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Linear scaling computation of the Fock matrix. IV. Multipole accelerated
formation of the exchange matrix

Eric Schwegler® and Matt Challacombe
Theoretical Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 9 February 1999; accepted 21 June 1999

A new method for the multipole evaluation of contracted Cartesian Gaussian-based electron
repulsion integrals is described, and implemented in linear scaling methods for computation of the
Hartree—Fock exchange matrix. The new method, which relies on a nonempirical multipole
acceptability criterioriJ. Chem. Physl09, 8764(1998], renders the work associated with integral
evaluation independent of the basis set contraction length. Benchmark calculations on a series of
three-dimensional water molecule clusters and graphitic sheets with highly contracted basis sets
indicate that the new method is up to 4.6 times faster than a well optimized direct integral evaluation
routine. For calculations involving lower levels of contraction a factor of 2 speedup is typically
observed. Importantly, the method achieves these large gains in computational efficiency while
maintaining numerical equivalence with standard direct self consistent field theoryl99®
American Institute of Physic§S0021-960699)30435-9

I. INTRODUCTION with the required numerical accuracy. Implementations in
linear scaling methods for computing the HF exchange
A number of recent advances in computational methodsnatrix’ demonstrate the computational efficiency of this ap-
has greatly extended the range of systems that can be invesroach. By eliminating much of the work associated with
tigated withab initio electronic structure theory® By re-  pasis set contraction, this new method is highly competitive
moving several limiting bottlenecks, electronic structure calfor computation of the HF exchange matrix for both large
culations of unprecedented size are now possible on comma$ystems and highly contracted basis sets.
workstation class computetavlany of these new methods The paper is organized as follows: In the following sec-
depend on the efficient use of the multipole approximation tajon the multipole limit of ERIs are reviewed. An approach
calculate interactions. For example, hierarchical expansiofor translating primitive distributions to common centers to
methods such as treecodes fast multipole method$' use  avoid explicit ERI contraction is discussed in Sec. Il A, and
the multipole approximation to achieve a reduction in theefficient application of MAC and PAC are described in Secs.
computational complexity of Coulomb matrix formation ||B and Il C. An implementation of these ideas in the linear
found in Hartree—FockHF) and density functional theories. scaling methods ONXorderN exchangeand SONX(sym-
In addition, new approaches have been described for thgetric orderN exchanggare presented in Sec. IIl. Then in
rapid evaluation of individual electron repulsion integralsSecs. Il A and Il B, results for a series of calculations on
(ERIs) with the multipole approximatiofi.*° three-dimensional clusters of water molecules and graphitic
Significant computational savings can be achieved irsheets are given for a variety of basis sets. Finally, in Sec. IV
multipole based methods because expensive direct integr@le present our conclusions.
evaluations are replaced with less expensive multipole inter-
actions. Since the multipole expansions are truncated at a
finite order, the ability to accurately determine acceptability
of a given expansion plays an important role in both the

computational efficiency and numerical accuracy of the |, mojecular electronic structure theory the basis func-

method. However, the development of error estimatesiong of choice are the Cartesian Gaussian-type functions
needed to effectively do this have, until recently, rece|ved(CGTF911

little attention’
In the following, we describe the use of the multipole (,oai(r)=(rX—AX)'a(ry—Ay)ma(rZ—AZ)”a

approximation in conjunction with a multipole acceptability

criterion (MAC)” and a penetration acceptability criterion X ex — ai(r=A)7], @

(PAC) to effectively accelerate the computation of con-which are typically contracted

tracted ERIs. The choice of MAC and PAC is made with a

particular emphasis on balancing computational simplicity

Il. MULTIPOLE EXPANSION OF ERIS

K

¢a<r)=2 Cai®ailr). @)

dUniversity of Minnesota Supercomputer Institute, 1200 Washington Av- . . .
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Ka Kp K¢ Ky

(ab|cd)=§i: EJ: Ek) 2 CaiCpiCekCallaibjlcid ], 3

over primitive electron repulsion integralERIs) o0 ¢((r’)
[aibj|de|]
= J f drdr’<pai(r)<pbj(r)|r—r’|‘1<pck(r’)god,(r’). FIG. 1. The expansion centePsand Q. Primitive distributions are trans-

lated to the common cente® and Q in order to avoid contraction of
(4) primitive ERIs.

Over the past 20 years, many different methods have
been developed to efficiently compute contracted ER1E 32 3
For example, by employing specialized recursion relations (ARANM% )2(_1)L+M+N(£) (77)

some fraction of the ERI evaluation can be moved outside of LIMINT &pl g
the contraction summatiofi:*® In addition, it is possible to S MEMT NN g
reduce the average contraction lengk) (of basis function X ; ; ; :
products or distributions WEJXL 6r2”qj“” af',;‘JZN [Fp=Tql
Ka Kp (10)
$al1) (1) =22 25 CaiCojeai(r) ev;(1) ®

This representation, which is accurate when the effects of
penetration are small due to the separationr pfandry,
decouples the ERI allowing the multipole moments,
. (ml¢p)¥and (/£;)¥? of primitive distributions located on
<DistNeglect (6)  the same center to be summed prior to ERI evaluation.

by prescreening with the criterith

CaiijJ' dr @,i(r) @p;(r)

or by modeling basis function products with expansions thaf\: Translation of primitive distributions

involve a smaller number of primitive function$: These Computing individual ERIs with a multipole representa-
methods, though, still result in a significant amount of com-tion can be advantageous for a variety of reasons. For ex-
putational work that grows a®(K%). ample, spherical multipole interaction tensors can be used

In Ref. 7, an attractive approach for avoiding the con-that only involve©O(£?) work as compared t®(£ %) work
traction problem was introduced that is based on the multifor a Cartesian representation, whetds the total angular
pole approximation. By decoupling well separated distribu-symmetry. However, since most basis function products in-
tions [aibj| and |cd]] in Eqg. (4), the multipole volve primitive distributions located on more than one cen-
approximation enables basis set contractions to be performedr, the use of a multipole representation alone will not re-
independently of ERI evaluation. duce the complexity of ERI evaluation with respect to the

In order to develop the multipole limit of Ed4), it is  contraction lengttK. In order to avoid expensive ERI con-
convenient to represent primitive distributiofgroducts of  tractions, the multipole moments of primitive distributions
CGTFs with exact one-center expansions in Hermite Gaussneed to be re-expressed through translation and accumulation
ian type functiondHGTFs about common centers, as illustrated by the simple one-

latlp Ma+my Ng+ny dimensional system shown in Fig. 1. The centeendQ are
CaiCojeai(Nen(N= > > > e AR (), (7) chosen so that the average translation distance within each
L=0 M=0 N=0 set of primitive distributions is minimized. For those con-

whereef?, | are the expansion coefficients obtained by thelfacted distributions 4b| and |cd) that only involve well

McMurchie—Davidson two term recurrence relatidhand separated primitive distributions, the corresponding ERIs can

multiplied by the appropriate radial overlap and Contractionbe e\{aluated V‘,”th a bipolar multipole expansion atfeaind
coefficients. The HGTFs centeredrgtare Q. Since multipole moments corresponding to contracted
distributions can be precomputed prior to the ERI evaluation

; o M 9N ) loops, the computational complexity of ERI evaluation is re-
Adun(N= =0~ o eXH = p(r=rp)°l, ®  duced fromO(K*) to O(1).
Px = Py 7 P2 A truncated bipolar expansion of the tefm—ry/~* in

where,= ai+ {pj andr ,= (LA + {,iB)/{p. In the multi-  EQ. (10). about the centerﬁ_’ and Q can be carrieq out ip
pole limit, HGTFs are related to derivatives of the Dirac many different representatiofs.* We use a real arithmetic

delta function by implementation involving solid spherical harmonics, which
TN o ha; been _S|mpI!f|ed by removing reduqda7r10|es Wlth the sym-
S (r):<9_5_3_5(r_r - Iim(ﬁ) Ao © bolic manipulation features dflathematica’ along with the
LMN (ar’L)X mg"y arglz P\ LMN” FORTRANASSIGNUtility in FORMAT.M.?8 The resulting expan-

sions are expressed as explBRIRTRAN77 statements, which
which enables ERIs over HGTFs to be evaluated with theoperate at peak efficiencies on modern computational
Cartesian multipole interaction tendbf? as platforms®
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B. Multipole acceptability criterion

In order to ensure that a given contracted ERI can be
safely represented with the multipole approximation, it is
necessary to apply a multipole acceptability criteritAC)  ¢,*
to estimate the error involved in translating basis function
products with truncated multipole expansiorstin Ref. 7,
the first numerically tight MAC was developed that is di-
rectly applicable to moments of angular symmetry beyonc
spherical. For ERIs that involve CGTFs of angular symmetry
l.p and l.q, where | p=1,+my+ny+1,+my+n,, the
MAC is computed as

lab lcd FIG. 2. The clustering scheme used for application of the MR@ndQ,,
[ [ . . A
MAC[ | .p,lq]= E E cabeld(| AP Lill+ M, are expansion centers corresponding to distributi@t and{|bd)}4, re-
[ ab Cd] i=0j=0 b (| rp[ ]]| | rq[] ]D spectively. The sphere with cent8rand radiusrg is used in the MAC to

(11 compute the worst case error estimate for the entire|bef)} .

with
3 where S is the center of the sphere and is its radius. In
= max [|eﬁlI3/IN|](§_) , (12) aggition, the translation distande,—Q| and the moment
L+M+N=i P c;“ are replaced by their maximum values ov¢bd)}4.
, ) This clustering, which is illustrated in Fig. 2, enables calcu-
and wherd , andl are truncatltljn orders of the bipolar mul- |ation of a single MAC for eachdc|, which represents the
tipole expansion. The term4[i.j] in Eq. (11) can be  worst-case error in the interactions wiffbd)} 4.

evaluated efficiently by recurrence with Since the basis function products within the sphere
shown in Fig. 2 are restricted to have the same indlethe
M'p[O O]:|rp_ Plo*t MAC can be significantly improved by weighting it with the
oo Iry— P|'p+2’ magnitude oD 4, similar to density weighted ERI estimates
a found in direct self consistent fiek BCPH methods?® By in-
[ o (lp—i+2) cluding the magnitude ob.q4, the MAC is adaptive and
Mrz[l 'OJIMrF;[' _110]W' i>0 13 becomes more permissive when the size of the contribution
P to K,, decreases.
MUPLiLj]= MP[i j—1]w >0
rph oo’ lrq—Pl ' C. Penetration acceptability criteria
Although numerically tight, Eq(11) is too expensive to In addition to MAC, a penetration acceptability criterion

apply to every ERI because it requires computation of thdPAC) must be satisfied in order for an ERI to be accurately
distance between interacting basis function products. Wéalculated in a multipole representation.Unlike point
have adopted a scheme to reduce the cost of applying MAGharges common in classical physics, CGTF charge distribu-
by clustering ERIs into groups. The clustering method istions have extents, which can lead to contributions that the
described below in terms of the linear scaling method ONxMultipole expansion cannot reproduce. These errors are sig-

for computation of the Hartree—Fock exchange matrix. nificant when the tails of interacting distributions overlap.
In ONX, elements of the exchange matrix As first suggested in Ref. 7, PAC that account for con-

tributions from higher order penetration terms have recently
been developed by Kudin and Scusétia the context of the
fast multipole method, where high order multipole expan-
sions lead to the dominance of penetration errors. In the
are formed through ordered lists of distributidifac|}c and  present context of individual ERI evaluation using low order
{|bd)}4 where the indices andd are fixed anca andb run expansiongequal to the original ERI angular symmetryve
over all possible distributions of a particular angular symmehaye found that multipole errors dominate penetration errors,
try and contraction length. In the calculation of large mo-and that a simple-s type PAC, outlined in the following,
lecular systems, when the centers of the basis functins provides sufficient error control. These assertions are born
and ¢4 are far apart, the sefgacl}c and{|bd)}4 form two  out in Sec. Ill, where error control in converged total ener-
spatially distinct groups. Instead of applying a differentgies is demonstrated in several numerical experiments.

MAC to each pair &c| and |bd), a single MAC can be Using the same notation as in Ref. 7, the type pen-
computed between eachd| and the entire séi{bd)}4. This  etration error is

is accomplished by determining the smallest sphere that en-

Kab=§ D.d(aclbd), (14)

compasses all of the centers{ibd)}4. In the evaluation of e—eacoebdg{ 27502 Fo(n) w3 18
. . . ) = 0 - ’
Eg. (11), the following substitutions are then made: 000~00 Lol ot g (plq)¥? Irp—rgl

|rq—P|, |rp_Q|=>|P—S|—rs, (15 where
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do

351

Phys., Vol. 111, No. 14, 8 October 1999

a=apq
P = expansion center of (ac|

S = center of sphere around {|bd)}4
rs = radius of sphere
if(|P—-8|—r; <0) goto 352
compute MAC

if (MAC >TwoENeglect) goto 352
7 = Gpla/ (G + &) (P — S| = 1,)?
if(r >20.0) goto 351

compute PAC

if (PAC >TwoENeglect) goto 352
continue

mark (ac| for multipole ERI evaluation

E. Schwegler and M. Challacombe

PAC are incorporated into ONX. The pseudo-code shown in
Fig. 3 is evaluated immediately after the lin&01 con-
tinue " in Fig. 4 of Ref. 6.

To further reduce the computational cost, simple esti-
mates are placed before the actual MAC and PAC that screen
out ERIs, which are obviously either in the multipole or di-
rect regime. For example, in Fig. 3, the conditional

if( |P—S—rs<0)goto352 , (22)

is used to skip the MAC and PAC wherd is inside the
{|bd)}4 sphere and

if (7>20.0 )goto 351 , (22

is used to skip the PAC when separations are too large for
penetration to be an issue.

Ill. RESULTS AND DISCUSSION
The multipole based ERI methods described above have

been implemented in both ONXand SONX3 which we
will refer to as multipole accelerated ONMMAONX) and
multipole accelerated SONKMASONX). SONX is a lin-

ear scaling method for computing the HF exchange matrix
similar to ONX, but includes ERI permutational symmetry as
outlined in Ref. 34. The direct ERI evaluation routines used
in ONX and SONX, which are based on the H@ERead-
Gordon—Poplemethod® have been significantly improved
FIG. 3. Applying the MAC and PAC in MAONX. The above code is evalu- Over Our previous mplgmentaﬂoﬁé?’ n partlcular, the
ated immediately following the loop skip-out statement in ONX, the valuesevaluatlon of ERIs involvingl-type basis functions has been

of P, S ., and the majority of the MAC can be precomputed at the level of Nighly optimized. _ o
distributions. MAONX and MASONX calculations  within

MONDOSCF® were performed with a variety of basis sets on a
series of three-dimensional water clusters and graphitic
sheets. In each case, the multipole expansions have been

goto 353
352 continue

mark (ac| for direct ERI evaluation
353 continue

enddo a

e ¢péq Iro—rgl? (17) truncated at the same order as the total angular symmetry of
Lty PO the distributions involvedI(, andl,g), and the thresholding
In Eq. (16) values used in the MAC and PAC were set equal to

TwoENeglect , which is the parameter also used in thresh-
olding ERIs by the Schwartz inequality.For primitive dis-
tribution prescreening,DistNeglect =TwoENeglect
X102 was used in Eq(6). In each case, the contracted
distribution moments have been precomputed and are in-
cluded in the reported CPU timings. All CPU timings were
obtained on a single 332 MHz 604e PowerPC processor.
There are two key factors that determine to what extent
formation of the exchange matrix can be accelerated by use
[ro—rgl of the multipole approximation. These factors are the per-
ac o . . centage of all interactions that can be accurately computed in
wherec,” are the distribution moments defined in E2). It~ 5 multipole representation, and the relative speed of calculat-
should be reiterated that while this simple PAC has beef,y 4 interaction with multipole versus direct ERI evalua-
found to provide sufficient error control over a range of sys~;
tems and basis sets, the methods outlined here may be
readily enhanced with PACs that account for angularA- Percentage of multipole based ERIs

symmetry>° _ _ The percentage of ERIs computed with the multipole
For the same reasons mentioned in Sec. II1B for theypproximation inMAoONX is shown in Fig. 4 for a series of
MAC, the PAC is too expensive to apply to every ERI. We {hree-dimensional water clusteBoth the MAC and the PAC
again use the clustering scheme described above by makinged in Fig. 4 do not include the magnitude ofDThe
the substitution relative ordering of the percentage of multipole based ERIs
with different basis sets is a result of the differences in con-
traction lengths. As the basis set contraction length increases,
in Egs.(17) and(19). Figure 3 illustrates how the MAC and the multipole representation involves the translation of a

Fo(7)= %\/éerf( Jr)= fole* wdu, (18)

is the zeroth order reduced incomplete gamma funétith
and ej5, is the same as in Eq(7). By introducing the
complementary error function, ttees PAC is

PAC= cg°c3d( ) erfo(\/7), (19

Irp—rgl=lrp—8—rs, (20
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60 TABLE |. The observed speedup of multipole ERI evaluation with ERI
permutational symmetrfMASONX) and without permutational symmetry

559 g%}g o (MAONX) in the calculation of the RHRrestricted Hartree—Fogkex-

STO-3G -0 change matrix of a three-dimensional cluster of 50 water molecules. The

50 4 . . ~.
average basis set contraction lengttKis

s 45 //,/
3 Speedup
g 40 ) =
= Basis set MAONX MASONX K
8 —+
§- e e - 3-21G 1.3 1.0 1.4
30 P 6-31G™ 15 1.1 1.4
- 6-31G" 1.6 1.2 1.4
259 B . o STO-2G 1.5 1.2 1.9
T 6-31G 1.9 1.3 1.9
20 T = y r Dunning DZ 21 1.4 1.9
® 0 ngomber of watgg's 100 120 Dunning-Hay SV 2.3 1.6 2.0
STO-3G 2.6 2.1 2.6
STO-6G 4.6 4.1 4.7

FIG. 4. The percentage of ERIs that can be accurately computed with the
multipole approximation in a RHF calculation of the exchange matrix for a

series of three-dimensional water clusters. The MAC and RAGotin-

clude the magnitude of the density matrix, and the multipole truncation error _

corresponds %d—onNeglect :10)17_ P example, whenTwoENeglect =109, the percentage of

multipole based ERIs decreases to 65 percent in the cluster
of 110 water molecules with the 6-31G basis.
larger number of primitive distributions to common centers, It is interesting to note that the basis set ordering in Fig.
which results in longer average translation distances an8 is different than in Fig. 4. In particular, the percentage of
fewer ERIs that satisfy the MAC. multipole based ERIs is greatly increased in the STO-3G

As mentioned in Sec. 11B, the MAC and PAC can be (Slater-type orbitals calculations when density weighted
improved by weighting each estimate with the magnitude oMAC and PAC are used. This can be explained by observing
D.q4 that the ERI is contracted with. The percentage of multhat the HOMO-LUMO (highest occupied molecular-
tipole based ERIs that are allowed by a density weightedrbital-lowest unoccupied molecular orbitetmp® is over-
MAC and PAC for the same series of three-dimensional waestimated when a minimal basis, such as STO-3G, is
ter clusters is shown in Fig. 5. This percentage reaches 75 employed®® Because a larger HOMO—-LUMO gap corre-
80 percent of the ERIs as system sizes are increased. Similaponds to a faster decay in the density matf%;*which is
results are obtained with MASONX. Based on these obdincluded in the density weighted MAC and PAC, the per-
served trends, if the time needed to compute a multipoleentage of ERIs that fall in the multipole regime is dramati-
interaction can be made small relative to direct ERI evaluacally increased.
tion then, at best, a four to five fold decrease in the total CPU
time can be expected.

The percentages shown in Fig. 5 were obtained wit
TwoENeglect =10"’. When smaller values GfwoENe- The observed speed of multipole versus direct ERI
glect are used the percentages only slightly decrease. F@valuation depends on a number of issues, including the vari-

ous implementational details of each method. However, the
most significant factor is the number of primitive ERIs that

hB. Speed of multipole evaluation

90 are avoided in a multipole representation. This, of course, is
854 STO-3G —— related to the average basis set contraction leKgttSince
P the computational cost of direct ERI evaluation grows as
R O(K*), the benefits of multipole evaluation, which@(1)
é_ 37 with respect toK, can be quite large.
E 70 | MAONX and MASONX results for the cluster of 50
B water molecules calculated with different basis sets are sum-
g 67 marized in Table I. Speedup refers to the ratio of ONX CPU
60 1 : time to MAONX CPU time and SONX CPU time to
e MASONX CPU time. For the highest contracted basis set
551 used, STO-6G, both MAONX and MASONX approach the
50 , , . - expected four to fivefold speedup. In Figs. 6 and 7, accelera-
20 40 0 of v 100 120 tions commensurate with those in Table | are observed for

the series of water clusters for the STO-3G and 6-3b@sis
FIG. 5. The percentage of ERIs that can be accurately calculated with thegets.

multipole approximation in a RHF calculation of the exchange matrix for a : _ _
series of three-dimensional water clusters. The MAC and PAC are weighted Systems with small HOMO-LUMO gaps, such as gra

by the magnitude of the corresponding density matrix element, and th(f_’hitiC Shee_t& are particularly Chal!enging becaus_e interac-
multipole truncation error corresponds TawoENeglect =107". tions persist for much longer distances than in water
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300 1400
ONX —-— ONX ——
SONX -+ 1200 4 SONX -+
250 MAONX -8 MAONX 8-
MASONX - MASONX s
P ~ 1000 {
g 200 3
o o+ o ]
% % 800
3 150 ]
E £ 6001
] .0 joo]
a 100 1 a,
@] X &) 400 -
301 ; I 200 -
0 : T T r . r " 0o+ , , - . , "
40 50 60 70 80 90 100 110 120 20 30 40 50 60 70 80 90 100
number of waters number of carbons

FIG. 6. RHF/STO-3G water cluster timings wifwoENeglect =10". FIG. 8. RHF/STO-3G graphitic sheet timings wilwoENeglect =107,
Note that linear scaling is not observed for systems such as graphitic sheets,
because their small HOMO-LUMO gaps lead to long-range exchange in-

clusters® For these types of systems, ONX and SONX noteractions.
longer exhibit linear scaling, and the computational expense

increases rapidly with system size. However, multipole acympirical multipole acceptability criteriofMAC) have been
celeration is still applicable, and as shown in Figs. 8 and 9developed. MAONX and MASONX effectively combine
can greatly increase the efficiency of exchange matrix fory,tipole and direct integral evaluation while maintaining
mation. ) numerical equivalence with standard direct SCF.
Inspection of Table | reveals that the observed MAONX 5, important and novel finding of this work is that adap-

speedup is always larger than in MASONX, and for basis;ye density weighted error estimates must be used with the
sets with small contraction lengths MAONX is often the fast-\;ac and PAC to obtain significant acceleration in linear

est method available. This is caused by various overheadg:a"ng evaluation of exchange ERIs.
and extra computations that are unavoidable when ERI per-  5q expected, numerical experiments with MAONX and
mutational symmetry is employed. _ MASONX result in large accelerations when highly con-
~InFigs. 10 and 11, the absolute error in the total energyracied basis sets are used. For example, MAONX is 4.6
is .sh'own for the series of three-dlmenglonal water cluéfers. times faster than ONX for computing the exchange matrix of
It is important to note that the_errors incurred by MAONX water molecule clusters with highly contracted basis sets. For
are indistinguishable from the integral neglect errors assocky ica| pasis sets, a factor of two speedup is observed. While
ated with the Schwartz inequality used by ONX. These reqaoNx and MASONX will scale quadratically for systems
sults demonstrate the power of a numerically tight MAC, the,ii, 5 vanishing gap like the graphitic sheets, it is expected
sufficiency of using as-s type PAC in this context, and a1 for sufficiently large systems an asymptotic regime will
establishes the equivalence of '\@ONX and MASONX with e entered in which the number of ERIs computed with the
standard methods of direct SC¥: multipole approximation approaches 100%. In this regime an
acceleration proportional t§* can be expected.
V. CONCLUSIONS While the nonempirical MAC has demonstrated its use
Multipole acceleratedMA) versions of the linear scal- here for the evaluation of exchange ERIs, the methods out-
ing exchange methods ONX and SONX that employ a noniined are general and may be readily extended to the compu-

2200 9000
ONX ——
2000 4 SONX -+ 8000 ONX ——
MAONX -8 SONX -=-e-
1800 MASONX - 7000 MAONX e
= 1600 - - MASONX -
8 g 6000 -
P 1400 Py 5000
Q o _
g 12001 - g
g E 4000 -
; 1000 1 5
6 800 8 3000 1
600 2000
400 1 e 1000 -
200 ' . . . . T T 0+—= r T T T T T
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FIG. 7. RHF/6-31G water cluster timings witTwoENeglect =10"". FIG. 9. RHF/6-31G graphitic sheet timings willwoENeglect =107,
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Exchange matrix 6229
teresting to further explore the differences between MAONX
and MASONX in parallel implementations where the penalty
for nonlocality of density and exchange matrices should
grow.
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