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Linear scaling computation of the Fock matrix. IV. Multipole accelerated
formation of the exchange matrix

Eric Schweglera) and Matt Challacombe
Theoretical Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 9 February 1999; accepted 21 June 1999!

A new method for the multipole evaluation of contracted Cartesian Gaussian-based electron
repulsion integrals is described, and implemented in linear scaling methods for computation of the
Hartree–Fock exchange matrix. The new method, which relies on a nonempirical multipole
acceptability criterion@J. Chem. Phys.109, 8764~1998!#, renders the work associated with integral
evaluation independent of the basis set contraction length. Benchmark calculations on a series of
three-dimensional water molecule clusters and graphitic sheets with highly contracted basis sets
indicate that the new method is up to 4.6 times faster than a well optimized direct integral evaluation
routine. For calculations involving lower levels of contraction a factor of 2 speedup is typically
observed. Importantly, the method achieves these large gains in computational efficiency while
maintaining numerical equivalence with standard direct self consistent field theory. ©1999
American Institute of Physics.@S0021-9606~99!30435-9#

I. INTRODUCTION

A number of recent advances in computational methods
has greatly extended the range of systems that can be inves-
tigated withab initio electronic structure theory.1–6 By re-
moving several limiting bottlenecks, electronic structure cal-
culations of unprecedented size are now possible on common
workstation class computers.5 Many of these new methods
depend on the efficient use of the multipole approximation to
calculate interactions. For example, hierarchical expansion
methods such as treecodes5 or fast multipole methods3,4 use
the multipole approximation to achieve a reduction in the
computational complexity of Coulomb matrix formation
found in Hartree–Fock~HF! and density functional theories.
In addition, new approaches have been described for the
rapid evaluation of individual electron repulsion integrals
~ERIs! with the multipole approximation.7–10

Significant computational savings can be achieved in
multipole based methods because expensive direct integral
evaluations are replaced with less expensive multipole inter-
actions. Since the multipole expansions are truncated at a
finite order, the ability to accurately determine acceptability
of a given expansion plays an important role in both the
computational efficiency and numerical accuracy of the
method. However, the development of error estimates
needed to effectively do this have, until recently, received
little attention.7

In the following, we describe the use of the multipole
approximation in conjunction with a multipole acceptability
criterion ~MAC!7 and a penetration acceptability criterion
~PAC! to effectively accelerate the computation of con-
tracted ERIs. The choice of MAC and PAC is made with a
particular emphasis on balancing computational simplicity

with the required numerical accuracy. Implementations in
linear scaling methods for computing the HF exchange
matrix6 demonstrate the computational efficiency of this ap-
proach. By eliminating much of the work associated with
basis set contraction, this new method is highly competitive
for computation of the HF exchange matrix for both large
systems and highly contracted basis sets.

The paper is organized as follows: In the following sec-
tion the multipole limit of ERIs are reviewed. An approach
for translating primitive distributions to common centers to
avoid explicit ERI contraction is discussed in Sec. II A, and
efficient application of MAC and PAC are described in Secs.
II B and II C. An implementation of these ideas in the linear
scaling methods ONX~orderN exchange! and SONX~sym-
metric orderN exchange! are presented in Sec. III. Then in
Secs. III A and III B, results for a series of calculations on
three-dimensional clusters of water molecules and graphitic
sheets are given for a variety of basis sets. Finally, in Sec. IV
we present our conclusions.

II. MULTIPOLE EXPANSION OF ERIS

In molecular electronic structure theory the basis func-
tions of choice are the Cartesian Gaussian-type functions
~CGTFs!11

wai~r !5~r x2Ax!
l a~r y2Ay!ma~r z2Az!

na

3exp@2zai~r2A!2#, ~1!

which are typically contracted

fa~r !5(
i

Ka

Caiwai~r !. ~2!

Use of contracted basis functions leads to expensive fourfold
loops
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over primitive electron repulsion integrals~ERIs!

@aibj uckdl #

5E E drdr 8wai~r !wb j~r !ur2r 8u21wck~r 8!wdl~r 8!.

~4!

Over the past 20 years, many different methods have
been developed to efficiently compute contracted ERIs.12–18

For example, by employing specialized recursion relations
some fraction of the ERI evaluation can be moved outside of
the contraction summation.16,18 In addition, it is possible to
reduce the average contraction length (K̃) of basis function
products or distributions

fa~r !fb~r !5(
i

Ka

(
j

Kb

CaiCb jwai~r !wb j~r ! ~5!

by prescreening with the criterion16

UCaiCb jE drwai~r !wb j~r !U<DistNeglect , ~6!

or by modeling basis function products with expansions that
involve a smaller number of primitive functions.18,19 These
methods, though, still result in a significant amount of com-
putational work that grows asO(K̃4).

In Ref. 7, an attractive approach for avoiding the con-
traction problem was introduced that is based on the multi-
pole approximation. By decoupling well separated distribu-
tions @aibj u and uckdl ] in Eq. ~4!, the multipole
approximation enables basis set contractions to be performed
independently of ERI evaluation.

In order to develop the multipole limit of Eq.~4!, it is
convenient to represent primitive distributions~products of
CGTFs! with exact one-center expansions in Hermite Gauss-
ian type functions~HGTFs!

CaiCb jwai~r !wb j~r !5 (
L50

l a1 l b

(
M50

ma1mb

(
N50

na1nb

eLMN
ab LLMN

r p ~r !, ~7!

whereeLMN
ab are the expansion coefficients obtained by the

McMurchie–Davidson two term recurrence relations20 and
multiplied by the appropriate radial overlap and contraction
coefficients. The HGTFs centered atr p are

LLMN
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N
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wherezp5zai1zb j andr p5(zaiA1zb jB)/zp . In the multi-
pole limit, HGTFs are related to derivatives of the Dirac
delta function by
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which enables ERIs over HGTFs to be evaluated with the
Cartesian multipole interaction tensor21,22 as

~LLMN
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This representation, which is accurate when the effects of
penetration are small due to the separation ofr p and rq ,
decouples the ERI allowing the multipole moments,
(p/zp)3/2 and (p/zq)3/2, of primitive distributions located on
the same center to be summed prior to ERI evaluation.

A. Translation of primitive distributions

Computing individual ERIs with a multipole representa-
tion can be advantageous for a variety of reasons. For ex-
ample, spherical multipole interaction tensors can be used
that only involveO(L 2) work as compared toO(L 4) work
for a Cartesian representation, whereL is the total angular
symmetry. However, since most basis function products in-
volve primitive distributions located on more than one cen-
ter, the use of a multipole representation alone will not re-
duce the complexity of ERI evaluation with respect to the
contraction lengthK̃. In order to avoid expensive ERI con-
tractions, the multipole moments of primitive distributions
need to be re-expressed through translation and accumulation
about common centers, as illustrated by the simple one-
dimensional system shown in Fig. 1. The centersP andQ are
chosen so that the average translation distance within each
set of primitive distributions is minimized. For those con-
tracted distributions (abu and ucd) that only involve well
separated primitive distributions, the corresponding ERIs can
be evaluated with a bipolar multipole expansion aboutP and
Q. Since multipole moments corresponding to contracted
distributions can be precomputed prior to the ERI evaluation
loops, the computational complexity of ERI evaluation is re-

duced fromO(K̃4) to O(1).
A truncated bipolar expansion of the termur p2rqu21 in

Eq. ~10! about the centersP and Q can be carried out in
many different representations.22–26We use a real arithmetic
implementation involving solid spherical harmonics, which
has been simplified by removing redundancies with the sym-
bolic manipulation features ofMathematica27 along with the
FORTRANASSIGNutility in FORMAT.M.28 The resulting expan-
sions are expressed as explicitFORTRAN77statements, which
operate at peak efficiencies on modern computational
platforms.5

FIG. 1. The expansion centersP and Q. Primitive distributions are trans-
lated to the common centersP and Q in order to avoid contraction of
primitive ERIs.
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B. Multipole acceptability criterion

In order to ensure that a given contracted ERI can be
safely represented with the multipole approximation, it is
necessary to apply a multipole acceptability criterion~MAC!
to estimate the error involved in translating basis function
products with truncated multipole expansions.5,7,21 In Ref. 7,
the first numerically tight MAC was developed that is di-
rectly applicable to moments of angular symmetry beyond
spherical. For ERIs that involve CGTFs of angular symmetry
l ab and l cd , where l ab5 l a1ma1na1 l b1mb1nb , the
MAC is computed as

MAC@ l ab ,l cd#5(
i 50

l ab

(
j 50

l cd

ci
abcj

cd~ uMr p

l p@ i , j #u1uMr q

l q@ j ,i #u!,

~11!

with

ci
ab5 max

L1M1N5 i
@ ueLMN

ab u#S p

zp
D 3/2

, ~12!

and wherel p andl q are truncation orders of the bipolar mul-
tipole expansion. The termsMr p

l p@ i , j # in Eq. ~11! can be

evaluated efficiently by recurrence with

Mr p

l p@0,0#5
ur p2Pu l p11

urq2Pu l p12
,

Mr p

l p@ i ,0#5Mr p

l p@ i 21,0#
~ l p2 i 12!

ur p2Pu
, i .0 ~13!

Mr p

l p@ i , j #5Mr p

l p@ i , j 21#
~ l p1 j 11!

urq2Pu
, j .0.

Although numerically tight, Eq.~11! is too expensive to
apply to every ERI because it requires computation of the
distance between interacting basis function products. We
have adopted a scheme to reduce the cost of applying MAC
by clustering ERIs into groups. The clustering method is
described below in terms of the linear scaling method ONX
for computation of the Hartree–Fock exchange matrix.6

In ONX, elements of the exchange matrix

Kab5(
cd

Dcd~acubd!, ~14!

are formed through ordered lists of distributions$(acu%c and
$ubd)%d where the indicesc andd are fixed anda andb run
over all possible distributions of a particular angular symme-
try and contraction length. In the calculation of large mo-
lecular systems, when the centers of the basis functionsfc

andfd are far apart, the sets$(acu%c and $ubd)%d form two
spatially distinct groups. Instead of applying a different
MAC to each pair (acu and ubd), a single MAC can be
computed between each (acu and the entire set$ubd)%d . This
is accomplished by determining the smallest sphere that en-
compasses all of the centers in$ubd)%d . In the evaluation of
Eq. ~11!, the following substitutions are then made:

urq2Pu, ur p2Qu⇒uP2Su2r s , ~15!

whereS is the center of the sphere andr s is its radius. In
addition, the translation distanceurq2Qu and the moment
ci

bd are replaced by their maximum values over$ubd)%d .
This clustering, which is illustrated in Fig. 2, enables calcu-
lation of a single MAC for each (acu, which represents the
worst-case error in the interactions with$ubd)%d .

Since the basis function products within the sphere
shown in Fig. 2 are restricted to have the same indexd, the
MAC can be significantly improved by weighting it with the
magnitude ofDcd , similar to density weighted ERI estimates
found in direct self consistent field~SCF! methods.29 By in-
cluding the magnitude ofDcd , the MAC is adaptive and
becomes more permissive when the size of the contribution
to Kab decreases.

C. Penetration acceptability criteria

In addition to MAC, a penetration acceptability criterion
~PAC! must be satisfied in order for an ERI to be accurately
calculated in a multipole representation.21 Unlike point
charges common in classical physics, CGTF charge distribu-
tions have extents, which can lead to contributions that the
multipole expansion cannot reproduce. These errors are sig-
nificant when the tails of interacting distributions overlap.

As first suggested in Ref. 7, PAC that account for con-
tributions from higher order penetration terms have recently
been developed by Kudin and Scuseria30 in the context of the
fast multipole method, where high order multipole expan-
sions lead to the dominance of penetration errors. In the
present context of individual ERI evaluation using low order
expansions~equal to the original ERI angular symmetry!, we
have found that multipole errors dominate penetration errors,
and that a simples-s type PAC, outlined in the following,
provides sufficient error control. These assertions are born
out in Sec. III, where error control in converged total ener-
gies is demonstrated in several numerical experiments.

Using the same notation as in Ref. 7, thes-s type pen-
etration error is

e5e000
ac e000

bd F 2p5/2

zpzqAzp1zq

F0~t!2
p3

~zpzq!3/2

1

ur p2rquG , ~16!

where

FIG. 2. The clustering scheme used for application of the MAC.P andQn

are expansion centers corresponding to distributions (acu and $ubd)%d , re-
spectively. The sphere with centerS and radiusr s is used in the MAC to
compute the worst case error estimate for the entire set$ubd)%d .
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t5
zpzq

zp1zq
ur p2rqu2. ~17!

In Eq. ~16!

F0~t!5
1

2
Ap

t
erf~At!5E

0

1

e2tu2
du, ~18!

is the zeroth order reduced incomplete gamma function31,32

and e000
ac is the same as in Eq.~7!. By introducing the

complementary error function, thes-s PAC is

PAC5c0
acc0

bdS 1

ur p2rqu Derfc~At!, ~19!

wherec0
ac are the distribution moments defined in Eq.~12!. It

should be reiterated that while this simple PAC has been
found to provide sufficient error control over a range of sys-
tems and basis sets, the methods outlined here may be
readily enhanced with PACs that account for angular
symmetry.30

For the same reasons mentioned in Sec. II B for the
MAC, the PAC is too expensive to apply to every ERI. We
again use the clustering scheme described above by making
the substitution

ur p2rqu⇒ur p2Su2r s , ~20!

in Eqs.~17! and~19!. Figure 3 illustrates how the MAC and

PAC are incorporated into ONX. The pseudo-code shown in
Fig. 3 is evaluated immediately after the line ‘‘301 con-
tinue ’’ in Fig. 4 of Ref. 6.

To further reduce the computational cost, simple esti-
mates are placed before the actual MAC and PAC that screen
out ERIs, which are obviously either in the multipole or di-
rect regime. For example, in Fig. 3, the conditional

if( uP2Su2r s,0)goto 352 , ~21!

is used to skip the MAC and PAC when (acu is inside the
$ubd)%d sphere and

if ~t.20.0 !goto 351 , ~22!

is used to skip the PAC when separations are too large for
penetration to be an issue.

III. RESULTS AND DISCUSSION

The multipole based ERI methods described above have
been implemented in both ONX6 and SONX,33 which we
will refer to as multipole accelerated ONX~MAONX ! and
multipole accelerated SONX~MASONX!. SONX33 is a lin-
ear scaling method for computing the HF exchange matrix
similar to ONX, but includes ERI permutational symmetry as
outlined in Ref. 34. The direct ERI evaluation routines used
in ONX and SONX, which are based on the HGP~Head-
Gordon–Pople! method,16 have been significantly improved
over our previous implementations.6,35 In particular, the
evaluation of ERIs involvingd-type basis functions has been
highly optimized.

MAONX and MASONX calculations within
MONDOSCF36 were performed with a variety of basis sets on a
series of three-dimensional water clusters and graphitic
sheets. In each case, the multipole expansions have been
truncated at the same order as the total angular symmetry of
the distributions involved (l ac andl bd), and the thresholding
values used in the MAC and PAC were set equal to
TwoENeglect , which is the parameter also used in thresh-
olding ERIs by the Schwartz inequality.37 For primitive dis-
tribution prescreening,DistNeglect 5TwoENeglect
31022 was used in Eq.~6!. In each case, the contracted
distribution moments have been precomputed and are in-
cluded in the reported CPU timings. All CPU timings were
obtained on a single 332 MHz 604e PowerPC processor.

There are two key factors that determine to what extent
formation of the exchange matrix can be accelerated by use
of the multipole approximation. These factors are the per-
centage of all interactions that can be accurately computed in
a multipole representation, and the relative speed of calculat-
ing an interaction with multipole versus direct ERI evalua-
tion.

A. Percentage of multipole based ERIs

The percentage of ERIs computed with the multipole
approximation inMAONX is shown in Fig. 4 for a series of
three-dimensional water clusters.Both the MAC and the PAC
used in Fig. 4 do not include the magnitude of Dcd. The
relative ordering of the percentage of multipole based ERIs
with different basis sets is a result of the differences in con-
traction lengths. As the basis set contraction length increases,
the multipole representation involves the translation of a

FIG. 3. Applying the MAC and PAC in MAONX. The above code is evalu-
ated immediately following the loop skip-out statement in ONX, the values
of P, S, r s , and the majority of the MAC can be precomputed at the level of
distributions.
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larger number of primitive distributions to common centers,
which results in longer average translation distances and
fewer ERIs that satisfy the MAC.

As mentioned in Sec. II B, the MAC and PAC can be
improved by weighting each estimate with the magnitude of
Dcd that the ERI is contracted with. The percentage of mul-
tipole based ERIs that are allowed by a density weighted
MAC and PAC for the same series of three-dimensional wa-
ter clusters is shown in Fig. 5. This percentage reaches 75 to
80 percent of the ERIs as system sizes are increased. Similar
results are obtained with MASONX. Based on these ob-
served trends, if the time needed to compute a multipole
interaction can be made small relative to direct ERI evalua-
tion then, at best, a four to five fold decrease in the total CPU
time can be expected.

The percentages shown in Fig. 5 were obtained with
TwoENeglect 51027. When smaller values ofTwoENe-
glect are used the percentages only slightly decrease. For

example, whenTwoENeglect 51029, the percentage of
multipole based ERIs decreases to 65 percent in the cluster
of 110 water molecules with the 6-31G basis.

It is interesting to note that the basis set ordering in Fig.
5 is different than in Fig. 4. In particular, the percentage of
multipole based ERIs is greatly increased in the STO-3G
~Slater-type orbitals! calculations when density weighted
MAC and PAC are used. This can be explained by observing
that the HOMO–LUMO ~highest occupied molecular-
orbital–lowest unoccupied molecular orbitals! gap38 is over-
estimated when a minimal basis, such as STO-3G, is
employed.39 Because a larger HOMO–LUMO gap corre-
sponds to a faster decay in the density matrix,2,40,41which is
included in the density weighted MAC and PAC, the per-
centage of ERIs that fall in the multipole regime is dramati-
cally increased.

B. Speed of multipole evaluation

The observed speed of multipole versus direct ERI
evaluation depends on a number of issues, including the vari-
ous implementational details of each method. However, the
most significant factor is the number of primitive ERIs that
are avoided in a multipole representation. This, of course, is
related to the average basis set contraction lengthK̃. Since
the computational cost of direct ERI evaluation grows as
O(K̃4), the benefits of multipole evaluation, which isO(1)
with respect toK̃, can be quite large.

MAONX and MASONX results for the cluster of 50
water molecules calculated with different basis sets are sum-
marized in Table I. Speedup refers to the ratio of ONX CPU
time to MAONX CPU time and SONX CPU time to
MASONX CPU time. For the highest contracted basis set
used, STO-6G, both MAONX and MASONX approach the
expected four to fivefold speedup. In Figs. 6 and 7, accelera-
tions commensurate with those in Table I are observed for
the series of water clusters for the STO-3G and 6-31G* basis
sets.

Systems with small HOMO–LUMO gaps, such as gra-
phitic sheets, are particularly challenging because interac-
tions persist for much longer distances than in water

FIG. 4. The percentage of ERIs that can be accurately computed with the
multipole approximation in a RHF calculation of the exchange matrix for a
series of three-dimensional water clusters. The MAC and PACdo not in-
clude the magnitude of the density matrix, and the multipole truncation error
corresponds toTwoENeglect 51027.

FIG. 5. The percentage of ERIs that can be accurately calculated with the
multipole approximation in a RHF calculation of the exchange matrix for a
series of three-dimensional water clusters. The MAC and PAC are weighted
by the magnitude of the corresponding density matrix element, and the
multipole truncation error corresponds toTwoENeglect 51027.

TABLE I. The observed speedup of multipole ERI evaluation with ERI
permutational symmetry~MASONX! and without permutational symmetry
~MAONX ! in the calculation of the RHF~restricted Hartree–Fock! ex-
change matrix of a three-dimensional cluster of 50 water molecules. The

average basis set contraction length isK̃.

Basis set

Speedup

K̃MAONX MASONX

3-21G 1.3 1.0 1.4
6-31G** 1.5 1.1 1.4
6-31G* 1.6 1.2 1.4
STO-2G 1.5 1.2 1.9
6-31G 1.9 1.3 1.9
Dunning DZ 2.1 1.4 1.9
Dunning-Hay SV 2.3 1.6 2.0
STO-3G 2.6 2.1 2.6
STO-6G 4.6 4.1 4.7

6227J. Chem. Phys., Vol. 111, No. 14, 8 October 1999 Exchange matrix



clusters.6 For these types of systems, ONX and SONX no
longer exhibit linear scaling, and the computational expense
increases rapidly with system size. However, multipole ac-
celeration is still applicable, and as shown in Figs. 8 and 9,
can greatly increase the efficiency of exchange matrix for-
mation.

Inspection of Table I reveals that the observed MAONX
speedup is always larger than in MASONX, and for basis
sets with small contraction lengths MAONX is often the fast-
est method available. This is caused by various overheads
and extra computations that are unavoidable when ERI per-
mutational symmetry is employed.33

In Figs. 10 and 11, the absolute error in the total energy
is shown for the series of three-dimensional water clusters.42

It is important to note that the errors incurred by MAONX
are indistinguishable from the integral neglect errors associ-
ated with the Schwartz inequality used by ONX. These re-
sults demonstrate the power of a numerically tight MAC, the
sufficiency of using as-s type PAC in this context, and
establishes the equivalence of MAONX and MASONX with
standard methods of direct SCF.29,37

IV. CONCLUSIONS

Multipole accelerated~MA ! versions of the linear scal-
ing exchange methods ONX and SONX that employ a non-

empirical multipole acceptability criterion~MAC! have been
developed. MAONX and MASONX effectively combine
multipole and direct integral evaluation while maintaining
numerical equivalence with standard direct SCF.

An important and novel finding of this work is that adap-
tive, density weighted error estimates must be used with the
MAC and PAC to obtain significant acceleration in linear
scaling evaluation of exchange ERIs.

As expected, numerical experiments with MAONX and
MASONX result in large accelerations when highly con-
tracted basis sets are used. For example, MAONX is 4.6
times faster than ONX for computing the exchange matrix of
water molecule clusters with highly contracted basis sets. For
typical basis sets, a factor of two speedup is observed. While
MAONX and MASONX will scale quadratically for systems
with a vanishing gap like the graphitic sheets, it is expected
that for sufficiently large systems an asymptotic regime will
be entered in which the number of ERIs computed with the
multipole approximation approaches 100%. In this regime an
acceleration proportional toK̃4 can be expected.

While the nonempirical MAC has demonstrated its use
here for the evaluation of exchange ERIs, the methods out-
lined are general and may be readily extended to the compu-

FIG. 8. RHF/STO-3G graphitic sheet timings withTwoENeglect 51027.
Note that linear scaling is not observed for systems such as graphitic sheets,
because their small HOMO–LUMO gaps lead to long-range exchange in-
teractions.

FIG. 9. RHF/6-31G graphitic sheet timings withTwoENeglect 51027.

FIG. 6. RHF/STO-3G water cluster timings withTwoENeglect 51027.

FIG. 7. RHF/6-31G* water cluster timings withTwoENeglect 51027.
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tation of ERIs in other contexts, such as MP2~second-order
Moller–Plesset! theory,43 or the computation of Coulomb
sums with the quantum chemical tree code~QCTC!.5 The
only caveat is that a simples-s type PAC may or may not be
adequate in these contexts, depending certainly on the order
of multipole expansion used. Nevertheless, the necessary
machinery for constructing more sophisticated PACs is
established,30 and we see no impediment for an increasing
prevalence of tightly bounded multipole algorithms in quan-
tum chemistry.

Finally, we conclude by noting that although the multi-
pole approximation can be used to greatly accelerate the
computation of contracted integrals, it does not reduce the
overhead needed to incorporate permutational symmetry. As
a result, multipole acceleration has a relatively larger effect
in methods that do not use permutational symmetry than in
those that do. In some cases, such as the calculation of water
clusters with the 3-21G or 6-31G* basis, this effect results in
MAONX speeds that are faster than MASONX. Similar but
less pronounced effects were observed in a comparison of
ONX and SONX in Paper III of this series.33 It will be in-

teresting to further explore the differences between MAONX
and MASONX in parallel implementations where the penalty
for nonlocality of density and exchange matrices should
grow.
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