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Do dynamical systems follow Benford’s law?
Charles R. Tolle, Joanne L. Budzien, and Randall A. LaViolettea)
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~Received 23 November 1999; accepted for publication 14 March 2000!

Data compiled from a variety of sources follow Benford’s law, which gives a monotonically
decreasing distribution of the first digit~1 through 9!. We examine the frequency of the first digit
of the coordinates of the trajectories generated by some common dynamical systems.
One-dimensional cellular automata fulfill the expectation that the frequency of the first digit is
uniform. The molecular dynamics of fluids, on the other hand, provides trajectories that follow
Benford’s law. Finally, three chaotic systems are considered: Lorenz, He´non, and Ro¨ssler. The
Lorenz system generates trajectories that follow Benford’s law. The He´non system generates
trajectories that resemble neither the uniform distribution nor Benford’s law. Finally, the Ro¨ssler
system generates trajectories that follow the uniform distribution for some parameters choices, and
Benford’s law for others. ©2000 American Institute of Physics.@S1054-1500~00!01402-6#

Benford’s law states that the distribution of the first digit
of decimal numbers compiled from diverse sources
should decrease logarithmically as the digit increases.
This surprising result contrasts with the intuition that
states that the digits would be distributed uniformly.
Consequently, Benford’s law has been advocated as a test
of the diversity of data, and especially as a means to iden-
tify falsified data. Dynamical systems, especially chaotic
dynamical systems, are widely employed to model all
manner of physical and even social systems. We thought
that Benford’s law might provide another useful criterion
for selecting dynamical models: if the data follow Ben-
ford’s law, then the model dynamical system should do so
as well. We could not find any simple cellular automata
that follow Benford’s law. On the other hand, we found
examples of the molecular dynamics of both gas phase
and condensed phase that do follow Benford’s law. Fi-
nally, we looked at popular low-dimensional chaotic
models, and found examples of both compliance with and
deviance from Benford’s law, depending upon the models
and the parameters. The fact that chaotic data might not
follow Benford’s law also suggests that caution should be
exercised in using Benford’s law to identify falsified data.

I. INTRODUCTION

The frequency of the first digit in a wide variety of data
~physical constants, receipts, population of counties, tax re-
turns, area of rivers! is not uniformly distributed. Instead, the
frequencyf (d1) of the first digitd1 is given by the distribu-
tion below:

f ~d1!5 log10S 11
1

d1
D , d151 • • • 9. ~1!

This surprising result, first given in 1881 by Simon

Newcomb,1 and today known as Benford’s law,2 has been
thoroughly reviewed in the mathematical3–6 and popular sci-
ence literature.7–10 A rigorous mathematical proof has been
supplied only recently.4 Hill has shown that the first digits
follow Benford’s law when data are collected, not simply
from randomly sampling a distribution, but from randomly
sampling a large collection of different distributions.6,8 The
distribution of the second, third, etc., digits are much closer
to the uniform distribution than is the distribution of the first
digit.

The ubiquity of Benford’s law for data compiled from
diverse sources suggests that it is worthwhile to examine
physical systems for such a feature. Dynamical systems seem
ripe for such a study, because they, especially the chaotic
systems, are often employed to model a wide variety of
physical and even social phenomena. In this work, we ask if
the distribution of the first digits of the trajectories generated
by various nonlinear dynamical models follows Benford’s
law, or the uniform distribution~i.e., f (d1)51/9), or neither.
To answer this, besides using visual inspection of the data,
we also calculate the ‘‘D statistic,’’11 defined by D
5maxuFemp(d1)2Fcalc(d1)u, i.e., the maximum deviation
between the empirical and the calculated cumulative distri-
bution of the first digit. Although theD statistic could be
further employed in a variety of statistical tests for signifi-
cance, e.g., Kolmogorov–Smirnov,11 in order to quantify the
goodness-of-fit between the empirical and the calculated dis-
tribution, we employ theD statistic merely to discriminate
between the fits to the uniform distribution or Benford’s law.
To give some perspective, comparing Benford’s law with the
uniform distribution givesD50.27, corresponding to a
strong disagreement. Finally, and only for chaotic systems,
we will also compare surrogate data to test the applicability
of Benford’s law.

The plan for this article follows. In the next section we
examine three sorts of dynamical models: one-dimensional
two-state cellular automata, three-dimensional molecular dy-
namics of atoms, both in the gas phase and in amorphous
minimum-energy configurations quenched from the liquid,
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and finally, low-dimensional chaotic models. For each, we
collect the first digit of the coordinates as the system evolves,
and score the frequency. This article concludes with a section
discussing the significance of these results.

II. DYNAMICAL MODELS

A. Cellular automata

Cellular automata provide some of the simplest models
of dynamical systems that fill phase space in a complicated
way.12 We examined elements from a class of one-
dimensional two-state cellular automata, discussed thor-
oughly by Wolfram.13 For these, we chose a line of sites
labeled 0,. . . ,1000, each having the state 0 or 1, and applied
periodic boundary conditions. Thus the sequence is given a
fair chance to follow either Benford’s law or a uniform dis-
tribution for the first digit; with a restricted choice such as
0, . . . ,500, the first digits 5–9 would have been suppressed
compared to the first digits 1–4. A sequence of lines is gen-
erated by the cellular automata using only the nearest-
neighbors of each site. For each step, we binned the first digit
of the label of each site with state 1. The distribution of the
leading digit is essentially uniform, for a variety of rules
describing cellular automata~rules 18, 30, 110, 126, 184 in
Wolfram’s notation!, and for a variety of initial conditions
~single point and disordered!. TheD statistic in each case is
less than 0.10 when compared with the uniform distribution,
but is at least 0.25 when compared with Benford’s law. The
cellular automata generate trajectories whose coordinates
have an essentially uniform distribution of the first digit, and
do not follow Benford’s law.

B. Molecular dynamics

Here we examine the molecular dynamics of atoms, gen-
erating classical many-body trajectories in three spatial di-
mensions from accurate numerical solutions to Newton’s
equations, using nonlinear pairwise interatomic forces.14,15

Here, unlike the other systems considered, we distinguish
between momenta and positions. At equilibrium, we already
know the ~Gaussian! distribution of the momenta.15 There-
fore we consider only the spatial coordinates in this section
as the only nontrivial case. First, we examined a gas of ce-
sium atoms, and second, the inherent structure of liquid zinc
bromide, both generated by molecular dynamics simulations.
The first system is hot and dilute, the second is cold and
dense. In both cases, periodic boundary conditions were em-
ployed, but the coordinates were not remapped into the origi-
nal cell.

In the first case, the interatomic forces are essentially of
the van der Waals type, but with softer repulsive forces than
for the rare gases.16 We initialized a gas of 13 cesium atoms
in a periodic cubic cell of length 14 Å, giving a density of
1.05 g/cm3. Molecular dynamics calculations for gases can
be problematic because of the relative infrequency of inter-
atomic collisions. This can result in a non-Gaussian distribu-
tion of the fluctuations in the kinetic energy, corresponding
to a nonequilibrium state. Therefore, we augmented New-
ton’s equations of motion in order to maintain Gaussian
kinetic-energy fluctuations.17 The resulting ‘‘constant-

temperature’’ constant-volume simulation was run for 500
ps, after an equilibration run of 100 ps. The average tempera-
ture was T51700 °C, the average pressure wasP50.17
GPa, and the average potential energy wasU53.3 kcal/
mole. As a final check, we calculated the short-time variation
of the velocity autocorrelation function, and found that it fits
exp(2t/t0), where t051.0 ps, a relatively short time. We
sampled configurations every 0.5 ps. As Fig. 1 shows, the
frequency of the first digit appears to follows Benford’s law.
Furthermore, when compared with Benford’s law,D50.07;
when compared with the uniform distribution,D50.20, just
the reverse of the cellular automata.

In the second case, the interatomic forces consist of both
van der Waals and Coulomb forces.18 The latter were calcu-
lated with the Ewald summation technique.14 We initialized
a liquid of 486 zinc and 972 bromine ions~the natural for-
mula is ZnBr2) in periodic cubic cells for densities at 2.18,
3.11, and 4.17 g/cm3, respectively~see Fig. 2!. For each
density, the initial velocities were adjusted to to give a mean
temperature of 2000 °C, well above the melting temperature
(390 °C! at room pressure. However, the dynamics were not
augmented, as they were in the simulation of cesium gas,
because here the density was sufficiently high, and the colli-
sions sufficiently frequent to produce an equilibrium liquid.

FIG. 1. Comparison of the first digit frequencies for cesium gas with Ben-
ford’s law.

FIG. 2. Comparison of the first digit frequencies for the inherent structure of
liquid zinc bromide with Benford’s law.
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The constant-energy constant-volume dynamics resulting
from the solution of the unaugmented Newton’s equations
were run for 22–40 ps, after 30 ps of equilibration, for each
density. For each run, 20 quenched structures were collected
by applying a steepest-descent minimization to the instanta-
neous liquid configuration every 1–2 ps. The resulting amor-
phous minimum-energy configurations constitute the inher-
ent structure of the liquid at this density.19 The inherent
structure has zero temperature, and is independent of the
temperature of the equilibrium liquid.20 The pressure of the
inherent structure is positive for the high density structure,
near zero for the intermediate density structure, and negative
for the low density structure. For each density of the inherent
structure, the frequency of the first digit follows Benford’s
law: 0.07<D<0.15 for all densities, with the better agree-
ment coming at the lower densities. Although this is not
great quantitative agreement, the comparison to the uniform
distribution is much worse, withD>0.23 for all densities.
Furthermore, as with the cesium gas, the decrease in the
frequency of the first digit is strictly monotonic. We con-
clude that the results for the inherent structure follow Ben-
ford’s law qualitatively. For completeness, we note that the
high temperature liquid itself also follows Benford’s law
qualitatively, with slightly less than or equal statistical sig-
nificance compared with the inherent structure.

C. Chaotic dynamics

Finally we examined the low-dimensional chaotic mod-
els of dynamical systems. We examined the Lorenz, He´non,
and Rössler systems,21 for a variety of parameters.

Lorenz system:

ẋ~ t !5s~y~ t !2x~ t !!,

ẏ~ t !5rx~ t !2y~ t !2x~ t !z~ t !, ~2!

ż~ t !5x~ t !y~ t !2bz~ t !;

Hénon map:

xn115yn112axn
2,

~3!
yn115bxn ;

Rössler system:

ẋ~ t !52~y~ t !2z~ t !!,

ẏ~ t !5x~ t !2ay~ t !, ~4!

ż~ t !5b1z~ t !~x~ t !2c!.

At each sample step in the trajectory, we binned the first
digit of thex-coordinate for comparison, similar results hold
for the other states as well. Figures 3, 4, and 5 show the
distributions of first digits. TheD statistic for the sample
signals is given in Tables I, II, and III.

The Lorenz System follows Benford’s law, at least
qualitatively, for all of the parameters considered here; the
disagreement with the uniform distribution is consistently
strong. However, the data is much more mixed for the other

FIG. 3. First digit frequencies of 3000 Lorenzx states (s516, r 545.92,
andb56 • • • 1) compared with Benford’s law.

FIG. 4. First digit frequencies of 200 He´non x states (a51.3, andb50.3
• • • 0.14) compared with Benford’s law.

FIG. 5. First digit frequencies for 800 Ro¨sslerx states (a,b50.23•••0.05,
andc55.7) compared with Benford’s law.
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two systems. It is not clear from either the figures or theD
statistic that the He´non system follows either the uniform
distribution or Benford’s law. All of the observed distribu-
tions display a high occurrence of the first digit, even for the
cases where theD statistic favors the uniform distribution.
On the other hand, even for the cases that seem to be favor-
able for Benford’s law, the observed frequency of ‘‘2’’ is
only about half that predicted by Benford’s law. Therefore
we cannot say much more about the distribution of the first
digit for the Hénon system. The situation is clearer for the
Rössler system, which produces trajectories that transform
from following Benford’s law to the uniform digit distribu-
tion through a simple parameter change. However, the pa-
rameter change is not otherwise accompanied by dramatic
changes in the dynamics. Consider the three Ro¨ssler attrac-
tors in Fig. 6: Which are the two that follow Benford’s law?
We have been unable to discern anything in Fig. 6 that
would indicate in advance which of these should correspond
to trajectories that follow Benford’s law. We found in fact
that only the plots on each of the top and bottom hand panels
correspond to trajectories that follow Benford’s law; the tra-
jectory corresponding to the middle panel generates an es-
sentially uniform distribution of the first digit.

For our final test of the applicability of Benford’s law to
chaotic systems, we generated surrogate data for these sys-
tems. The concept of surrogate data is widely used to imple-
ment null hypothesis testing for chaotic nature of strange
signals and data sets.12,22 Surrogate data consists of random
signals whose autocorrelation function is identical to a given
signal.12 One randomizes the phases~i.e., the imaginary part!
of the Fourier transform of the signal with white noise, and
then inverts the randomized transform to generate the~real!
surrogate signal. A plot of a typical surrogate data signal has
been time delay embedded and plotted against the time delay
embedded phase space reconstruction of the Lorenz system
(s516, r 545.92, andb56) in Fig. 7. The results for the
digit frequency calculation for the surrogate data is given in

Fig. 8. The surrogate data in effect magnifies discrepancies
between the observed and the calculated distribution, so the
qualitative match of the surrogate data with both Lorenz and
Benford’s law is gratifying. The importance of this example
however is to note that the surrogate data is actually a ran-
dom signal, albeit with correlations, that nevertheless pro-
duces a distribution of first digits that resembles Benford’s
law.

III. DISCUSSION

We give two qualifications before completing our pre-
sentation of these results. First, no pretense is made here that
the agreement with Benford’s law, where observed, is any-
thing but qualitative. Second, no pretense is made here that
our results are anything other than empirical.

That the cellular automata produced a uniform distribu-
tion of the first digit does not seem surprising. Indeed, cha-
otic cellular automata have been proposed for generating
uniform random numbers.23 Visual inspection of the phase
space generated by these cellular automata also suggests a
uniform distribution. That the molecular dynamics of the ce-
sium gas did follow Benford’s law also does not seem sur-
prising. Although the dynamics for the gas is practically er-
godic, which by itself might have suggested a uniform
distribution, it is also diffusive. In diffusing systems, the
mean-square displacement plays the role of the variance in a
Gaussian distribution, and, the mean-square displacement
grows ~linearly! in time,15 thereby effectively generating a
family of Gaussian distributions for the coordinates. Samples
drawn from a large collection of distributions~Gaussian or
not! follow Benford’s law,6 so we could have expected that
Benford’s law would hold for the case at hand. It is more
surprising that the distribution of the coordinates in the in-
herent structure of the liquid also obeys Benford’s law, be-
cause the structure of the quenches is independent of both
time and temperature of the equilibrium liquid.20 The case of
the chaos models is the one that seems the most complicated,
and, as Fig. 6 suggests, the least susceptible to intuition. It is
also the most interesting, because of the wide variety of be-
havior that can be produced.

Simple chaotic dynamical systems have been employed
or proposed to treat the broad range of applications in the

TABLE I. D statistic for Lorenz signals compared with Benford’s law and
uniform distribution, respectively. (s516, r 545.92, andb56 • • • 1.)

b Benford Uniform

6 0.12 0.38
5 0.13 0.39
4 0.13 0.38
3 0.10 0.33
2 0.10 0.31
1 0.13 0.13

TABLE II. D statistic for Hénon signals compared with Benford’s law and
uniform distribution, respectively. (a51.3, andb50.3• • • 0.14.)

b Benford Uniform

0.3 0.16 0.37
0.26 0.14 0.19
0.22 0.21 0.12
0.18 0.26 0.11
0.14 0.17 0.21

TABLE III. D statistic for Ro¨ssler signals compared with Benford’s law and
uniform distribution (a,b50.23• • • 0.05, andc55.7) and (a50.20, b
50.14, andc55.7).

Parameters Benford Uniform

a5b50.23 0.09 0.22
a5b50.2 0.11 0.18
a5b50.17 0.19 0.11
a5b50.14 0.23 0.08
a5b50.11 0.23 0.07
a5b50.08 0.22 0.06
a5b50.05 0.18 0.10

a50.2 b50.14 0.11 0.22
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physical, natural, and social sciences.21 Data from everyday
life apparently follow Benford’s law, so the fact that some of
these models also do, under certain conditions, may add to
the explanation of their success. It may be that these results

will encourage others to add a test for adherence to Ben-
ford’s law as part of the diagnostics employed for the appli-
cation of chaotic dynamical systems to the modeling of data.
Finally, one of the principal applications currently advocated
for Benford’s law is in the detection of fraudulent data, the
hypothesis being that ‘‘natural’’ data will follow Benford’s
law.9,24 However, we have shown, for the Ro¨ssler system,
that the distinction between the trajectories that do, and do
not, emulate Benford’s law may be otherwise small. To the
extent then, that chaotic dynamical systems can otherwise
model the data in question, the application of Benford’s law
to distinguish ‘‘natural’’ data from ‘‘artificial’’ data may re-
quire more careful thought.

FIG. 6. Plots of thex vs. y states of the Ro¨ssler for (a50.2, b50.2, and
c55.7), (a50.14, b50.14, andc55.7) and (a50.2, b50.14, andc
55.7), top to bottom.

FIG. 7. Phase space reconstruction using time delay embedding@x(t) vs.
x(t1t)] for Lorenz (s516, r 545.92, andb56) and Lorenz surrogate
data.

FIG. 8. First digit frequencies for Lorenz (s516, r 545.92, andb56) and
Lorenz surrogate data plotted against Benford’s law.
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