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Linear scaling computation of the Fock matrix. V. Hierarchical Cubature
for numerical integration of the exchange-correlation matrix

Matt Challacombe®
Theoretical Division, Group T-12, MS B268, Los Alamos National Laboratory, Los Alamos,
New Mexico 87545

(Received 5 April 2000; accepted 18 August 2D00

Hierarchical cubature is a new method for achieving linear scaling computation of the
exchange-correlation matrix central to Density Functional Theory. Hierarchical cubature combines
a k-dimensional generalization of the binary search tree with adaptive numerical integration
involving an entirely Cartesian grid. Hierarchical cubature overcomes strong variations in the
electron density associated with nuclear cusps through multiresolution rather than spherical-polar
coordinate transformations. This unique Cartesian representation allows use of the exact integration
error during grid construction, supportin@(logN) range-queries that exploit locality of the
Cartesian Gaussian based electron density. Convergence is controftedvilyich bounds the local
integration error of the electron density. An early onset of linear scaling is observed for RB3LYP/
6-31G+ calculations on water clusters, commencing(ld$0)3, and persisting with decreasing
values ofr, . Comparison with nuclear weight schemes suggests that the new method is competitive
on the basis of grid points per atom. Systematic convergence of the RPBEO¥#6-BlEs binding

curve is demonstrated with respectto. © 2000 American Institute of Physics.
[S0021-960600)32442-4

I. INTRODUCTION volve the use of standard quantum chemical basis sets that

Hybrid Hartree-Fock/Density ~ Functional Theory employ the Cartesian-Gaussian, Linear Combination of
(HF/DFT):= has proven to be an important recent develop-Atomic-Orbital (CG-LCAO) approximatiorf, for which
ment in electronic structure theory, with a high accuracy tovell developed analytic methods exist to evaluate the rel-
cost ratio that has dramatically extended the size and reliabievant two-electron integral$.
ity of ab initio calculations in many new areas. Hybrid HF/ ~ There are at least four major bottlenecks that must be
DFT methods are economical because they are Selfvercome to achieve linear scaling HF/DRFree for com-
Consistent-Field (SCP or independent particle models, puting F, and one for solving the SCF equationin this
where the fundamental variable is the density ma@iRe-  series;***linear scaling methods for computing CG-LCAO
cently, O(N) methods for solving various aspects of SCFbased) andK; ™ matrices have been developed, and accura-
theory have been introduced that enjoy a computational cosies comparable to direct SEF® have been demonstrated
Sca“ng On|y |inear|y with System size. While the promise offor three-dimensional Systems. A|SO, bottlenecks associated
these methods for performing large scale HF/DFT applicawith Lowdin orthogonalizatiot*® and Roothann-Half?*°
tions is real, programs able to achieve full linear scaling forsolution of the SCF equations have recently been overcome
HF/DFT have not been forthcoming, due perhaps to a numwith sparse-blocked matrix technologies and density matrix
ber of difficult bottlenecks that must be overcome simulta-minimization?*?? likewise demonstrating linear scaling and

neously. error control for three-dimensional benchmark suites. On the
In HF/DFT, the Fock matrix is other hand, methods for linear scaling computation of the
- _ ; DFT 23,24
F=h+J+ao K"+ KT, (1) CG-LCAO exchange-correlation matri are less

well developed, achieving linear scaling only for small basis
whereh is the core Hamiltonian] is the Coulomb or Hartree  sets and extremely large or low dimensional systéms.
matrix, ap~0.20 is a mixing parameter for the exact Hartree-  products of the CG-LCAO basis functiong,(r)
Fock exchange _matrix(?':, angFTKEFFT i the exchange- =g, (r) ¢,(r), are the fundamental participants in formation
correlation matrix. TypicallyK,c" is derived from an of the exchange-correlation matrix. In particular, modern al-
exchange-correlation functional in the generalized gradiengorithms compute the exchange-correlation matrix with
approximation(GGA), k. Alp], with ag of the DFT ex-
change excludet:® .

Due to inefficiencies associated with the implementation Kap=| dr
of Hartree-Fock exchange in plane wave, grid, wavelet,
Slater and numerical orbital methods, the only viable apwhere restricted SCF theory has been assumed and the sec-
proach for large scale HF/DFT calculations appears to inend term disappears in the local density approximatfon.
Because the exchange-correlation functiohgl p] is in
9Electronic mail: MChalla@LANL.Gov; URL: http://www.t12.lanl.gov/ 9€neral nonanalytic, the corresponding matrix elements must
home/mchalla/ be computed numerically.

Iye 7] DS

—— Pap— 2 Vo, Vpl, (2)
ap Pab (?|Vp|2 Pab* VP

0021-9606/2000/113(22)/10037/7/$17.00 10037 © 2000 American Institute of Physics



10038  J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Matt Challacombe

CG-LCAO basis functions are typically contractions of resolve the strong variations and multiple length scales en-
primitive Gaussian functionsp,(r)==;C? ¢;(r). Both CG-  countered in numerical integration of the exchange-
LCAO basis function products, correlation matrix.

Pan() = ¢a(r) ¢p(r)

II. HIERARCHICAL CUBATURE
gETM+N

=> > Cp LMN—efzp(rfP)2 Hierarchical =~ Cubature (HiCu) employs the
p LMN 7 0P>'2(9PyM aPY k-dimensional binary search tregk-d treg**~*° data struc-
ture to represent and evaluate both the electron density and
= 2 0p(r), (3)  theintegration grid. Thé&-d treeassociated with the density
p is the RhoTree and thek-d treeassociated with the grid is

the CubeTreeThek-d treeis ak-dimensional generalization
of the binary search tree, allowing rapid location and evalu-
ation of minimally overlapping grid and density components.
Each node in &-d treeincludes ak-dimensional hyper-
rectangle or bounding boBBox) that encloses the spatial
ZE 2 q o Lg(r-Q)? data contained by it and its children. A range query is a
T N q*'-MN(;Q;aQM(;QZN search of thek-d treefor all data within a given Euclidean
Y distance. Performing a range query involves starting at the
_ E 0u(r) @) root of ak-d tree and recursively searching f@Boxes that
RN overlap a point(or a BBox about the point, depending on
how the search is formulatgdRecursive descent of thed

may be resolved intgrimitive distributionsp, which are treeis halted when a nonoverlappit@Box is encountered,
linear combinations of Hermite-Gaussian functions involving,, o those nodes with overlap are traversed until all leaf

th‘;ﬁi‘g“e “mother” Gaussian with scale facand center ,4eq within range have been accessed, resulting in an
Q. For typical CG-LCAO basis functions{ spans O(log, N) searcH=45

[10 2,1C°]. Also, due to the Gaussian product theorem the The twok-d treestructures employed by HiCu, the Rho-
coefficient vectorss, anddq decay as Gaussians with sepa-1a¢ anq the CubeTree, are shown in Fig. 1. In the case of
ration of the product basis function centers, typically spany,qo RhoTree, a poirBBox implementation is used, wherein
ning[10*12,102].27‘?9Thus, extreme variability in both the the range is incorporated into the RhoTree by expanding
range and themagnitudeof the ¢ suggest a multiscale ap- eachBBox by a certainextent Alternatively, the interaction

; DFT
proach to computation df,¢ . _ of the CubeTree with a primitive distributiog,, is formu-
The strongly peaked nature of the electron density abo”ltated in terms oBBox—BBox overlaps.

nuclear centers requires special treatment, and has inspired

sophisticated algorithms for domain decomposition and variA- The RhoTree

able transformation, yielding integration schemes with a = The electron density is represented by the five-

minimal number of grid points per atoiNpy. There are at  gimensional RhoTree. The five coordinates include three
Ieast.thresg main degomposmongparadlgms: nuclear X‘ie'grﬁ:artesian directions corresponding to the distribution centers
functions?*~**Voronoi polyhedra;’ and par_a”e'eplped?-' Q, the distribution amplitude, and the distribution scale fac-

These methods all employ a transformation to spherical cogyrs. The RhoTree is constructed by recursive bisection start-
ordinates, with the Jacobian suppressing nuclear cusps in ti;ﬁ:g at the root, which encompasses the entire density. With
electron density? However, these cusps are not strong SiN-each subdivision, a new three-dimensioB&ox containing

gularities, and it is interesting to consider an adaptive anghe centers is generated, and a new maximum distribution
purely Cartesian approach to numerical integration, Wher%mplitude

subdivision achieves arbitrary resolution of strongly peaked
domains while sparing effort in regions that are slowly vary- ~ MaxAmp= max ydq-dq, )
ing. Such a scheme is appealing in the development of linear a<BBox
scaling methods as it suggests a “fast” tree-based approachnd minimum distribution exponent

This concept is pursued to fruition, and a new linear : .

. . . ZetaMin = min {,, (6)
scaling method for computing the exchange-correlation ma- 4 BBox q
trix is presented that fully exploits the mutiscale structure of
p and p,;, by avoiding work at the level of primitive distri- are determined. Bisection proceeds until each distribution is
butions. This is accomplished through hierarchical represer€solved into a leaf node. This is shown in Fig. 2.
tation of both the density and the integration grid using the  Given a target error, in the density, eacBBox in the
k-d tree data structuré®*® allowing efficient orthogonal ~RhoTree is expanded by the amount
range querieSg dynamically select only numericglly signifi- |Iog(MaxAm¢rp)|
cant contributions. Theék-d tree data structure is used to Extent = \/ ZetaMin ,
implement a decomposition paradigm that employs recursive
bisection and nonproduct Cartesian Gaussian integratiowhich is unique to each node. Thus, the contribution a node
rules (C; rules, resulting in a Hierarchical Cubature able to makes outside it8Box is assumed to be zero. It is now

and the density,

p<r>=§ Pab ba(r) ¢p(r)

5L+M+N

()
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FIG. 1. Use of thek-d treein computation of the exchange-correlation matrix. In construction of the CubeTree, locality of the density is fully exploited by
evaluating only those primitive components that contribute to a grid point. This is accomplished trangglguerieswhich involve walking on the RhoTree
performing a check of each node for significance, such that children of insignificant nodes are not traversed. At a higher level, this involves a test for
BBox—BBox intersection, and foBBoxes that do overlap, examining the RhoTree children for those that contain a grid point. In evaluation of the
exchange-correlation matrix elements, locality of the primitive distributiopss exploited through range queries that involve walking on the CubeTree,
testing forBBox—BBox intersection.

possible to evaluate the density at a given point by starting atreasingly small volumes in areas where the integrand varies
the root of the RhoTree and traversing only those nodes havapidly. This is similar to conventional methods for the adap-
ing aBBox containing the point. This is efficient because thetive solution of multiple integral2®~>? which employ local
test for point-box overlap is cheap, because the search irror estimates based on sequencesrbeddedyrids>3~5°
O(log, N), and because exclusion of insignificant densitywhere rules of different degree are constrained to employ

components occurs early in traversal as a result of includingommon points.

ordinates for the amplitude and scale factor. The differences between HiCu and conventional meth-
ods of adaptive integration ai@) the k-d tree structure is
B. The CubeTree persistent, with each node of the CubeTree containing a

The CubeTree is constructed through recursive bisectioﬁ;Box; (2) the exact error

of a Cartesian domain enclosing the density, applying a fixed NGrid
fully symmetric C3 (cubaturé rule*®*=*° to nodes with in- Error = f drp(r)— >, Wght[i]p(Grid [i])| (8
BBox =1

is used instead of an estimate, allowing freedom in the
: : choice of a cubature rule.
The accuracy of the HiCu grid is determined by a local
error thresholdr; the CubeTree is extended recursively
: until the error in each leaf nod&yror , is bounded by .
| J ﬁ» This approach improves the grid systematically with respect

to the electron counlflg, but it is not guaranteed to improve
with respect to the exchange-correlation energy,

Exc:f dr Ex p(r)] C)
or

Mo . e
ap P2

ch:% Pangg:f dr |Vp|2 ) (10)

] © which is a global measure dfl'. However, except for

very loose thresholds;5=10"4, the relative errors irE,
: : and G, are found to be of the same order as the relative
E : SR— : error inNg,. Others have come to similar conclusions, with
E T TP ITRRNS : the relative errore, in Ng taken as a measure of grid accu-
FIG. 2. A terminal branch in the RhoTree. The branch node involves al &CY in a number of recent studi&s:**>=°
BBox that encloses the cente€s of two primitive Gaussian distributions Recursive construction of the CubeTree starts at the root
(solid li?EeS in a minim:’gl Wan- 7This minimalBBox is Zgignded hby an  with a BBox that integrates the density to within a requested
\?v?:r?%r;tshxet:n tOL;tgil(\ilgrlheyexg.afnzi’étﬂoo;recagre\tr?t?ut(iegr?:?rom t?:((a, (?isg'\i,\tl)rllj- relative accura,cy' For each nod@ubg) n the_ CubeTree,
tions are less tham,. The branch node is split into two leaf nodes, each the RhoTree is traversed, performing a simple test for
containing one primitive distribution with a uniquxtent and BBox. BBox—BBox intersection. For overlappinBBoxes, contri-
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butions to the analytic integral over @ube’s BBox are

accumulated and evaluation of the density proceeds at the

level of grid points, recurring down the RhoTree testing for
individual pointBBox overlaps. This is shown in Fig. 1.

C. Evaluation of K .

Elements of the exchange-correlation matrix are com-

puted using Eq(2) at the level of primitive distributions,
0,- Eachg, involves a differentExtent , which deter-
mines a uniquéBox via a straightforward generalization of

Eq. (7). Primitive matrix elements are computed by travers-

ing the CubeTree, checking faBBox-BBox overlap as
shown in Fig. 1.

I1l. IMPLEMENTATION

A. Cubature rules

A number of nonproduct, fully symmetric; rules have

Matt Challacombe

TYPE CubeNode

LOGICAL :: Leaf
REAL (DOUBLE) :: IXact
TYPE (BBox) :: Box
TYPE(CubeNode) ,POINTER :: Left
TYPE (CubeNode) ,POINTER :: Right
REAL(DOUBLE), POINTER,DIMENSION(:,:) :: Grid
REAL(DOUBLE), POINTER,DIMENSION(:) :: Wght
REAL(DOUBLE), POINTER,DIMENSION(:,:) :: Vals
END TYPE

FIG. 3. TheCube object.Left is a link to the left child, andRight is a

link to the right child, or the next node to traverse in the doubly linked list.
Leaf is a logical flag indicating either branch or leaf-node staact is

the exact value of the density, integrated analytically odBBox. Grid ,
Wght, andVals are allocatable, and hold the grid poit&NGrid ), the
weights (NGrid ), and the valuesdE,./dp, Fy./d|Vp|?, and Vp
(5NGrid ). During grid construction these arrays are deallocated when a
node is split.

Tree. This allows dynamic memory allocation and tree tra-

been evaluated, with the 14 point, degree S rule of Hammeyq sa with recursive subroutines and functions. It is worth

and Stroutf being the most efficient, yielding the lowest
number of grid points per atoniNp,y. This 14 point rule is
used throughout.

B. Thresholds

pointing out that significant performance improvements were
obtained by minimizing argument lists in recursive calls.
This approach has resulted in a very compact and efficient
code, in contrast with the integer arrays used to implement
doubly linked lists in the BRTRAN77 version of the Quan-

Recursive construction of the CubeTree starts at the rodtim Chemical Tree Cod€:?32

with a BBox that analytically integrates the density to within
e,=71+10"1, wherer, is the target relative error ilNg,.
This target value is coupled to the local error thresheidy
0= 6,7, . The values,=0.2 was found to work well for the
systems and basis sets used here, yieldjngr, .

Since the HiCu grid is rebuilt each SCF cycle, it is inef-
ficient to use full precision of the density early in construc-

Evaluation of the density relies heavily on the exponen-
tial function EXP, while analytic integration of the density
requires the repeated evaluation of b&KP and ERFC In
HiCu, EXPhas been implemented using fourth order Cheby-
chev interpolation, andERFC with third order Chebychev
interpolation. Both functions achieve an absolute accuracy of
10 %2 and yield a significant performance enhancement

tion of the CubeTree. Therefore, the CubeTree is constructei@lative to full precision of the intrinsic functions provided

iteratively, using progressively tighter values gf, which
controls accuracy of the density according to &g. In prac-
tice, settingr,= 10 374 yields results that are indistinguish-
able from those obtained with the full density. With every
iteration, 7 is decreased toward its target value, eB&ox

by the compiler.

All programs have been compiled and run on a 550 MHz
PIII running version 6.1 of RedHat LINUX’ using version
3.03 of the Portland Group pgf90 compiéwith the options
-O2 -tp p6 -pc 64 -Mdalign -Mnoonetrip

of the RhoTree is re-expanded, and the HiCu grid is refined.

Starting at7;=1007r, and progressing ta;= 4,7, in 50
iterations yields significant speed ups.

Matrix elements are computed for atom paifsB) with
{minl A—B|?< —10og(10 37,), and entered block-wise into
the BCSR sparse matrix representatiorkgf T.2122

To summarize, a target accuraey is specified, deter-
mining the local absolute cubature error. The HiCu grid
is constructed iteratively using progressively more accurat

the CubeTree has achieved an absolute error less than
= 6,7, using numerical values of the density that are accu
rate to within7,=10"37.

C. Implementation

Program HiCu has been coded in®TRANIO using ob-
ject oriented principles, and implemented within the
MONDOSCF suite of linear scaling SCF prografigoth the

RhoTree and the CubeTree are implemented as doubly

€
values of the density. At maximum resolution, each leaf in

IV. RESULTS AND DISCUSSION

Results have been obtained for the standard suite of
three-dimensional water clusterumzoz 10,20,30,40,50,60,
and 70, which have been used in a number of linear scaling
studiest!12:14.21.22.28.29.59-6Ragtricted B3LYP calculations
using the VWN3 variatioff and the 6-31%* basis set were
carried out for this sequence of water clusters usifg
104,10 75,10 ¢,and 10/, with timings shown in Fig. 4.
The guess density for these calculations was obtained by
basis set switcht from a converged RHF/STO-3G density

matrix. Timings corresponding to the mixed basis set have
not been averaged in. After the switch, timings pef: '
build were found to be nearly identical, and only values cor-
responding to the converged density are reported. That is, no
averaging whatsoever has been performed. The results in
Fig. 4 show a very early onset of linear scaling, which per-
sists for decreasing values of.

In Fig. 5, the HiCu grid obtained withr,=102 is

linked lists, using pointers as shown in Fig. 3 for the Cube-shown for (HO),o. The grid points are contained by the
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FIG. 4. Scaling of the RB3LY®/WN3)/6-31G™* exchange-correlation ma- NH o
P

trix build times for four target accuracies,= 104, 10°°, 1075, and 10".

FIG. 6. Variation in{Np, with increasing system size\lHZO, computed

) relative to the minimum number of points achieved, which occurs for
CubeTree root node’BBox, and form a telescoping struc- (n,0),,.

ture about each water molecule due to peaks in the electron
density and multiscale properties of the grid. The nonover-
lapping Cartesian properties of the HiCu grid should make

fine grained domain decomposition in parallel implementa8Ver, a qualitative comparison of performance may be
tions straightforward. achieved by comparison with the results of Ref. 63, wherein

Unfortunately, direct comparison with the “industry linear scaling of andK7™" is not achieveduith basis sets
standard” LNXC® is not possible due to license @nd molecular systems nearly identical to the benchmark

restrictions3* and because of unpublished errors and undisSUites used in this study, even for clusters as large as
closed methods for achieving averaged CPU times. How(H20)s0- Here, the onset of linear scaling appears between
(H20)20 and (H,0)3.

A more direct comparison with other methods is possible
on the basis of grid statistics. For the water clusters studied
here,(Npiy depends on the target accuracy, and approaches
an asymptote as shown in Fig. 6. This may be due to surface-
volume effects, as the domain of integration is approximately
cubic, while the water clusters are approximately spherical.
Thus, as the cluster size increases the interstitial region
(cube-sphenebecomes small relative to the volume of the
sphere.

In Fig. 7, the dependence Ofp 0On ¢, is plotted, from
which the efficiency curve

€,=C 10 "New, (1)

is obtained, allowing a semiquantitative comparison with
other methods that have published statistics. In Table |, the
valuesn and C are listed for the HiCu grid and for grids
using the nuclear weights of Becke, Delley, and Lin, Jaffe
and HesgLJH).*® However, the HiCu values have been ac-
quired using computed worst case errors while the values
taken from LJH correspond target accuracies. Also, dif-
ferent molecular systems and basis sets were used to arrive at
FIG. 5. The HICU grid forH,0)o and = 10-5. Also shown is th&Box these yalues. It should be_noted.that HiCu_adapts to thg basis
of tﬁe CubeTree root node.ZThZ:OmuItisrcale str.ucture of the grid results fro set, with the size of the HiCu grid depending on the ratio of

recursive bisection rather than use of nuclear weights and spherical poﬂiargeSt to smallest GQUSSian exponent. When this r_atiO is
coordinate transformations. large, the CubeTree will have to recur to higher resolution to
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MAX € FIG. 8. Binding curves of Ngat the PBE0/6-31& level of theory, with
- 7,=1078 (shifted up by 2107%), r,=3% 108 (shifted up by 10%), and
7,=107°.

FIG. 7. Scaling of the minimuniNp,9 (taken as the value from (@);o)
with the maximum(wors) ¢, (taken over the entire series of water clusters
A fit to the last three points is also shown. Using all four points yields

Np=40¢;, " [ le fit. . . . : S .
(Np9=40¢ ", but a less agreeable fit linear scaling for three-dimensional systems, which is persis-

tent with increasing accuracy and for nontrivial basis sets.

achieve a given accuracy. Nevertheless, on the basis of this HiCu is unique in employing an entirely Cartesian grid
comparison, the HiCu grid appears competitive with nucleafor computation of the exchange-correlation matrix, over-
weight schemes for low to medium accuracies. coming nuclear cusps in the electron density with a multi-
A challenge facing all numerical DFT methods is to scale approach rather than resorting to conventional
minimize the magnitude of grid errors, which may lead tospherical-polar coordinate transformations. The purely Car-
discontinuities in the molecular potential energy surface. Théesian representation supports # treedata structure en-
HiCu grid error decreases systematically with decreasingbling efficient range queries, and provides an exact expres-
values ofr,, as shown in Fig. 8 for the RPBE0/6-31'G  sion for the integration error at each level of resolution. This
Ne, binding curve(see Ref. 4 for details of this model chem- nonoverlapping Cartesian representation may also enable the
istry). For 7,=107%, the relative error in the total energy is efficient implementation of fine grained parallelism.
on the order of 10°, with an absolute error in the binding One of the most demanding aspects of HiCu is the reso-
curve of 10 ® hartree. Relative errors in forces should be oflution of nuclear-electron cusps. As the Gaussian LCAO ap-
the same order as those in the total energy, andlfdnitio ~ Proximation tends toward completeness and the ratio of
molecular dynamics an accuracy of 5-6 digits should be sufmaximum to minimum Gaussian exponents becomes large,
ficient for many applications. At,=3x 108, errors in the the HiCu grid can be expected to extend itself accordingly.
binding curve have decreased by at least an order, and fétowever, as the nuclear-electron cusp is a weak singularity,

’Tr=1079 a Comp|ete|y smooth curve obtains. the CubeTree will not become unbounded. Accordingly, the
use of pseudopotentials should lead to substantial gains in
V. CONCLUSIONS efficiency. It may also be possible to employ coordinate

) ) ) transformations within each cube that yield more accurate
A new method, Hierarchical CubatufBliCu), has been roqits than the native rule. During the development of HICU,
developed for achieving linear scaling computation of the, n;mber of one-dimensional transformations were tested for
exchange-correlatlor) matrix within the Cartes'a”'GaUSS'arFegularization of the integrand, including Pederson’s varia-
LCAO framework. HiCu has demonstrated an early onset ofjona| mesh approact?. These transformations were found to
yield significant advantages in the case of a one-dimensional
TABLE I. Parameters of the efficiency curve, Edd), for various nuclear ~ density, but to be ineffective in three dimensions. Three-
weight grids (taken from Ref. 38 Also shown are the HiCu parameters dimensional transformations such as those described in Refs.
derived from Fig. 7. 65 and 66 may be more effective, but have not been tried.
A number of similarities exist between HiCu and the

Grid C n ) .

I _ Quantum Chemical Tree Cod®CTC) for computation of
LIH weights 123 38 the Coulomb matrix).}*?829As the HiCu grid is traversed,
g::;'ﬁi agg:i 11%6 52 work is performed only for overlapping nodes. Likewise
HiCu 160 28 QCTC avoids work by invoking the multipole approximation

for nodes with insignificant penetration. With a sufficiently
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accurate multipole approximation, the evaluation of penetra®A. D. Becke, J. Chem. Phy88(4), 2547(1998.

tion acceptability criterigPAC) in the current implementa-
tion of QCTC dominates when representation of the density,

proceeds to the finest resolution. The more efficledttree

31C. W. Murray, N. C. Handy, and G. J. Laming, Mol. Phy&&(4), 997
(1993.

J. M. Peez-JordaA. D. Becke, and E. San-FalniaJ. Chem. Phy<.00(9),
6520(1994).

methods developed here for accessing overlapping elemerf&y. m. Peez-JordaJ. Chem. PhysL01(2), 1738(1994.
of the density may thus be applied directly to the next gen>*O. Treutler and R. Ahlrichs, J. Chem. Phy921), 346 (1995.

eration of QCTC.
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