ii). Require 7 to be large enough that the
expected number of occurrences of each reaction chatjnel
in [t,t+ 7] be much larger than 1, i.esee Appendix A

(Pi(aj(x)),7)=aj(x) ™1, Vje[lM]. (19

This condition obviously runs counter to conditiGin and it

of R; reactions that occur in the subsequent time intervaimay very well happen that both conditions cannot be satis-

[t,t+7]. Since each of those reactions will increase $he
population byw;; , the number of5; molecules in the system
at timet+ 7 will be

M
xi(t+r)=xti+21Kj(xt,T)vji (i=1,...N). (16)
=

K;(x;,7) is of course aandom variable.To compute it
for arbitrary >0 would be quite as difficult as solving the
master equatiof6). But we can obtain an excelleapproxi-
mationto K;(x,7) rather easily if we impose the following
conditions.

fied simultaneously; in that case, the scheme being devised
here will fail. But there will be many practical circumstances
in which conditions(i) and (ii) can be simultaneously satis-
fied. As with condition(i), satisfaction of conditior{ii) is
greatly facilitated by having large molecular population
numbers: Sincea;(x;), through the combinatorial function
h;(xy), will typically be proportional to one or more compo-
nents of x;, sufficiently large molecular populations can
make it is possible for the inequaliti€49) to hold even
when 7 is quite small.

As explained in Appendix A, conditiofii), or more pre-
cisely the inequality(19), allows us toapproximateeach
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Poissonrandom variableP;(a;(x;),7) by anormalrandom (see Appendix Bthat the singly conditioned density func-
variable with the same mean and variance. That brings Edion for X(t) obeys theforward Fokker—Planck equation
(18) into the form

J
—P(x,t[Xg,t0)
xm+ﬂ=m+g;mwmmmnmmw> o

N M
J
(i=1,..N), (20) = _;1 ax (21 v;iaj(x) | P(X,t|%g,to

where M(m,o?) denotes the normal random variable with 1 2/ M

. 5 ) : . ) d 5
meanm and variancer-. Notice that in replacing theteger + _2 — (2 ,,jiaj(x)> p(x,t|xo,t0)}
Poissonrandom variables in Eq(18) by the real normal 2= 0x7 [\ =1
random variables in Eq20), we in effect convert the mo- N e Y
lecular population¥; from discretely changing integer vari- + E (2 vjivjaj(x )) P(X,t|X0,to)}
ables to continuously changing real variables. Notice also iir=1 OXidXir |\ =1
that theM normals\Vj in Eq. (20) will be statistically inde- i<i’
pendent this in consequence of the statistical independence (29

of the M Poisson’sP; in Eq. (18).
The linear combination theorem for normal random vari-y, oME SALIENT IMPLICATIONS

ables,
N Equation(22) was derived from Eq(2) subject only to
Mm, o) =m+oMO0.1), conditions(i) and (ii). Condition (i) allowed us to approxi-
can now be invoked to bring EqR0) into the form mate the generally inscrutable random varialdegx; , 7) in
Eq. (16) by the much more benign Poisson random variables
Pi(aj(xy),7), and condition(ii) allowed us to approximate
those in turn by the normal random variables
Nj(aj(x) 7,a;(x) 7). The immediate result of those two ap-
proximations was shown to be E@2). Since it has the
canonical form of the standard-form Langevin equation, it
implies that thejump Markov processX(t) defined by the
(22) master equatioii6) has beerapproximatedas acontinuous
where again thé/l normals\;(0,1) are all statistically inde- Markov process. The white-noise form Langevin equation
pendent. We conclude by making some purely notationa(23) and the Fokker—Planck equatid@4) then follow as
changes in this result: First, let us regard any time interval straightforward consequences of E@2) via continuous
that satisfiesboth conditions (i) and (ii) as amacroscopic Markov process theor:
infinitesimal and denote it simply byt. Second, let us write The requirements that are imposed by conditiGhand
the “unit normal” random variableV;(0,1) asAj(t), with (i) can be summarized as follows: The system must be such
the understanding that;(t) andN;,(t") will be statistically that there exists @omain of macroscopically infinitesimal
independent if eithej#j’ ort#t’. And finally, let us recall time intervals which is defined so that during any time in-
thatx, stands forX(t). Equation(21) becomes tervaldt in that domain, no propensity function will suffer a
noticeable change in its value, yet every reaction channel can
be expected to fire many more times than once. The validity
of Egs. (22)—(24) is solely contingent on the existence of
such a domain, and of course on our willingness to confine
our “infinitesimal time increments” to that domain. Large

M
Xi(t-i- T):Xti+j21 Vjiaj(xt)’T

M
+;mmww%m30ﬂwm

M
Xi(t+d)=X(t)+ >, v;ia(X(t))dt
=1

1/2 1/2 . . .
+ E viiai (X ()N (1) (dt) molecular populations for the reactant species will normally
be conducive to the existence of a macroscopically infinitesi-
(i=1,...N). (220  mal time scale, but it is the existence of that time scale, and

not the size of the system per se, that ultimately validates the
continuous approximation underlying Eq22)—(24).

The imposition of a lower limit on the infinitesimalt,
which is the effect of conditior(ii), is not at all unprec-
edented in physics. It has obvious close ties to the “coarse-

As explained in Appendix B, Eq22) has the canonical
form of a “standard-form Langevin equation” for a multi-
variate continuous Markov process. Equati@2) thus im-
plies the equivalent “white-noise form” Langevin equation

dx(t) X M grained time” arguments used by EinstEiin his pioneer-
m =2 vig(X(1)+ X via (X (1)Tj(t) ing analysis of Brownian motion, although a careful
=1 =1 examination of those arguments will reveal that they are ac-
(i=1,..N), 23) tually much more heuristic than those employed here. In

electromagnetic theory, electrical current is defined as the
where thel’;(t) are temporally uncorrelated, statistically in- ratio ofdq, the charge passing in tint, to dt, in the limit
dependent Gaussian white noises. Equat&®) also implies  thatdt— 0. But it is tacitly understood that the lindit— 0 is
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“macroscopic” in the sense thatt is not allowed to become would be obtained by simply truncating the chemical
so small that shot noise effects due to the quantized nature égframers—Moyal equatior{9) at n=2. The temptation to
electrical charge become important. In practice this conmake that truncation has long been recognized, but the legiti-
straint usually poses no problem: We usualdn find a do- macy of doing so has been seriously doubted. Has our
main of macroscopically infinitesimal time intervals relative present derivation of Eq$22)—(24) allayed those doubts?
to which the definition of electrical current as the “macro- Gardiner has observed that “a confused histfmas
scopic derivative”dg/dt turns out to be quite serviceable. A ariser] out of repeated attempts to find a limiting form of the
similar lower limit on the infinitesimal of lengttl would be ~ master equation in which a Fokker—Planck equation
required to define the “mass per unit lengtllin/dl of a  arises.’™ Although it has been apparent since the 1905 pa-
metal wire, this in order to accommodate the atomistic strucper of Einsteift® that a perfunctory second-order truncation
ture of the metal. of the chemical Kramers—Moyal equati®® will result in a
When conditiondi) and ii) are satisfied, the resul22)  Fokker—Planck equation, we really are not entitled to do that
shows that each reaction chann@| contributes to the without reasoned justification. Arguing that there is no such
dt-incrementX;(t+dt) — X;(t) in the population of species justification, van Kampen in 1961 offered instead his
S adeterministiccomponenty;;a;(X(t))dt and a zero-mean “system-size expansion®>1%° Starting with the chemical
randomly fluctuatingcomponentvjiajl/Z(X(t))Nj(t)(dt)llz- Kramers—Moyal equatiof®), van Kampen makes the vari-
To compare the expected sizes of these two components, vgble changg12) from X(t) to Z(t)=X(t)/€, invokes the
must first recall from continuous Markov process thébry scaling relation13), and then in effect assumes that the so-
that, over asuccessiowf small time stepsit, the cumulative  |ution Z(t) to that equation will differ from the deterministic
contribution of the factoN; () (dt)?in the random compo- processz* (t) defined by the reaction rate equatici#) by
nent will be comparable to that of the factdt in the deter-  the amountﬂ‘l’zY(t). van Kampen then proceeds to de-
ministic component; in effect, the imbalanaét)/%>dt gets  duce, in the limit of large, a well-defined Fokker-Planck
compensated over a succession of steps by the frequegguation for the process(t), an equation in which the drift
changes in sign of the sample valuesNy{(t)=M0,1). It and diffusion functions both depend strongly on the deter-
follows that theratio of {the size of theandomcomponent ministic solutionZ* (t).
of R;’s contribution to thedt increment to {the size of the In 1973, Kubo, Matsuo, and Kitahdraointed out that
deterministiccomponent oR;’s contribution to thedt incre-  the scaling relation(13) by itself transforms the chemical
ments is simply af"2(X(t))/a;(X (1)), or a; *A(X(t)). Re-  Kramers—Moyal equatior9) into the form (15), which in
calling from Sec. Il thak;(X(t)) is, owing to the combina-  tyrn suggests that a straightforward second-order truncation
torial functionh; in Eq. (4), directly proportional to products might actually be reasonable in the limit of larfle But later
of the molecular populations of thg; reactant species, we n their paper, Kubo, Matsuo, and Kitah&tzack away from
may conclude thathe relative fluctuations in the time- that position, and instead voice agreement with van Kampen
evolving species populations scale as the inverse square rogtat some sort of explicit time dependeiftike that provided
of the reactant populationdt is satisfying to see how this py 7+ () in van Kampen’s analysjsseems to be needed in
well-known rule-of-thumb in chemical kinetics emerges as ane drift and diffusion functions, in order to “reproduce a
direct consequence of premig®). In fact, a careful exami-  ¢qrrect equilibrium solution.
nation of our derivation in Sec. IYsee Eq(18)] reveals that From a present-day perspective, this dismissal of a
this quantitative relation between deterministic drift and ran-second-order truncation of E€L5) for large Q) is difficult to
dom noise in a chemically reacting system follows simply yngerstand. It appears to be motivated by the view that a
from the fact that the standard deviation of a Poisson randorggkker—Planck equation “is generally meaningless except

variable is always equal to the square root of its mean. nqer the simple situation whefthe drift function is linear
~_An extrapolation of the foregoing line of reasoning 10 i, y and[the diffusion functio is constant.”® But in fact,
infinitely large rea.cta.nt.molecular popglatlons shows that, INmany Fokker—Planck equations with nonlinear drift and dif-
the thermodynamlc _I|m|t, the contributions to the _changes Musion functions are now known that give perfectly legiti-
the species populations from the _random terms in B2B. e resultd? Furthermore, the following result for a single-
and(23) will usually becomevanishingly smalcompared to species chemical system has been demonstrated by the
the contributions from the deterministic terms. In that Casepresent writef® I the population of the time-varying species
Eq. (23 rgduces straightaway to the. conveqtiongl r.eactiorl:an change by no more than one molecule in any one reac-
rate equatiorill). So we now have a direct logical linking of 45 eyent, then an order-consistent discretization of the
that cornerstone formula of conventional chemical kinetics tQ.. .o hd-order truncated Kramers—Moyal equatie®)—

Fhe fundamental StOChaSt'F premied. BUF it must be kept \ ien s a finite-difference equation that could legitimately
in mind that both the reaction rate equatidrd) and the rule be used to numerically solve that partial differential

of th'.“!mb for fI_ucFuatign scaling follovenly if cond_itions(i) . equation—is precisely the corresponding chemical master

and(ii) are SaF'Sf'ed.’ 1.€., on_Iy i the system admits a domalnequation. This result does require that the population of the

of macroscopically infinitesimal time intervals. time-varying species be large compared to 1; however, there

is no requirement that the propensity functions of the various

reaction channels be constant or linear in the species popu-
A careful inspection of our chemical Fokker—Planck lation.

equation(24) reveals that it is precisely the equation that  Another indication that a second-order truncation of the

VI. CONNECTIONS WITH EARLIER WORKS
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chemical Kramers—Moyal equation might actually be rea-The aforementioned results of Baras, Malek Mansour, and
sonable, at least for finite times and in the thermodynami®earsof seem to confirm this suspicion. But note that the
limit, can be found in the highly mathematical works of Langevin equation considered by Kuffz,namely our
Kurtz.X® As explicated by Gardiné® Kurtz analyzes the dif- Langevin equatiori22), does not use the solution of the de-
ference between the proceXg¢t) defined by the chemical terministic reaction rate equation, and therefore should not
master equatiori6), and the procesX’(t) defined by the be expected to have this problem.

Langevin equation corresponding to a second-order trunca- An unsettling footnote to all this is a comment by Gar-
tion of the Kramers—Moyal equatiof®), i.e., our Eq.(22) diner to the effect that the second-order truncated Kramers—
[or (23)]. He proves that the difference between those twaVioyal equation and van Kampen’s system size expansion
processes becomes proportional to {bgn the limit Q—cw,  will usually give the same results “to lowest order in
It follows that the difference between the corresponding conQ) =2 .. and each will only be valid to this ordef*

centration processeqt) andZ’(t), obtained by dividing by To understand what our present analysis contributes to
), asymptotically approaches zero with increasiiglike  this “confused” history, we begin by making three observa-
(log Q)/Q), again for finite times. tions. First, all the cited earlier works have focused strongly

One is tempted to conclude from all this that the earlyon what happens in the thermodynamic limit, often devoting
summary rejection of the second-order truncated Kramers€onsiderable attention to the order in which the two limits
Moyal equation may have been too hasty. —o andt—o ought to be taken. Second, the underlying

A quite different approach to the chemical Langevin motivation for that focus is essentially to prove that what
equation, often attributed to Grossmairseems to mediate emerges in the thermodynamic limit is the deterministic re-
between van Kampen's system size expansion and thaction rate equation; indeed, that result is virtually a fore-
second-order Kramers—Moyal truncation. Using argumentgone conclusion in the van Kampen and Grossman ap-
based on the fluctuation-dissipation theorem of linear irreproaches, since they essentially assume it at the outset. But
versible thermodynamics, Grossmahinfers the structure that of course poses a problem for systems with multiple
of the noise terms that should be added to the determinististeady states, since for those systems the determininistic re-
reaction rate equatiofil4) to convert it into a stochastic action rate equation doewst provide a good description of
Langevin equation. His result appears to be equivalent to the system'’s long time behavior in the thermodynamic limit.
second-order Kramers—Moyal truncation, but with the im-And finally, all the earlier cited works have tacitly assumed
portant difference that the propensity functions in thethat the accuracyof any Langevin or Fokker—Planck ap-
second-order derivative terms now have argunzetit) in- proximation will be determined by a single, static, system
stead ofz, whereZ* (t) is again the solution of the determin- size parameter, typicallf).
istic reaction rate equatiofl4). This is the chemical Lange- The focus of our efforts here is rather different. Our goal
vin equation that was used by Baras, Malek Mansour, ands to describe the evolution of a finite system over a finite
Pearsofiin their numerical study of the differences betweentime. An example would be the genetic-enzymatic reactions
it, the chemical master equation, and molecular dynamicshat take place inside a living céft, where the molecular
simulation. For a model chemical system with multiple populations of some key reactants can at times be less than
stable states, they found good agreement between the chemdi®0. The population levels in such systems are not available
cal master equation and molecular dynamics, but significartb be “taken to the thermodynamic limit;” they are whatever
differences between those and their Langevin equatiorthey are. For such systems as these, the stochasticity implicit
Baras, Malek Mansour, and Pearson observed that this failn Eq.(2) can play an important role, and a careful stochastic
ure of their Langevin equation is not really so surprising,analysis is essential. But passing to thermodynamic and
since the deterministic functiaf* (t) that guides their noise infinite-time limits are academic exercises with little practi-
terms is not globally accurate in the presence of multiplecal import.
stable state$>?® For such systems, we have shown in this paper that cir-

This last point is important, and deserves elaboration. Ircumstances may arise in which the exact chemical master
the presence of multiple stable states, the solution to thequation (6) can be satisfactorilyapproximated by the
deterministic reaction rate equation will simply follow the Langevin equatiori22) [or (23)] and hence also the Fokker—
gradient to the first-encountered stable state, and there contanck equatiorf24). This possibility may in retrospect not
to rest. But the process described by the chemical mastdre surprising in view of the “larg&€)” implications of the
equation will be forever on the move, occasionally makingkramers—Moyal expansiofi5), the convergence results of
spontaneous transitions between the stable states, and thkiartz,'° and the well-known fact that the deterministic reac-
exploring a large region of the state space. It follows that anyion rate equation quite ofteis accurate. However, our
particular solution of the deterministic reaction rate equatiorpresent analysis has demonstrated, apparently for the first
cannot provide an accurate picture of the long-time behaviotime, that it is not sufficient to predicate a Langevin approxi-
of a system with multiple stable states. We should thereforenation on the value of a single parameter liRelnstead, it
expect that any chemical Langevin or Fokker—Planck equais necessary to verify that the system evolution possesses a
tion that makes significant use of the deterministicmacroscopically infinitesimal time scaler more specifi-
solution—and this would include not only the Grossmanncally, that from moment to moment there exists a time inter-
equation but also the van Kampen equation—would probval during which none of the system’s propensity functions
ably not give a very accurate description of such a systemwill suffer a noticeable change of value, yet every reaction
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channel will be expected to fire many more times than oncethe solution of the deterministic reaction rate equafion.
It is true that satisfying these conditions will nearly alwaysBaras, Malek Mansour, and Pearson never numerically ex-
require “large” molecular populations; however, the practi- amine theKurtztype chemical Langevin equation that is de-
cal question of “how large” can be answered only by ap-rived in this paper. Their restricted focus in this regard is
pealing directly to those dynamic conditions. And we mustevident from their statement that “a Langevin formalism is
be prepared to find that, f@omesystems, there will bsome  always characterized by a macroscopic law of evolution to
time periods during which a macroscopically infinitesimal which a noise term is adddavhose amplitudgis directly
time scale willnot exist, i.e., the shortest time interval in related to the macroscopic law through a fluctuation-
which all reaction channels can be expected to fire manglissipation theorem... 2 But a quite different perspective is
more times than once is nevertheless so long that some prprovided by our present analysis: Our Langevin formalism is
pensity function will suffer a “noninfinitesimal” change in characterized by drift and noise terms thmth follow di-
value during that interval. Whenever that happens, we mugectly from the fundamental premig@) whenever the sys-
simply acknowledge that a Langevin or Fokker—Planck aptem possesses a macroscopically infinitesimal time domain.
proximation is not feasible, and return to the exact chemica¥Ve require neither a “macroscopic law” nor a “fluctuation-
master equation or its companion stochastic simulation algodissipation theorem,” but only the well-known mathematical
rithm. facts(see Appendix Athat a Poisson random variable has a
Finally, there are two current criticisms of Langevin and variance that is equal to its mean, and approaches normality
Fokker—Planck equations in a chemical kinetics context thatvhenever that mean is large compared to 1.
need to be addressed directly. A repetition of the study of Baras and co—worl&ausing

First, it was pointed out long ago by van Kampen thatthe Langevin equatio(22) instead of the Grossmann version
noise in ajump Markov process is “internal,” in that “it is ~Should show the chemical Langevin equation in a fairer light,
inherent in the very mechanism by which the state of theProvided one additional precaution is taken. In their investi-
system evolves and cannot be divorced from its equations dfation, Baras and co-workers assume that by taking the total
motion.”?® By contrast, the noise in aontinuousMarkov ~ number of moleculegwvhich is conserved in their systerto
process usually appears to be “external,” since it manifest9e 2000, they will satisfy all the conditions required for the
itself in the canonical Langevin equatiéB1) as a seemingly ~Langevin approximation to apply. In light of our work here,
independent enhancement to the deterministic drift. Thesthat does not seem to be a safe assumption: Since their sys-
observations were originally delivered as a warning to soméem has three time-varying species, then with a total molecu-
early investigators who were proposing to accommodate thr Population of 2000 it seems quite possible that the popu-
stochasticity in chemical systems by simply tacking on somdation of at least one of those species might at times become
generic noise to the deterministic reaction rate equation. 180 Small that a macroscopically infinitesimal time domain
that context, van Kampen's observation is quite valuableWill not exist for the system. In such a case, a Langevin
But over the years, this observation seems to have evolve@PProximation will not be justified. Of course, it may not be
into a general criticism ofiny Langevin or Fokker—Planck €asy to continually monitor the system to ensure that condi-
equation in a chemical kinetics context. So it is important totions (i) and(ii) of Sec. IV are satisfied. But that will not be
underscore the fact that the chemical Langevin and Fokkerhe first time that Nature has proved to be unaccommodating
Planck equationt22)—(24) derived in this paper aneotsub- [0 OUr purposes. _
ject to that criticism: Our derivation in Sec. IV of the Lange- ~ 1h€ present work grew out of an ongoing effort to de-
vin equation(22) demonstrates quite clearly that the drift and VelOP approximate methods of speeding up the stochastic
diffusion terms in that equation arise fromcammon source simulation al_gorlthm. Results of that broader effort will be
namely the Poisson random variables in Etg). And it is ~ '€Ported on in the near future.
easy to see from the very forms of Eq22)—(24) that the
noise compon_ent in the process define(_j _by_ those equatio'l&:KNOWLEDGMENT
“cannot be divorced” from the deterministic component.

Nor should this be surprising, since Eq22)—(24) have This work was supported in part by the Office of Naval
been derived from the same fundamental preni®ethat Research, Grant No. NOO01499WX20544.
gave rise to the chemical master equatién

We conclude by addressing some claims made in the _
recent work of Baras, Malek Mansour, and Peads APPENDIX A: THE POISSON RANDOM VARIABLE

mentioned earlier, that work examines numerically the time  The poisson random variabfe(a,t) is understood here
evolutions predicted for a multistable-state chemical systengy pe the number of “events” that occur in a time interval
by a molecular dynamics method, the chemical master equjiven that the probability for an event to occur in any infini-
tion, and a chemical Langevin equation. Baras, Malek Mantesimal time intervatit is adt. Letting Q(n;a,t) denote the
sour, and Pearson find excellent agreement between the prgrobability thatP(a,t) has the(integed valuen, it is easy to
dictions of molecular dynamics and the chemical masteknow thatQ(0;a,t)=e 2. And by the laws of probability,
equation; however, they claim that their results “demon-we have for anyn=1,

strate the failure of the Langevin approachBut in fact,

their results demonstrate the failure of only tBeossmann- Q(n:a,t)= ft Q(n—1:a,t’)xadt’ xQ(0:a,t—t).
type chemical Langevin equation, whose noise terms utilize t'=0
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Using this recursion relation and time=0 formula, one can A derivative-type limit of the standard-form Langevin
easily establish by induction the well-known general formulaequation (B1) will formally bring that equation into the
white-noise form

efat(at)n
Qniat)=——— (n=012.). (A1) dX(t) i
- —dt =~ A+ 2 by (X0, (83)
It can be shown from this formula that the mean and variance
of P(a,t) are Here, thel';(t) are temporally uncorrelated, statistically in-
dependenGaussian white noise3hey are formally defined
(P(a,t))=va{P(a,t)}=at. (A2) by
By invoking Stirling’s factorial approximation along I'j(t)= lim MO0,1d1). (B4)
with the smalle approximation for If{1+¢€), one can prove dt—0
that This definition, together with the properties of temporal and
e-ai(ap)" » (n—ah?| | statistical independence, can be shown to imply
T%(Zfrat) exp — oot if at>1. (C;(OT(t))y=8(j,j")d(t—t"), (B5)

where the first delta function is Kronecker’s and the second
is Dirac’s. When Eq(B2) is substituted into Eq(B3), the
result is Eq.(23).

Strictly speaking, genuinely stochastic continuous Mar-
P(a,t)~Mat,at) if at>1. (A3)  kov processes, while indeed continuous, are differen-
tiable; therefore, all white-noise form Langevin equations are
in the nature of heuristic stand-ins for their corresponding
standard forms. This caveat applies especially to our chemi-
cal problem here, where the limit that transforms EzpR)

The general multivariate Langevin and Fokker-Planckinto Eq.(23) must be tempered by the fact thetin this case
equations have been derived in different ways by differents, owing to our conditiorii), a macroscopidnfinitesimal.
writers>~2We adopt here the approach and notation devel- ~ Finally, it is proven in Ref. 12 that the standard-form
oped in Ref. 12. There it is shown that &component Langevin equation(B1) together with the Chapman-—
processX(t) which evolves in acontinuous memoryless Kolmogorov equatioh®*'imply, without any extra assump-
manner—i.e., a continuous Markov proceésd)—must for  tions, that the singly conditioned probability density function
reasons of self-consistency obey an “infinitesimal updating”of X(t) obeys the partial differential equation

This implies that, whemmt>1, the Poisson random variable
P(a,t) can be approximated by thermal random variable
with the same mean and variance:

APPENDIX B: THE MULTIVARIATE LANGEVIN AND
FOKKER-PLANCK EQUATIONS

formula of the form J NG
X (t+dt) a1 POutho o) == 2 S TAGDPO o to)]

v 1y 52

=><i(t>+Ai(><(t),t>dt+j2l by (X(t),H)N;(t)(dt)*? +5 2 52D DP(X.tXo,to)]
- =1 ox:
(i=1,..N). (B1) N 2
+ [Cii (X, D) P(X,t|Xg,t0) ],
Here theN functions A; and the NM functions b;; are ey OXidx IXa-to
i<i’

smooth but otherwise arbitrary. Ard;(t) is a zero-mean,
unit-variance normal random variabé0,1), with N;(t) and (B6)
N;/(t") statistically independent if eithey#j’ or t#t’;
thus, (N;(t)N;.(t")) equals 1 ifboth j=j" andt=t’, and
equals 0 otherwise.

Equation (B1) is called the standard-form Langevin Di(x’t)E; b (x,t), Cii'(th)E; bi; (%, )bj (X, 1).
equationfor the continuous Markov proces$(t). In the (B7)
derivation of Eq.(B1) given in Ref. 12, the numbev of
statistically independent unit normals is assumed to be equ
to the number of process componehtsAlthough M must
be no less thaN to accommodate the most general suc
process, nothing in the derivation precludes a continuou
Markov processX(t) being defined withM either greater or
less thanN. A comparison of Eq(B1) with Eq. (22) shows

the latter to be a standard-form Langevin equation with ID. A. McQuarrie, J. Appl. Probabt, 413 (1967.
D. T. Gillespie, J. Comput. Phy&2, 403(1976.
M 31. Oppenheim, K. E. Shuler, and G. H. Weiss, J. Chem. PB@s460
A(x,H)=2, vigj(x), bj(x,t)= Vjiajllz(x)- (B2) (1969.
=1 4D. T. Gillespie, Physica A88 404 (1992.

with

E]quation(B6) is called theforward Fokker-Planck equation
for the continuous Markov proces$(t). If the formulas
h(BZ) are substituted into Eq#B6) and(B7), the result is Eq.

29).
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