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Linear scaling computation of the Fock matrix. V. Hierarchical Cubature
for numerical integration of the exchange-correlation matrix

Matt Challacombea)

Theoretical Division, Group T-12, MS B268, Los Alamos National Laboratory, Los Alamos,
New Mexico 87545

~Received 5 April 2000; accepted 18 August 2000!

Hierarchical cubature is a new method for achieving linear scaling computation of the
exchange-correlation matrix central to Density Functional Theory. Hierarchical cubature combines
a k-dimensional generalization of the binary search tree with adaptive numerical integration
involving an entirely Cartesian grid. Hierarchical cubature overcomes strong variations in the
electron density associated with nuclear cusps through multiresolution rather than spherical-polar
coordinate transformations. This unique Cartesian representation allows use of the exact integration
error during grid construction, supportingO(logN) range-queries that exploit locality of the
Cartesian Gaussian based electron density. Convergence is controlled byt r , which bounds the local
integration error of the electron density. An early onset of linear scaling is observed for RB3LYP/
6-31G** calculations on water clusters, commencing at~H2O)30 and persisting with decreasing
values oft r . Comparison with nuclear weight schemes suggests that the new method is competitive
on the basis of grid points per atom. Systematic convergence of the RPBE0/6-31G** Ne2 binding
curve is demonstrated with respect tot r . © 2000 American Institute of Physics.
@S0021-9606~00!32442-4#

I. INTRODUCTION

Hybrid Hartree-Fock/Density Functional Theory
~HF/DFT!1–5 has proven to be an important recent develop-
ment in electronic structure theory, with a high accuracy to
cost ratio that has dramatically extended the size and reliabil-
ity of ab initio calculations in many new areas. Hybrid HF/
DFT methods are economical because they are Self-
Consistent-Field ~SCF! or independent particle models,
where the fundamental variable is the density matrixP. Re-
cently, O(N) methods for solving various aspects of SCF
theory have been introduced that enjoy a computational cost
scaling only linearly with system size. While the promise of
these methods for performing large scale HF/DFT applica-
tions is real, programs able to achieve full linear scaling for
HF/DFT have not been forthcoming, due perhaps to a num-
ber of difficult bottlenecks that must be overcome simulta-
neously.

In HF/DFT, the Fock matrix is

F5h1J1a0 K x
HF1K xc

DFT , ~1!

whereh is the core Hamiltonian,J is the Coulomb or Hartree
matrix,a0;0.20 is a mixing parameter for the exact Hartree-
Fock exchange matrixK x

HF, and K xc
DFT is the exchange-

correlation matrix. Typically K xc
DFT is derived from an

exchange-correlation functional in the generalized gradient
approximation~GGA!, Exc

GGA@r#, with a0 of the DFT ex-
change excluded.1–5

Due to inefficiencies associated with the implementation
of Hartree-Fock exchange in plane wave, grid, wavelet,
Slater and numerical orbital methods, the only viable ap-
proach for large scale HF/DFT calculations appears to in-

volve the use of standard quantum chemical basis sets that
employ the Cartesian-Gaussian, Linear Combination of
Atomic-Orbital ~CG-LCAO! approximation,6–9 for which
well developed analytic methods exist to evaluate the rel-
evant two-electron integrals.10

There are at least four major bottlenecks that must be
overcome to achieve linear scaling HF/DFT~three for com-
puting F, and one for solving the SCF equations!. In this
series,11–14 linear scaling methods for computing CG-LCAO
basedJ andK x

HF matrices have been developed, and accura-
cies comparable to direct SCF15,16 have been demonstrated
for three-dimensional systems. Also, bottlenecks associated
with Löwdin orthogonalization17,18 and Roothann-Hall19,20

solution of the SCF equations have recently been overcome
with sparse-blocked matrix technologies and density matrix
minimization,21,22 likewise demonstrating linear scaling and
error control for three-dimensional benchmark suites. On the
other hand, methods for linear scaling computation of the
CG-LCAO exchange-correlation matrixK xc

DFT 23,24 are less
well developed, achieving linear scaling only for small basis
sets and extremely large or low dimensional systems.25

Products of the CG-LCAO basis functions,rab(r )
5fa(r ) fb(r ), are the fundamental participants in formation
of the exchange-correlation matrix. In particular, modern al-
gorithms compute the exchange-correlation matrix with

Kab
xc5E dr F ]Exc

]r
rab22

]Exc

]u“ru2
“rab•“rG , ~2!

where restricted SCF theory has been assumed and the sec-
ond term disappears in the local density approximation.26

Because the exchange-correlation functionalExc@r# is in
general nonanalytic, the corresponding matrix elements must
be computed numerically.

a!Electronic mail: MChalla@LANL.Gov; URL: http://www.t12.lanl.gov/
home/mchalla/

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 22 8 DECEMBER 2000

100370021-9606/2000/113(22)/10037/7/$17.00 © 2000 American Institute of Physics

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.91.169.193 On: Mon, 24 Nov 2014 21:03:32



CG-LCAO basis functions are typically contractions of
primitive Gaussian functions:fa(r )5( iCi

a w i(r ). Both CG-
LCAO basis function products,

rab~r !5fa~r ! fb~r !

5(
p

(
LMN

cp,LMN

]L1M1N

]Px
L]Py

M]Pz
N

e2zp(r2P)2

5(
p

%p~r !, ~3!

and the density,

r~r !5(
ab

Pab fa~r ! fb~r !

5(
q

(
LMN

dq,LMN

]L1M1N

]Qx
L]Qy

M]Qz
N

e2zq(r2Q)2

5(
q

%q~r !, ~4!

may be resolved intoprimitive distributions%, which are
linear combinations of Hermite-Gaussian functions involving
the same ‘‘mother’’ Gaussian with scale factorz and center
Q.27–29 For typical CG-LCAO basis functions,z spans
@1022,105#. Also, due to the Gaussian product theorem the
coefficient vectorscp anddq decay as Gaussians with sepa-
ration of the product basis function centers, typically span-
ning @10212,102#.27–29 Thus, extreme variability in both the
range and themagnitudeof the % suggest a multiscale ap-
proach to computation ofK xc

DFT .
The strongly peaked nature of the electron density about

nuclear centers requires special treatment, and has inspired
sophisticated algorithms for domain decomposition and vari-
able transformation, yielding integration schemes with a
minimal number of grid points per atom̂NPts&. There are at
least three main decomposition paradigms: nuclear weight
functions,30–38Voronoi polyhedra,39 and parallelepipeds.40,41

These methods all employ a transformation to spherical co-
ordinates, with the Jacobian suppressing nuclear cusps in the
electron density.42 However, these cusps are not strong sin-
gularities, and it is interesting to consider an adaptive and
purely Cartesian approach to numerical integration, where
subdivision achieves arbitrary resolution of strongly peaked
domains while sparing effort in regions that are slowly vary-
ing. Such a scheme is appealing in the development of linear
scaling methods as it suggests a ‘‘fast’’ tree-based approach.

This concept is pursued to fruition, and a new linear
scaling method for computing the exchange-correlation ma-
trix is presented that fully exploits the mutiscale structure of
r andrab by avoiding work at the level of primitive distri-
butions. This is accomplished through hierarchical represen-
tation of both the density and the integration grid using the
k-d tree data structure,43–45 allowing efficient orthogonal
range queriesto dynamically select only numerically signifi-
cant contributions. Thek-d tree data structure is used to
implement a decomposition paradigm that employs recursive
bisection and nonproduct Cartesian Gaussian integration
rules (C3 rules!, resulting in a Hierarchical Cubature able to

resolve the strong variations and multiple length scales en-
countered in numerical integration of the exchange-
correlation matrix.

II. HIERARCHICAL CUBATURE

Hierarchical Cubature ~HiCu! employs the
k-dimensional binary search tree~k-d tree!43–45 data struc-
ture to represent and evaluate both the electron density and
the integration grid. Thek-d treeassociated with the density
is the RhoTree, and thek-d treeassociated with the grid is
theCubeTree. Thek-d treeis ak-dimensional generalization
of the binary search tree, allowing rapid location and evalu-
ation of minimally overlapping grid and density components.

Each node in ak-d treeincludes ak-dimensional hyper-
rectangle or bounding box~BBox! that encloses the spatial
data contained by it and its children. A range query is a
search of thek-d tree for all data within a given Euclidean
distance. Performing a range query involves starting at the
root of ak-d tree, and recursively searching forBBoxes that
overlap a point~or a BBox about the point, depending on
how the search is formulated!. Recursive descent of thek-d
tree is halted when a nonoverlappingBBox is encountered,
while those nodes with overlap are traversed until all leaf
nodes within range have been accessed, resulting in an
O(log2 N) search.43–45

The twok-d treestructures employed by HiCu, the Rho-
Tree and the CubeTree, are shown in Fig. 1. In the case of
the RhoTree, a point-BBox implementation is used, wherein
the range is incorporated into the RhoTree by expanding
eachBBox by a certainextent. Alternatively, the interaction
of the CubeTree with a primitive distribution%p is formu-
lated in terms ofBBox–BBox overlaps.

A. The RhoTree

The electron density is represented by the five-
dimensional RhoTree. The five coordinates include three
Cartesian directions corresponding to the distribution centers
Q, the distribution amplitude, and the distribution scale fac-
tors. The RhoTree is constructed by recursive bisection start-
ing at the root, which encompasses the entire density. With
each subdivision, a new three-dimensionalBBox containing
the centersQ is generated, and a new maximum distribution
amplitude

MaxAmp5 max
qPBBox

Adq•dq, ~5!

and minimum distribution exponent

ZetaMin 5 min
qPBBox

zq , ~6!

are determined. Bisection proceeds until each distribution is
resolved into a leaf node. This is shown in Fig. 2.

Given a target errortr in the density, eachBBox in the
RhoTree is expanded by the amount

Extent 5Au log~MaxAmp/tr!u
ZetaMin

, ~7!

which is unique to each node. Thus, the contribution a node
makes outside itsBBox is assumed to be zero. It is now

10038 J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Matt Challacombe
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possible to evaluate the density at a given point by starting at
the root of the RhoTree and traversing only those nodes hav-
ing aBBox containing the point. This is efficient because the
test for point-box overlap is cheap, because the search is
O(log2 N), and because exclusion of insignificant density
components occurs early in traversal as a result of including
ordinates for the amplitude and scale factor.

B. The CubeTree

The CubeTree is constructed through recursive bisection
of a Cartesian domain enclosing the density, applying a fixed
fully symmetric C3 ~cubature! rule46–49 to nodes with in-

creasingly small volumes in areas where the integrand varies
rapidly. This is similar to conventional methods for the adap-
tive solution of multiple integrals,50–52 which employ local
error estimates based on sequences ofembeddedgrids,53–55

where rules of different degree are constrained to employ
common points.

The differences between HiCu and conventional meth-
ods of adaptive integration are~1! the k-d treestructure is
persistent, with each node of the CubeTree containing a
BBox; ~2! the exact error

Error 5U E
BBox

drr~r !2 (
i 51

NGrid

Wght@ i #r~Grid @ i # !U ~8!

is used instead of an estimate, allowing freedom in the
choice of a cubature rule.

The accuracy of the HiCu grid is determined by a local
error thresholdth ; the CubeTree is extended recursively
until the error in each leaf node,Error , is bounded byth .
This approach improves the grid systematically with respect
to the electron countNEl , but it is not guaranteed to improve
with respect to the exchange-correlation energy,

Exc5E dr Exc@r~r !# ~9!

or

Gxc5(
ab

PabKab
xc5E dr F ]Exc

]r
r22

]Exc

]u“ru2
u“ru2G , ~10!

which is a global measure ofK xc
DFT . However, except for

very loose thresholds,th*1024, the relative errors inExc

and Gxc are found to be of the same order as the relative
error in NEl . Others have come to similar conclusions, with
the relative errore r in NEl taken as a measure of grid accu-
racy in a number of recent studies.32,33,35,38

Recursive construction of the CubeTree starts at the root
with a BBox that integrates the density to within a requested
relative accuracy. For each node~Cube! in the CubeTree,
the RhoTree is traversed, performing a simple test for
BBox–BBox intersection. For overlappingBBoxes, contri-

FIG. 1. Use of thek-d treein computation of the exchange-correlation matrix. In construction of the CubeTree, locality of the density is fully exploited by
evaluating only those primitive components that contribute to a grid point. This is accomplished throughrange queries, which involve walking on the RhoTree
performing a check of each node for significance, such that children of insignificant nodes are not traversed. At a higher level, this involves a test for
BBox–BBox intersection, and forBBoxes that do overlap, examining the RhoTree children for those that contain a grid point. In evaluation of the
exchange-correlation matrix elements, locality of the primitive distributions%p is exploited through range queries that involve walking on the CubeTree,
testing forBBox–BBox intersection.

FIG. 2. A terminal branch in the RhoTree. The branch node involves a
BBox that encloses the centersQ of two primitive Gaussian distributions
~solid lines! in a minimal way. This minimalBBox is expanded by an
amountExtent , given by Eq.~7!, to create an expandedBBox, shown
with dashes. Outside the expandedBBox, contributions from the distribu-
tions are less thantr . The branch node is split into two leaf nodes, each
containing one primitive distribution with a uniqueExtent andBBox.

10039J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Linear scaling
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butions to the analytic integral over aCube’s BBox are
accumulated and evaluation of the density proceeds at the
level of grid points, recurring down the RhoTree testing for
individual point-BBox overlaps. This is shown in Fig. 1.

C. Evaluation of K xc

Elements of the exchange-correlation matrix are com-
puted using Eq.~2! at the level of primitive distributions,
%p . Each %p involves a differentExtent , which deter-
mines a uniqueBBox via a straightforward generalization of
Eq. ~7!. Primitive matrix elements are computed by travers-
ing the CubeTree, checking forBBox-BBox overlap as
shown in Fig. 1.

III. IMPLEMENTATION

A. Cubature rules

A number of nonproduct, fully symmetricC3 rules have
been evaluated, with the 14 point, degree 5 rule of Hammer
and Stroud46 being the most efficient, yielding the lowest
number of grid points per atom,^NPts&. This 14 point rule is
used throughout.

B. Thresholds

Recursive construction of the CubeTree starts at the root
with a BBox that analytically integrates the density to within
e r5t r* 1021, where t r is the target relative error inNEl .
This target value is coupled to the local error thresholdth by
th5d rt r . The valued r50.2 was found to work well for the
systems and basis sets used here, yieldinge r&t r .

Since the HiCu grid is rebuilt each SCF cycle, it is inef-
ficient to use full precision of the density early in construc-
tion of the CubeTree. Therefore, the CubeTree is constructed
iteratively, using progressively tighter values oftr , which
controls accuracy of the density according to Eq.~7!. In prac-
tice, settingtr51023th yields results that are indistinguish-
able from those obtained with the full density. With every
iteration,th is decreased toward its target value, eachBBox
of the RhoTree is re-expanded, and the HiCu grid is refined.
Starting atth5100t r and progressing toth5d rt r in 50
iterations yields significant speed ups.

Matrix elements are computed for atom pairs (A,B) with
zminuAÀBu2,2 log(1023t r), and entered block-wise into
the BCSR sparse matrix representation ofK xc

DFT.21,22

To summarize, a target accuracyt r is specified, deter-
mining the local absolute cubature errorth . The HiCu grid
is constructed iteratively using progressively more accurate
values of the density. At maximum resolution, each leaf in
the CubeTree has achieved an absolute error less thanth

5d rt r using numerical values of the density that are accu-
rate to withintr51023th .

C. Implementation

Program HiCu has been coded in FORTRAN90 using ob-
ject oriented principles, and implemented within the
MONDOSCF suite of linear scaling SCF programs.56 Both the
RhoTree and the CubeTree are implemented as doubly
linked lists, using pointers as shown in Fig. 3 for the Cube-

Tree. This allows dynamic memory allocation and tree tra-
versal with recursive subroutines and functions. It is worth
pointing out that significant performance improvements were
obtained by minimizing argument lists in recursive calls.
This approach has resulted in a very compact and efficient
code, in contrast with the integer arrays used to implement
doubly linked lists in the FORTRAN77 version of the Quan-
tum Chemical Tree Code.11,28,29

Evaluation of the density relies heavily on the exponen-
tial function EXP, while analytic integration of the density
requires the repeated evaluation of bothEXP andERFC. In
HiCu, EXPhas been implemented using fourth order Cheby-
chev interpolation, andERFC with third order Chebychev
interpolation. Both functions achieve an absolute accuracy of
10212, and yield a significant performance enhancement
relative to full precision of the intrinsic functions provided
by the compiler.

All programs have been compiled and run on a 550 MHz
PIII running version 6.1 of RedHat LINUX,57 using version
3.03 of the Portland Group pgf90 compiler58 with the options
-O2 -tp p6 -pc 64 -Mdalign -Mnoonetrip .

IV. RESULTS AND DISCUSSION

Results have been obtained for the standard suite of
three-dimensional water clusters (NH2O510,20,30,40,50,60,
and 70!, which have been used in a number of linear scaling
studies.11,12,14,21,22,28,29,59–61Restricted B3LYP calculations
using the VWN3 variation62 and the 6-31G** basis set were
carried out for this sequence of water clusters usingt r

51024,1025,1026,and 1027, with timings shown in Fig. 4.
The guess density for these calculations was obtained by
basis set switch21 from a converged RHF/STO-3G density
matrix. Timings corresponding to the mixed basis set have
not been averaged in. After the switch, timings perK xc

DFT

build were found to be nearly identical, and only values cor-
responding to the converged density are reported. That is, no
averaging whatsoever has been performed. The results in
Fig. 4 show a very early onset of linear scaling, which per-
sists for decreasing values oft r .

In Fig. 5, the HiCu grid obtained witht r51023 is
shown for (H2O)70. The grid points are contained by the

FIG. 3. TheCube object.Left is a link to the left child, andRight is a
link to the right child, or the next node to traverse in the doubly linked list.
Leaf is a logical flag indicating either branch or leaf-node status.IXact is
the exact value of the density, integrated analytically overBBox. Grid ,
Wght, andVals are allocatable, and hold the grid points~3,NGrid !, the
weights ~NGrid !, and the values]Exc /]r , ]Exc /]u“ru2, and “r
~5,NGrid !. During grid construction these arrays are deallocated when a
node is split.

10040 J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Matt Challacombe
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CubeTree root node’sBBox, and form a telescoping struc-
ture about each water molecule due to peaks in the electron
density and multiscale properties of the grid. The nonover-
lapping Cartesian properties of the HiCu grid should make
fine grained domain decomposition in parallel implementa-
tions straightforward.

Unfortunately, direct comparison with the ‘‘industry
standard’’ LINXC63 is not possible due to license
restrictions,64 and because of unpublished errors and undis-
closed methods for achieving averaged CPU times. How-

ever, a qualitative comparison of performance may be
achieved by comparison with the results of Ref. 63, wherein
linear scaling ofJ andK xc

DFT is not achievedwith basis sets
and molecular systems nearly identical to the benchmark
suites used in this study, even for clusters as large as
(H2O)392. Here, the onset of linear scaling appears between
(H2O)20 and (H2O)30.

A more direct comparison with other methods is possible
on the basis of grid statistics. For the water clusters studied
here,^NPts& depends on the target accuracy, and approaches
an asymptote as shown in Fig. 6. This may be due to surface-
volume effects, as the domain of integration is approximately
cubic, while the water clusters are approximately spherical.
Thus, as the cluster size increases the interstitial region
~cube-sphere! becomes small relative to the volume of the
sphere.

In Fig. 7, the dependence of^NPts& on e r is plotted, from
which the efficiency curve

e r5C 102n^NPts&, ~11!

is obtained, allowing a semiquantitative comparison with
other methods that have published statistics. In Table I, the
valuesn and C are listed for the HiCu grid and for grids
using the nuclear weights of Becke, Delley, and Lin, Jaffe
and Hess~LJH!.38 However, the HiCu values have been ac-
quired using computed worst case errors while the values
taken from LJH correspond totarget accuracies. Also, dif-
ferent molecular systems and basis sets were used to arrive at
these values. It should be noted that HiCu adapts to the basis
set, with the size of the HiCu grid depending on the ratio of
largest to smallest Gaussian exponent. When this ratio is
large, the CubeTree will have to recur to higher resolution to

FIG. 4. Scaling of the RB3LYP~VWN3!/6-31G** exchange-correlation ma-
trix build times for four target accuracies;t r51024, 1025, 1026, and 1027.

FIG. 5. The HiCu grid for~H2O)70 andt r51023. Also shown is theBBox
of the CubeTree root node. The multiscale structure of the grid results from
recursive bisection rather than use of nuclear weights and spherical polar
coordinate transformations.

FIG. 6. Variation in^NPts& with increasing system size,NH2O , computed
relative to the minimum number of points achieved, which occurs for
(H2O)70 .

10041J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Linear scaling
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achieve a given accuracy. Nevertheless, on the basis of this
comparison, the HiCu grid appears competitive with nuclear
weight schemes for low to medium accuracies.

A challenge facing all numerical DFT methods is to
minimize the magnitude of grid errors, which may lead to
discontinuities in the molecular potential energy surface. The
HiCu grid error decreases systematically with decreasing
values oft r , as shown in Fig. 8 for the RPBE0/6-31G**
Ne2 binding curve~see Ref. 4 for details of this model chem-
istry!. For t r51026, the relative error in the total energy is
on the order of 1026, with an absolute error in the binding
curve of 1023 hartree. Relative errors in forces should be of
the same order as those in the total energy, and forab initio
molecular dynamics an accuracy of 5-6 digits should be suf-
ficient for many applications. Att r5331028, errors in the
binding curve have decreased by at least an order, and for
t r51029 a completely smooth curve obtains.

V. CONCLUSIONS

A new method, Hierarchical Cubature~HiCu!, has been
developed for achieving linear scaling computation of the
exchange-correlation matrix within the Cartesian-Gaussian
LCAO framework. HiCu has demonstrated an early onset of

linear scaling for three-dimensional systems, which is persis-
tent with increasing accuracy and for nontrivial basis sets.

HiCu is unique in employing an entirely Cartesian grid
for computation of the exchange-correlation matrix, over-
coming nuclear cusps in the electron density with a multi-
scale approach rather than resorting to conventional
spherical-polar coordinate transformations. The purely Car-
tesian representation supports thek-d treedata structure en-
abling efficient range queries, and provides an exact expres-
sion for the integration error at each level of resolution. This
nonoverlapping Cartesian representation may also enable the
efficient implementation of fine grained parallelism.

One of the most demanding aspects of HiCu is the reso-
lution of nuclear-electron cusps. As the Gaussian LCAO ap-
proximation tends toward completeness and the ratio of
maximum to minimum Gaussian exponents becomes large,
the HiCu grid can be expected to extend itself accordingly.
However, as the nuclear-electron cusp is a weak singularity,
the CubeTree will not become unbounded. Accordingly, the
use of pseudopotentials should lead to substantial gains in
efficiency. It may also be possible to employ coordinate
transformations within each cube that yield more accurate
results than the native rule. During the development of HiCu,
a number of one-dimensional transformations were tested for
regularization of the integrand, including Pederson’s varia-
tional mesh approach.40 These transformations were found to
yield significant advantages in the case of a one-dimensional
density, but to be ineffective in three dimensions. Three-
dimensional transformations such as those described in Refs.
65 and 66 may be more effective, but have not been tried.

A number of similarities exist between HiCu and the
Quantum Chemical Tree Code~QCTC! for computation of
the Coulomb matrixJ.11,28,29As the HiCu grid is traversed,
work is performed only for overlapping nodes. Likewise
QCTC avoids work by invoking the multipole approximation
for nodes with insignificant penetration. With a sufficiently

FIG. 7. Scaling of the minimum̂NPts& ~taken as the value from (H2O!70)
with the maximum~worst! e r ~taken over the entire series of water clusters!.
A fit to the last three points is also shown. Using all four points yields
^NPts&540e r

2.37, but a less agreeable fit.

TABLE I. Parameters of the efficiency curve, Eq.~11!, for various nuclear
weight grids ~taken from Ref. 38!. Also shown are the HiCu parameters
derived from Fig. 7.

Grid C n

LJH weights 107.0 3.8
Delley weights 103.9 2.3
Becke weights 105.6 2.6
HiCu 105.0 2.8

FIG. 8. Binding curves of Ne2 at the PBE0/6-31G** level of theory, with
t r51026 ~shifted up by 231023), t r5331028 ~shifted up by 1023), and
t r51029.
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accurate multipole approximation, the evaluation of penetra-
tion acceptability criteria~PAC! in the current implementa-
tion of QCTC dominates when representation of the density
proceeds to the finest resolution. The more efficientk-d tree
methods developed here for accessing overlapping elements
of the density may thus be applied directly to the next gen-
eration of QCTC.
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