
Although cytoskeletal proteins do not often
get “top billing” in models of viral infec-
tion, there is a growing body of evidence
that highlights their importance (1, 2). Sub-
version of the cytoskeleton by HIV was
first reported in a short seminal paper pub-
lished in 1998 (3) that made two key obser-
vations: (i) exposure of T lymphocytes to
the viral envelope glycoprotein gp120 re-
sults in induction of an actin-rich polarized
cap of the co-receptors, CD4 and CXCR4,
that mediate viral binding and entry; and
(ii) inhibition of actin polymerization pro-
foundly inhibits HIV entry and infection.
This paper continues to be cited to this day,
which underscores both the importance of
the finding and that the underlying mecha-
nisms remain to be elucidated. Three stud-
ies (4–6) now shed some light on this
decade-old observation.

The process of formation of the actin
cap needs to be interpreted in light of a ma-
jor paradigm shift in the field of retrovirol-
ogy that involves two distinct, but related,
realizations. First, there is now convincing
evidence that the bulk of infection by retro-
viruses (including HIV) occurs not through
the infection of cells by free virus but by
cell-to-cell transmission of virus (7, 8).

Second, the cell-cell contact point at which
HIV transfer occurs has fundamental simi-
larities to the immunological synapse
formed between an antigen-presenting cell
and a T cell (9, 10), with the “recipient” T
lymphocyte that acquires the virus playing
the role of a lymphocyte that is activated by
encounter with antigen.

The original observation that gp120 in-
duces the formation of an actin cap was
made in an infection system involving
free virus. Is the observation still rele-
vant? Indeed it is, for at least two reasons.
First, evidence indicates that at the viro-
logical synapse, HIV first buds from the
infected donor cell and then binds to and
fuses with the recipient cell, as in a free
virus system. Second, there are fundamen-
tal similarities between the cytoskeletal
changes seen in the free virus system and
those observed at the virological synapse.
Specifically, the features of HIV-depen-
dent interaction between infected and un-
infected primary T cells strongly parallel
the processes of gp120-induced cap for-
mation: gp120-dependent recruitment of
CD4 and CXCR4 in an actin-dependent
fashion (11). So, we have adopted the
view that studies of cytoskeletal events in
these two systems should be integrated in-
to a single conceptual model.

What does the actin-dependent cap do?
The most appealing hypothesis is that it
promotes formation of the high local con-
centration of the relevant co-receptors

(CD4 and CXCR4) as proposed initially
(3) and thus favors virus binding [and plau-
sibly therefore fusion, which in itself is a
complex process (12) and which for HIV
occurs at the plasma membrane]. High
concentrations of receptors and ligands are
especially useful when cooperativity of
multiple interactions is involved, as is sug-
gested, for example, by high-resolution
electron tomographic images of the three-
dimensional architectures of virions bind-
ing to T cells (13).

How does actin polymerization medi-
ate local enrichment of CD4 and CXCR4?
The work of Jimenez-Baranda and col-
leagues has supplied a key missing piece
to this puzzle, the actin-crosslinking pro-
tein f ilamin (5). Filamin bound to both
CD4 and to CXCR4 (as well as to actin),
and this binding was promoted by gp120
signaling. Knockdown and transfection
studies showed that filamin played a criti-
cal role in the actin-mediated concentra-
tion of CD4 and CXCR4. But the problem
of what molecular process concentrates
actin, CD4, and CXCR4 into a cap or
synapse is still unsolved. Based on analo-
gy to the immunological synapse (14),
one model is that centripetal flow of actin
into the evolving cap drags CD4 and CX-
CR4 along with it. Such centripetal flow
has yet to be demonstrated in models of
virus infection and, if observed, is likely
to be at the later stages of a well-formed
virological synapse.

We propose that much of the accumula-
tion of co-receptors at the cap results from
a simple diffusion-capture process. Signal-
ing by gp120 (see below) induces the local
polymerization of actin in the nascent cap
similarly to that in the lamellipod (15) or in
blebs (16). Once a favorable form of actin
filaments is assembled, filamin will like-
wise (through a diffusion-facilitated en-
counter) accumulate on the actin (Fig. 1).
Finally, diffusion of CD4 and CXCR4 in
the membrane will result in their encounter
with and binding to filamin in the complex
(assuming that their diffusion is not unduly
restricted). Thus, local signal generation,
coupled with diffusion, and not the ordered
transport of molecules, would be sufficient
for assembly of a cap rich in actin, filamin,
CD4, and CXCR4.

Some key signaling events that mediate
the gp120-induced formation of the cyto-
skeletal cap are identified by the work of
Jimenez-Baranda (5). Engagement of CD4
by gp120 induced filamin-dependent activa-
tion of the small guanosine triphosphatase
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infection through the virological synapse. Three types of actin-interacting pro-
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help to reconcile the paradox that actin polymerization promotes initial binding
and fusion steps but inhibits some subsequent early postentry events.
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(GTPase) RhoA. RhoA induced the phos-
phorylation, and thus inactivation, of cofil-
in, thereby promoting the polymerization of
actin, because cofilin is an actin-severing
protein. (Caution should be noted in this
model, however, because cofilin-mediated
severing can also have the opposite effect
of promoting actin polymerization by creat-
ing an increased number of short actin
fragments that act as nucleation sites for
new filaments).

Another family of cytoskeletal proteins,
ezrin/radixin/moesin (ERM), now seems to
play a key role in the formation of the
gp120-induced cap (6). ERM proteins at-
tach cortical actin filaments to the plasma
membrane, and they are abundant in eu-
karyotic cells (17–19). ERM proteins are
autoinhibited in the cytosol and become
activated at the membrane, in part, by
phosphorylation at a C-terminal threonine
residue (designated pERM). Barrero-Villar
et al. showed that HIV gp120 induced
phosphorylation-dependent activation of
ERM proteins in lymphocytes and that one
of them (moesin) was recruited into the
actin-rich cap (6). The study concludes that
ERM proteins are facilitators of early
events in the infection of T lymphocytes by
HIV (these being virion binding to or fu-
sion with the plasma membrane). The ex-
perimental evidence for this conclusion is
robust because the study used multiple
functional readouts of HIV infection and
two approaches to perturb the function of
ERM proteins: transfection and knock-
down. ERM proteins participate in many
normal cellular processes that involve actin
and membrane, such as mitosis, phagocy-
tosis, and peripheral processes such as the
formation of microvilli, f ilopodia, and
neurites (17–20). A plausible role for ac-
tive ERM molecules in this context is in
facilitating the assembly of actin at the
plasma membrane (20) and retaining its
tight linkage to the membrane, which facil-
itates the diffusion-capture process de-
scribed above (Fig. 1). It is important to
note that ERM proteins have not yet been
confirmed to play such a role at the viro-
logical synapse. Moreover, ERM proteins
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Fig. 1. Diagram representing the highly simplified sequence of
events involved in the binding of HIV to lymphocyte membrane. (A)
The initial state of the lymphocyte at the time of initial engagement
of HIV gp120 with CD4. gp120 is randomly distributed on the virus,
and CD4 and CXCR4 are not yet enriched at the contact point. A
loose weave of cortical actin is held at the membrane by sparsely
phosphorylated ERM proteins (pERM). (B) Binding of gp120 to
CD4 signals reorganization of the cytoskeleton. The number of
actin filaments is increased due to local actin polymerization, and

these filaments are attached to the plasma membrane by enrich-
ment of phosphorylated ERM proteins. gp120 becomes enriched at
the interface by mutual co-capping with CD4. CD4 and CXCR4 are
tethered to filamin and are also locally enriched. (C) As the interac-
tion progresses, gp120 undergoes conformational changes to ex-
pose its binding site for CXCR4. The binding of gp120 to CXCR4
modifies its signaling cascade. Cofilin is activated by dephosphoryl-
ation, which contributes to further reorganization, including the sev-
ering of actin. Viral fusion is also occurring at this stage.
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are largely excluded from the immunologi-
cal synapse by mechanisms that include in-
duced dephosphorylation of ERM (21).
Thus, if phosphorylated ERM accumulates
at the virological synapse, it seems to rep-
resent a dramatic deviation from the
paradigm that the virological synapse
closely mimics the immunological synapse.

A provocative issue raised by Barrero-
Villar (6) is the kinetic and spatial associa-
tion of ERM phosphorylation with cap for-
mation and enhanced viral infection. If
phosphorylation of ERM proteins proves to
be not just associated with cap formation
but also a causative factor, it becomes a
high priority for further study. A potential
involvement of RhoA is of interest because
gp120 induced the activation of RhoA (5),
which induces the phosphorylation of
ERM proteins in many cell types, includ-
ing lymphocytes (22, 23). It is increasingly
clear that multiple kinases are involved in
the phosphorylation of ERM proteins (24).
Of note, the kinase that is responsible for
the majority of ERM phosphorylation at
the lymphocyte plasma membrane is spe-
cific to hematopoietic cells (24). It is pos-
sible, therefore, that inhibitors of ERM
kinases could contribute to combinatorial
approaches in HIV therapy, because kinases
are “druggable,” and despite worries about
toxicity or off-target effects, treatment of
other disease states with kinase inhibitors
is exceeding expectations.

Paradoxically, gp120-induced assembly
of an actin-rich cap at the viral entry site al-
so creates potential problems for the virus.
That cortical actin is a barrier to events such
as secretory processes at the plasma mem-
brane was observed long ago in a study of
mast cell degranulation (25). Since then, it
has become clear that cortical actin modu-
lates a wide variety of processes at the plas-
ma membrane (and is in turn modulated by
them). This is also true for HIV, for which
early postentry events are inhibited by poly-
merized cortical actin (4, 26). This inhibi-
tion is overcome by a process of depolymer-
ization of actin that involves cofilin induced
by engagement of CXCR4 by gp120 (4).
The mechanism by which polymerized actin
inhibits infection is incompletely defined. It
is not simply due to steric hindrance of the
movement of the viral core, because the
spacing of the actin meshwork is larger than
the size of the virus core. Wu and co-workers
suggest possible retention of the preintegra-
tion complex on the actin cytoskeleton (4).
Although it has not yet been shown that
ERM proteins contribute to the inhibitory

roles of filamentous actin, we consider it
plausible because active ERM proteins are
usually cleared from the inner aspect of sig-
naling interfaces such as the immunological
synapse (21). Moreover, moesin inhibits
postentry retroviral transport by destabiliz-
ing microtubules (27). Thus, actin and ERM
proteins play dual roles in HIV infection:
facilitating and inhibiting. There is insuffi-
cient data to confidently reconcile these
observations; however, we anticipate that
understanding of the temporal and spatial
complexity is necessary to resolve the para-
doxes. Temporal complexity has already
been observed. For example, phosphoryla-
tion of cofilin is proposed to contribute to
early polymerization of actin (5), whereas
dephosphorylation of cofilin contributes to
the actin remodeling that is necessary soon
thereafter (4). Spatial complexity of the
actin caps, and especially the virological
synapse, are to be expected. Thus, viral
binding may occur at actin- and ERM-rich
subregions of the membrane, but penetra-
tion of the cell may occur at regions that are
relatively devoid of actin and ERM proteins.
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