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Space charge neutralization in inertial electrostatic confinement plasmas
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A major issue for electron injected inertial electrostatic confinement �IEC� devices is space charge
neutralization. A new formalism is developed that will allow this neutralization to occur for both
oscillating and steady-state IEC plasmas. Results indicate that there are limits on the amount of
compression that can be achieved by oscillating plasmas while simultaneously maintaining space
charge neutralization and parabolic background potential. For steady-state plasmas, there are no
such limits and space charge neutralization can be achieved even when the plasma becomes
quasineutral. © 2007 American Institute of Physics. �DOI: 10.1063/1.2711173�

I. INTRODUCTION

Inertial electrostatic confinement �IEC� schemes for fu-
sion devices have been studied both experimentally and
theoretically for some 40 years. Purely electrostatic
systems1–4 and combinations of magnetic and electrostatic
systems5–8 have been explored. IEC schemes rely on accel-
erating ions to a fusion relevant energy range �50–150 KeV�
using electric fields. The accelerating fields can be provided
by grids3,4 or virtual cathodes.1,2,5–10 Either spherical or cy-
lindrical grids with high transparency are used with dc or
low-frequency electric fields. Although IECs have demon-
strated significant neutron yields �as high as 2�1010

neutrons/s in steady state�4 in a compact �table-top size� and
inexpensive device, the fusion reactions are from nonthermal
ions. Theoretical studies using simple analytic models have
indicated that such systems cannot scale to net energy pro-
ducing devices.11,12 However, these studies have several ap-
proximations, and a more complete study using a bounce
averaged Fokker-Planck model indicated that if the ion dis-
tributions are close enough to thermal, net energy gains are
possible, although the fusion power densities are small.13

The underlying problem is that for nonthermal systems, the
Coulomb scattering cross sections are larger than the fusion
cross sections. Thus, it can take more energy to maintain the
nonthermal distributions than the device produces in fusion
power.

This problem is avoided if the ion component of the
plasma is in local thermodynamic equilibrium �LTE�. Both
oscillating14,15 and steady-state plasmas15 can be in LTE. Os-
cillating plasmas were suggested as a possible fusion scheme
in the theoretical works by Barnes and Nebel.14,15 A tiny
oscillating ion cloud �referred to as the periodically oscillat-
ing plasma sphere, or POPS� may undergo a self-similar col-
lapse in a harmonic-oscillator potential formed by uniform
electron background. By tuning the external radiofrequency
�rf� electric fields to this naturally occurring mode, it is then
possible to heat the ions to obtain very high densities and
temperatures simultaneously during the collapse phase of the
oscillation through adiabatic compression. Theoretical pro-
jections indicate that such a scheme is highly effective and
may result in net fusion energy gain even for an advanced
fuel such as D-D.15 Recent experimental studies have con-

firmed the existence of the oscillating plasma.16,17 The ex-
perimental setup that observed the oscillations is shown in
Fig. 1. The proper scaling of the oscillations with both the
ion mass and the potential well depth has been observed.

A major issue that remains is how much plasma com-
pression can be achieved by the POPS oscillations. In order
to achieve significant fusion gain in D-D, the required com-
pressions are large ��1000:1 in radius�.15 The original work
assumed that there would be enough cold electrons in the
plasma to space charge neutralize the plasma sphere as it
compressed.14,15 More recent work has verified that this ef-
fect does occur17 but it is not strong enough to completely
space charge neutralize the sphere as it collapses. However,
by properly programming the distribution function of the in-
jected electrons, it is possible to significantly improve the
space charge neutralization and the plasma compression.17 �It
should be noted that previous work has demonstrated that the
shape of the injected electron distribution function can be
controlled on the experiment.18,19�

Steady-state IEC plasmas are based on ion heating in a
uniform electron background. Fusion densities are reached
by operating in the quasineutral limit �ni�ne� rather than
through large compressions.15 These systems also need pre-
cise control of the electron distribution in order to simulta-
neously maintain quasineutrality and provide a confining po-
tential for the ions. Although compression is not an issue for
these plasmas, stability can be.1 Steady-state plasmas of this
kind have not been studied in depth. The formalism devel-
oped in this paper applies to these plasmas as well as to the
oscillating ones.

In the present work, a systematic approach is taken in
order to determine how to best inject electrons into an IEC
system of the above two kinds. A new formalism �based on
the formalism presented in Ref. 20� is developed that pre-
scribes how to program the injected electron velocity distri-
bution on the boundary in order to achieve any prescribed
static �slowly time-varying or time-independent� density pro-
file in a harmonic-oscillator potential. This formalism is pre-
sented in Sec. II. Section III applies the new formalism to
POPS compressions. The formalism is incorporated into the
one-dimensional gridless particle code ENNF21 and a plasma
compression is simulated. Although the formalism works
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well during the initial phases of compression, a bifurcation
away from the static solutions is observed as the plasma
becomes highly compressed. This bifurcation shortly pre-
cedes a breakdown in the formalism when part of the distri-
bution function becomes negative �unphysical�. In Sec. IV,
the physical and unphysical regions of the distribution func-
tion are determined as a function of the formalism’s control-
ling parameters, namely the electron injection energy nor-
malized to the potential well depth, the radial scale
parameter of the Gaussian density profile, and the ratio of the
ion to the background electron density at the center of the
sphere, r=0. Results indicate that there are limits on the
achievable compressions with exact space charge neutraliza-
tion that are due to geometrical convergence �in spherical
geometry�. However, approximate space charge neutraliza-
tion is still possible in spherical and cylindrical systems;
two-dimensional compressions in cylindrical systems elimi-
nate the neutralization issue altogether. Section V discusses
applications to quasineutral steady-state plasmas. For these
plasmas, exact spherical solutions exist provided that the
density profile is sufficiently broad. Conclusions are pre-
sented in Sec. VI.

II. ELECTRON INJECTION FORMALISM

Both POPS and steady-state plasma schemes rely on
maintaining a uniform charge density background resulting
in a harmonic-oscillator potential for the ions. However,
large ion compressions will disturb this harmonic potential
by building up the space charge at the center of the device.
To mitigate these space charge effects and preserve the
harmonic-oscillator potential, additional electrons are
needed. The ions have a Gaussian spatial distribution at all
times. Thus, the desired electron spatial distribution is the
sum of a Gaussian and a constant, the constant distribution
providing the harmonic-oscillator potential. This desired spa-
tial distribution is achieved by injecting electrons from the
boundary with the proper velocity distribution. In this sec-

tion, we derive the boundary velocity distribution that will
result in space charge neutralization of the ions and a
harmonic-oscillator potential.

The electron density can be expressed as

ne�r� =� f�r,v�d3v , �1�

where f�r ,v� is the velocity distribution function �bold face
denotes a vector quantity�. Following the formalism of Ref.
20 �see also Appendix A�, Eq. �1� can be expressed as

ne�r� =
4�

r2me
3�

−e��r�

�

dE�
0

LM

dL
Lf�E,L�

�2�E + e��/me − L2/r2me
2

,

�2�

where

��r� = �0�1 − 	 r

a

2�, �0 = − 	 ene0a2

6�0

 � 0. �3�

In Eqs. �2� and �3�, E and L are the total energy and the
angular momentum of the injected electrons, e is the magni-
tude of the electron charge, �0 is the electrical permittivity of
vacuum, a is the virtual cathode radius, me is the electron
mass, and ne0�ne−ni is the electron density forming the
uniform density virtual cathode. It has been assumed that the
solutions have spherical symmetry so that r is the radius, and
the velocity has a symmetry in the tangential component so
that the only two significant components are the radial ve-
locity, vr, and the tangential velocity, v�. The transformation
from Eq. �1� to Eq. �2� is from velocity space �vr ,v�� to
energy-angular momentum space, �E ,L�. For gridded IEC
plasmas, the injected electrons are monoenergetic �to lowest
order� since they are accelerated through a series of grids
�see Fig. 1�. Consequently, the velocity distribution function
can be expressed as

f�E,L� = ��E − E0�g�E0,L� . �4�

The electron density can now be written as

ne�r� =
4�

r2me
3�

0

LM�r�

dL
Lg�E0,L�

�LM
2 /r2me

2 − L2/r2me
2

=
4�

rme
2�

0

LM�r�

dL
Lg�E0,L�
�LM

2 − L2
, �5�

where

LM�r� � mer�2�E + e��r��
me

�6�

is the maximum angular momentum at a given radius. Equa-
tions �3� and �6� can be rearranged so that

r =
a
�2
��	1 +

E0

e�0

2

−
2LM

2 �r�
mee�0a2 + 	1 +

E0

e�0



=
a
�2

��E2 + y − E , �7�

where the following definitions have been used: y

FIG. 1. Experimental setup for POPS on INS-e Device. Chamber diameter
is 11 in.
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�2LM
2 /mea

2e �0 and E�E0 /e �0 −1. Substituting �7� into
�5� and changing the integration variable from L to x
=2L2 /mea

2e �0 yields

��E2 + y − Ene�y� =
2��E0

me
3/2�E + 1

�
0

y

dx
g�E0,x�
�y − x

. �8�

Equation �8� can then be solved for g�E0 ,x� by an inverse
Abel transform22 to yield

g�E0,x� =
me

3/2�E + 1

2�2�E0

d

dx
�

0

x

dy
ne�y���E2 + y − E

�x − y
. �9�

The value of x is maximal when the total energy E0 is in-
jected tangentially; in this case, it is easily found that xmax

=4�E+1�.
This form of the integral can then be used to determine

the required injected electron distribution function on the
boundary. The density can be expressed as

ne�r� = ne0 + ni0e−r2/2�2
. �10�

The second term in �10� space charge neutralizes the Gauss-
ian ion distribution, hence the notation ni0. Equation �7� is
then substituted into Eq. �10� to calculate ne�y�.

III. SPACE CHARGE NEUTRALIZATION

In this section, the formalism of Sec. II is applied to the
simulation of a POPS compression.

A. Small potential well limit

As a test of the ENNF code used in the next section, it is
useful to explore the small potential well limit, i.e.,
e �0  /E0→0. In dimensionless variables, the limit of E→�
in Eq. �9� is taken. Equation �9� can be written as

g�E0,x� =
me

3/2

2�2�E0

d

dx
�

0

x

dy
ne�y���1 + y/E2 − 1

�1/E2�x − y
, �11�

where E�1 has been used. Note that in this limit y /E2

�2LMe �0  /mea
2E0→0 so that in this limit the integrand in

�11� results in the indefinite form 0/0. Consider the case of
uniform electron density profile and set ne�y�=ne0. Now ex-
pand the integrand of Eq. �11� in the small parameter 1 /E2.
First,

�1 +
y

E2 � 1 +
1

2

y

E2 −
1

8

y2

E4 + ¯ . �12�

Substituting �12� into �11� yields

g�E0,x� =
me

3/2ne0

2�2�E0

d

dx
�

0

x

dy
�y/2 − y2/8E2 + ¯

�y − x
. �13�

Keeping only the first term in the square root in the numera-
tor of the integrand in �13� yields

g�E0,x� =
me

3/2ne0

2�2�2�E0

d

dx
�

0

x

dy
�y

�x − y
=

me
3/2ne0

4��2E0

, �14�

where the integral equals �x /2. The remaining terms in the
expansion of �13� contain numerical factors, powers of 1 /E2,
and finite contributions from integrals of the form

�
0

x

dy
yk+1/2

�x − y
=

�2k + 1� ! ! �

�2k + 2� ! !
xk+1, k = 1,2,3, . . . . �15�

Therefore, taking the limit E→� renders all terms zero ex-
cept the term given in Eq. �14�. Thus, in the small potential
well limit the distribution of injected electron on the bound-
ary is a constant independent of the angular momentum.

This result has been tested in the ENNF code. Equation
�9� has been incorporated as a boundary condition for the
electrons, and the code has been run to steady-state to see if
it finds the solutions. The small limit potential well is
achieved by setting the force on the electrons equal to zero.
Results are shown in Fig. 2. Figure 2�a� shows the applied
edge distribution function. ENNF does find the steady-state
solution, as evidenced by the constant electron density pro-
file, Fig. 2�b�.

B. Arbitrary potential well depth

In principle, Eq. �8� can be used to generate arbitrary,
time-dependent electron density profiles. However, for this to
be true, three conditions have to be satisfied. First of all, time
dependence has to be slower than the radial electron transit
times. Second, the solutions to Eq. �11� have to be physical,
namely, g�E0 ,L�	0 for all values of E0 ,L. Third, even if the
steady-state solutions exist, the plasma needs to find them.
The preferred solutions may instead be time-dependent
�dynamic�.17

The ENNF code has been modified to include the behav-
ior of the ions during plasma compressions by programing
the electron injection at the boundary such that the ions will
follow the self-similar solutions of Ref. 14. Although the
original self-similar solutions are derived for infinite sys-
tems, previous ENNF simulations have shown that these so-
lutions are a reasonable approximation for finite systems as
well.21 Therefore, considering an infinite system, Eq. �10�
becomes

FIG. 2. Left panel: injected electron distribution function. Right panel: elec-
tron density profile.
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ne�r� = ne0 + ni00 e−r2/2�2	 �0

��t�

3

�16�

with �0���t=0� ��0�a�, ni00�ni0�t=0�. The steady-state
solutions result when ��t�=�0=const. From Ref. 14, the
equation of motion for ��t� is

d2�

dt2 +
e2ne0

3mi�0
� =

kBT00�0
2

mi�
3 , �17�

where mi is the ion �deuterium� mass, kB is Boltzmann’s
constant, and T00 is the ion temperature when �=�0.

Figures 3�a�–3�d� show a time sequence for the electron
density profiles. The corresponding sequence for the ion den-
sity is shown in Figs. 4�a�–4�d�. Figures 5�a�–5�d� show the
same sequence for the radial electric field profiles, while Fig.
6 shows the time sequence for the corresponding potential
profiles. The solutions follow the self-similar solutions quite
well until frame �c� of Figs. 3–6. This is demonstrated by the
linear behavior of the electric field in Figs. 5�a� and 5�b�,
which shows that the potential profiles in Figs. 6�a� and 6�b�
must be parabolas �harmonic-oscillator potentials�. However,
in frame �c� of Figs. 5 and 6, the solutions are starting to
depart from the solutions derived above, and by frame �d�
they have departed altogether. Figures 7�a�–7�d� show the
edge distribution functions for the injected electrons and also
demonstrate why the plasma departs from the self-similar
solutions at the later times �frames �c� and �d��. Note that in
Fig. 7�c�, a minimum has developed in the edge distribution
function and this minimum is almost zero. Negative distribu-
tion functions are unphysical and the plasma departs from
the self-similar solutions �and becomes dynamic� as the pre-
scribed edge distribution function approaches zero for a fi-
nite value of L2. In Fig. 7�d�, the distribution function has
become negative �the code truncates the distribution to zero

when this happens�. Note that the ion compression ratio from
the initial time, Fig. 4�a�, and frame �c� is approximately 3.

IV. NEGATIVE DISTRIBUTION FUNCTION
REGIONS

In Appendix B it is shown that using the electron distri-
bution �16� in Eq. �9�, g�E0 ,x� can be cast in the form

FIG. 3. Time sequence for the electron density profile.

FIG. 4. Time sequence for the ion density corresponding to the electron
density sequence shown in Fig. 3.

FIG. 5. Time sequence for the radial electric field corresponding to the
electron density sequence shown in Fig. 3.
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g�E0,x� =
me

3/2ne0�E + 1

�2a�2E0
�

0

x

dy
1

�x − y

dr�y�
dy

��1 + 
��0/��t��3�1 −
r2�y�
�2�t��e−r2�y�/2�2�t�� , �18�

where r�y� is given by �7� and 
�ni00/ne0. Note that the
expression in the square brackets in �18� becomes negative
for small ��t� �i.e., for large compression ratios, �0 /��. Al-

though the integral expression �18� is difficult to evaluate
analytically, it is desirable to understand when g�E0 ,x� be-
comes negative as a function of the parameters 
, E, and � /a
for any value of the angular momentum x. The condition
g�E0 ,x�=0 defines a surface in the parameter space
�
 ,E ,� /a�. Therefore, scanning over all values of x and plot-
ting the envelope of all such surfaces describes the “forbid-
den” region, i.e., where g�0. For qualitative understanding
of the behavior of g�E0 ,x�, consider the expression in the
curly brackets in �18�,

P�u� � 1 + ��1 − u2�e−u2/2, �19�

where by definition ��
��0 /��t��3 and u�r /�, both posi-
tive quantities. Since the other two multiplicative factors of
the integrand in �18� are positive, negative P�u� indicates a
possibility of negative g. The range of values of u is �0, � �.
The function P�u� has a minimum at u=�3. Since P�0�=1
+�, P��3�=1−2�e−3/2, and P���=1, P�u� is always positive
if ��e3/2 /2, or


��0/��t��3 �
e3/2

2
� 2.24. �20�

It follows that if condition �20� is satisfied, g�E0 ,x� is always
positive. On the other hand, if �20� is not satisfied, g�E0 ,x�
may become negative. Note that �20� is independent of E,
and therefore valid for all E. From �20�, ��
1/3. Now con-
sider the limit E�1. From Eq. �7�, one obtains

r2�y� =
a2

2
��E2 + y − E� �

a2y

4E
,

�21�
dr�y�

dy
=

a

4�2�E2 + y ��E2 + y − E
�

a

4�E�y
.

Substituting �21� into �18� yields

g�E0,x� �
me

3/2ne0

4�2�2E0
�

0

x

dy
1

�y�x − y�
�1 + 
��0/��t��3

�	1 −
y

4E��/a�2
e−y/8E��/a�2�
=

me
3/2ne0

4��2E0
�1 + ��	1 −

x

8E��/a�2
I0	 x

16E��/a�2

+

x

8E��/a�2 I1	 x

16E��/a�2
�e−x/16E��/a�2� , �22�

where I0 and I1 are the modified Bessel functions23 of order
0 and 1, respectively, and � has the same definition as in Eq.
�19�. �Setting �=0 in �22� yields Eq. �14�.� Consider the
expression in the curly brackets in �22�,

Q�w� � 1 + ���1 − 2w�I0�w� + 2wI1�w��e−w, �23�

where w�x /16E�� /a�2. The expression in the square brack-
ets in �23� is positive for values w0.8. Therefore, when

FIG. 6. Time sequence for the potential profiles corresponding to the elec-
tron density sequence shown in Fig. 3.

FIG. 7. Time sequence for the edge distribution function corresponding to
the electron density sequence shown in Fig. 3.
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�/a �
1

2�0.8
� 0.56, �24�

�calculated at x=xmax�4E� the edge distribution function is
always positive. On the other hand, if w�0.8, the expression
in the square brackets attains a minimum of −0.078 at w
�1.45; for larger w this expression remains negative and
vanishes as w→�. Therefore, g�E0 ,x� is always positive if


��0/��t��3 �
1

0.078
� 12.8. �25�

Condition �25�, similarly to �20�, is independent of E and
is therefore valid for all values of E in the E�1 limit. Not
surprisingly, condition �25� is also considerably less restric-
tive than �20�. For example, for a compression ratio of
�0 /�=10, condition �20� requires 
�2.24�10−3 whereas
condition �25� requires 
�1.28�10−2, a difference of about
a factor of 6. Condition �24� makes operation in the POPS
regime impractical.

The surface g=0, evaluated numerically for the value of
�0 /a=0.5, is shown in Fig. 8. Below the surface g�E0 ,x�
becomes negative for some value of x. The dependence of
� /a on the potential well depth in the range E� �0,1� is
weak. Deeper potential wells �small E� allow for slightly
higher compression ratios. Once the asymptotic regime in E
�E�1� is reached, Eq. �25� provides a good estimate for the
physical parameter range. Comparing this theory with the
numerical results, from Figs. 3�a� and 4�a� one finds 

�0.15 and from Fig. 6 E�0.14. The edge distribution func-
tion becomes negative by frame �c� of Fig. 7. The compres-
sion ratio between frames �a� and �c� of Fig. 4 is about 3.
Compare this with the value where g becomes negative for
the same values of 
 and E in Fig. 8: at this point � /a
�0.1 so the compression ratio �0 /��5. This is good agree-
ment, particularly considering the fact that the behavior of
the system by frame �c� has departed from the self-similar
solution on which basis Fig. 8 was produced.

The above analysis shows that there are compression/
density limits for space charge neutralized oscillations. Al-
though higher compressions can be achieved with smaller
ion-to-electron density ratios, the limit still exists. The case

of purely radial electron flow was originally solved by Lang-
muir and Blodgett.24 In the limit of E�1, the electron den-
sity profile scales as

ne�r� � 1/r2. �26�

Comparing this profile with Eq. �10�, one can see that while
the desired profile falls off exponentially, the profile given by
Eq. �26� decreases geometrically. Consequently, if 1 / �� /a� is
large enough, the density described by Eq. �10� decreases
faster than 1/r2 even for the case of pure radial flow. There-
fore, if the desired profile has gradients that are too steep
near r=a, these profiles cannot be physically achieved; in
other words, the reason for the limits is not electron repul-
sion, but rather it is geometrical convergence. However, ear-
lier studies17 have shown that significant improvements in
plasma compression can be achieved by properly program-
ming the distribution function and the energy of the elec-
trons. What cannot be done is to simultaneously completely
mitigate space charge effects with large compressions and
maintain a pure harmonic-oscillator potential in a sphere.

Since the force on a particle depends only on the total
enclosed charge, space charge effects can be mitigated for all
of the plasma except for the tail of the Gaussian density
profile. As a consequence, the plasma will depart from local
thermal equilibrium during the final collapse phase. The
most likely result of this is ion heating and raising of the
adiabat.

It is also possible to get around the geometrical conver-
gence limits altogether by using a cylindrical system rather
than a spherical one. In this case, the electrons can be in-
jected axially so geometrical convergence is not an issue.
This sort of system would be ideal for a penning trap IEC,
and will be explored in future work.

V. APPLICATION TO QUASINEUTRAL PLASMAS

The results in the previous sections have important im-
plications for producing fusion grade plasmas. Previous
work15 has indicated that the total fusion power scales as

P �

2��0/�min�2

a
. �27�

That work also indicated that for 
�0.1 and �0 /a�1,
�0 /�min�1000 was required for a reactor system. These pa-
rameters cannot be simultaneously achieved along with the
constraints imposed by Eq. �20� or Eq. �25�.

The present work suggests as another option the use of
small compressions in the quasineutral limit 
→�. Either
Eq. �20� or Eq. �25� provides the constraints, and Eq. �27�
becomes

P �

4/3

a
. �28�

This is a very favorable scaling, and it leads to a device that
is different from that originally envisioned for POPS. For
this device, the POPS oscillations are primarily a mechanism
to resonantly heat the ions rather than for coherent compres-
sions. Since the compression ratios are small, a high adiabat
is required �i.e., high ion temperature when the plasma is

FIG. 8. Negative regions of edge distribution function for �0=0.5. Below
the surface g�E0 ,x� becomes negative for some x.
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expanded�. Unlike the standard POPS scenario, it may be
possible to operate this device with a deuterium-tritium
mixture.

A similar device �with nonparabolic potential well and
negligible electron angular momentum� was originally stud-
ied by Elmore, Tuck, and Watson.1 For this type of device,
the principal issue is stability rather than equilibrium or
space charge. The last section of Ref. 1 contains a simplified
stability analysis where it is shown that the driving term
���� for the instability scales as

� �
meve

2�r�ni�r�
kTine�r�

. �29�

A conservative estimate of the stability boundary is ��1.
Taking into account that 
→� implies ni�r� /ne�r�1, Eq.
�29� produces the stability condition

2�E0 − e��r��
kTi

� 1, �30�

where E0=meve
2�a� /2 is the electron injection energy and

��r��0 is the electric potential within the device. This indi-
cates that there is likely a stability window in the quasineu-
tral limit if the ion temperature is comparable to the electron
injection energy. However, this stability analysis is approxi-
mate and it is likely that the actual boundary differs from the
one given by Eq. �30�.

It is also worth noting that the formalism presented here
assumes monoenergetic electrons. While this is justified in
present day experiments �the electron lifetime in these sys-
tems is shorter than either the ion-electron or electron-
electron collision time�, electrostatic instabilities might affect
this assumption. However, one-dimensional19 and
two-dimensional25 stability studies indicate that these modes
are not a problem.

VI. CONCLUSIONS

A formalism has been developed that describes the
proper way to inject electrons from the boundary of a spheri-
cal IEC device in order to achieve a desired electron density
profile. Two cases are presented: one for oscillating POPS
plasmas and one for steady-state plasmas. In both cases, the
goal is to space charge neutralize the ions in the system
while simultaneously maintaining a harmonic-oscillator
potential.

For the oscillatory plasmas, results indicate that there are
absolute limits on the achievable compressions for perfect
space charge neutralization. These limits are caused by geo-
metrical convergence rather than space charge effects. They
manifest themselves in the analytic formulation by causing
negative �unphysical� distribution functions. In the simula-
tions, this results in departures from the self-similar POPS
solutions. There is very good agreement between these ana-
lytically derived limits and the numerical simulations.

In contrast, for the steady-state plasmas, space charge
neutralization is possible even in the quasineutral limit. This
scheme has very favorable fusion power scaling and uses
small POPS oscillations to heat the plasma. A simplified sta-

bility analysis indicates that there is likely to be a stability
window with deep potential wells for this system. Future
work will address this issue.
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APPENDIX A: CHANGE OF VARIABLES

This appendix describes the transformation of variables
from v to E ,L in formula �1�,

n�r� =� f�r,v�d3v

= 2��
0

�

dv�v��
−�

�

dvrf�r,v�,vr�

= 4��
0

�

dv�v��
0

�

dvrf�r,v�,vr� , �A1�

where v� is the tangential velocity at a point on the sphere,
and vr is the radial velocity at that point, and symmetry is
assumed in the local tangential angle as well as in ±vr. Now
the Jacobian of the transformation �v� ,vr�→ �E ,L� is found
as follows. Write the relations

E = 1
2me�v�

2 + vr
2� − e� ,

�A2�
L = r � �mev� = merv�

with e�0 and ��0. The Jacobian of the transformation
�A2� is

� ��L,E�
��v�,vr�

� = �det	 mer 0

mev� mevr

� = me

2rvr. �A3�

Therefore,

� ��v�,vr�
��E,L�

� =
1

me
2rvr

. �A4�

Equations �A2� can be solved for v� and vr,

vr =�2�E + e��
me

−
L2

me
2r2 , v� =

L

mer
. �A5�

Substituting �A4� and the expressions �A5� into formula �A1�
yields �1�.

APPENDIX B: TRANSFORMATION OF THE EDGE
DISTRIBUTION FUNCTION

In this appendix, the calculations leading to formula �18�
are presented. Using �7�, the integral in Eq. �9� can be written
as
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�2

a

d

dx
�

0

x

dy
�1 + 
��0/��t��3e−r2�y�/2�2�t��r�y�

�x − y
, �B1�

where 
=ni00/ne0. Noting that dy /�x−y=−2d�x−y and in-
tegrating �B1� by parts yields

2�2

a

d

dx
�

0

x

dy�x − y
d

dr
��1 + 
��0/��t��3e−r2/2�2�t��r�

dr�y�
dy

=
2�2

a

d

dx
�

0

x

dy�x − y�1 + 
��0/��t��3�1 −
r2�y�
�2�t��

�e−r2�y�/2�2�t��dr�y�
dy

. �B2�

Now differentiate �B2� with respect to x. There are two
terms: one comes from differentiating the integral with re-
spect to its upper limit and one from differentiating the inte-
grand. The first term is evaluated at x=y and vanishes be-
cause of the factor �x−y. The second gives

�2

a
�

0

x

dy
1

�x − y
�1 + 


���0/��t��3�1 −
r2�y�
�2�t��e−r2�y�/2�2�t��dr�y�

dy
. �B3�

Substituting �B3� back into Eq. �9� gives Eq. �18�.
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