
the substrate or (ii) those tendons and
apodemes where the maximum possible
force on the tendon or apodeme is deter-
mined by maximum muscular contrac-
tion.
The use of safety factor and TSF de-

scribed above can be generalized beyond
load-bearing structures to make predic-
tions about the relative performance of a
much wider array of biological structures
and systems by redefining safety factor
as the ratio of average realized perform-
ance (S) to average required perform-
ance (Lmx) where, again, these averages
are calculated for a population of individ-
uals. For instance, one would predict
that the average maximum hormonal
output of a given type of endocrine gland
would be greater, relative to the average
threshold output required during stress-
ful conditions, for populations whose
maximum hormonal outputs or threshold
requirements (or both) are more unpre-
dictable. An analogous prediction would
be that the average nectar output of a
given flower type would be greater, rela-
tive to the zero variance output required
to attract pollinators away from another
population, for populations whose nectar
outputs are more unpredictable. There is
already empirical evidence that bumble-
bee foraging decisions could provide the
selective pressures required for this pre-
diction (12).
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Floral Mimicry Induced by Mummy-Berry Fungus Exploits
Host's Pollinators as Vectors

Abstract. Leaves and shoots of blueberries (Vaccinium spp.) and huckleberries
(Gaylussacia sp.) when infected by ascospores ofMonilinia spp. become ultraviolet-
reflective and fragrant and secrete sugars at their lesions. Insects that normally
pollinate these hosts are attracted to the discolored leaves, ingest the sugars, and
transmit conidia to their flowers, resulting in sclerotia (mummy-berry) formation.

Monilinia vaccinii-corymbosi (Sclero- vector-dependent, host-specific plant
tiniaceae), an economically important pathogen appears to be unique.
discomycete fungus, blights leaves and We investigated the interrelationships
vegetative and floral shoots and mummi- among 22 species of pollinating insects
fies fruit of wild and cultivated blueber- (4), Monilinia vaccinii-corymbosi, an un-
ries (Vaccinium spp.; Ericaceae); crop named Monilinia sp. (1), and their re-
yield losses may reach 85 percent in spective hosts, Vaccinium corymbosum,
individual fields (1). This polytrophic, V. vacillans, and Gaylussacia baccata,
dimorphic fungus overwinters on moist between 1976 and 1984 in Greenbelt,
soil as sclerotia in mummified berries (or Maryland (1). These sympatric wild
mummy berries). Unfolding young hosts grow as understory shrubs in moist
leaves of the host are infected by wind- soil in a mixed oak-pine forest; most of
borne, sexual ascospores released from their flowering is completed within 10
apothecia, which arise from the scierotia days, before the tree canopy fully leafs
in early spring; these leaves (blight or out. They have pendant flowers with
wilt stage) produce asexual conidia that poricidal anthers that require insect pol-
are transferred by pollinating insects to lination (Fig. IA) for fertilization (5).
the host's flowers where the ovaries be- The earliest symptom of infection by
come infected, producing seedless, ined- Monilinia is wilting of young leaves and
ible mummy berries (1). shoots, followed within 24 hours by

Various polyphagous insects that cas- browning of the upper side of the droop-
ually feed on exudates or spores cf fun- ing shoots, midribs, and lateral veins
gal plant pathogens are well known to of leaves (Fig. 1, B and C). Discolor-
disperse spores randomly (2). Azalea ation, which may spread to engulf the
flower spot, caused by Ovulina azaleae entire leaf, ranges (in daylight) from
(Sclerotiniaceae), is transmitted by polli- grayish brown to deep brown and dark
nators that accidentally contact spores brown, often noticeably to strongly
(3). We describe the behavior and role of tinged with moderate violet (6); in Gay-
insect pollinators of blueberries and lussacia, the discoloration is dark to
huckleberries (Gaylussacia sp.; Erica- moderate olive with a slight violet sheen
ceae) in transmitting mummy-berry dis- (6). A grayish mantle of conidia, conidio-
eases. The exploitative modification of phores, and occasional hyphae appears
pollinator behavior through induction of on the surface of infected shoots, pe-
floral mimicry in infected leaves by a duncles, petioles, and at the base
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Intracellular Stimulation of an Identified
Neuron Evokes Cardioacceleratory Peptide Release

Abstract. The central nervous system ofthe tobacco hawkmoth, Manduca sexta, is
known to contain two cardioacceleratory peptides (CAP's), both ofwhichfunction in
vivo as cardioregulatory neurohormones. Intracellular electrical stimulation of a

single abdominal ganglion neuron evokes the release of CAP-like bioactivity. This
stimulation-evoked bioactivity is destroyed by prior treatment with protease. The
possibility that intracellular stimulation of a CAP-containing neuron synaptically
activated additional spiking neurons is eliminated.

Neuropeptides in the central nervous
system (CNS) are capable of acting as
neurotransmitters (1-3) and as neurohor-
mones (4-6). It is often easier to define a
role for a neuropeptide if that neuropep-
tide can be unequivocally associated

with an identifiable neuron or neurons.
There are several physiological, anatom-
ical, and pharmacological criteria that
must be met before a neuropeptide can
be established as a neurochemical medi-
ator at the cellular level (7). Most of

these criteria are similar to those for the
rigorous identification of conventional
neurotransmitters (8). One crucial crite-
rion frequently overlooked is the demon-
stration that the neuropeptide is released
when the putative peptidergic neuron is
individually depolarized above thresh-
old. Although peptide release from the
CNS has been shown in several prepara-
tions by treatment with K+-rich saline
(9-11) or by electrical stimulation of pe-
ripheral nerve roots (12-14), it has been
difficult to demonstrate peptide release
resulting from the activity of single cells
regardless of whether the neuropeptide
is acting as a neurotransmitter or as a
neurohormone. We show here that intra-
cellular electrical stimulation of a single,
identified neuron is sufficient to elicit the
release of neuropeptide activity from its
terminal endings.
We have studied the cardioaccelera-

tory peptide (CAP) system in the to-
bacco hawkmoth, Manduca sexta. Earli-
er investigations (15-17) have shown that
two cardioactive neuropeptides, known
as cardioacceleratory peptide 1 (CAP1)
and cardioacceleratory peptide 2 (CAP2),
are present in the pharate adult ventral
nerve cord (VNC). The two CAP's are
coreleased into the hemolymph from the
segmentally repeated transverse nerves
(Fig. 1B) immediately after adult emer-
gence, and they act to increase heart rate
significantly and to facilitate inflation of

Fig. 1. Stimulation of a new MB neuron A B
causes the release of CAP-like bioactivity. (A)
Camera lucida drawing of a new MB neuron /I
in a pharate adult abdominal ganglion. We

DN

stained the cell by passing positive current DN
through an intracellular micropipette filled
with 48 percent hexamine cobaltous chloride.
In the preparation a modification of Timm's | i.
silver intensification procedure was used (23).
The bifurcating axon exits the ganglion via
both ventral nerves. The cell terminates bilat- VN
erally in neurosecretory endings along the MN
length of the transverse nerve (24). (B) Dia-
grammatic representation of the experimental V N n'TN
protocol. We impaled a soma of a new medial 1_ Jll Ion
bilateral (MB) cell, using standard glass mi- siC lote
croelectrodes, and depolarized it by passing
d-c current pulses for up to 15 minutes at a C Stlm Post
frequency of not greater than 0.5 Hz. Al-
though not visible in situ, each new MB cell 4 IC
was identified unequivocally on the basis of
its cell body position in the ganglion, the . -
trajectory of its axons, and the characteristic T- _1 so
electrical properties of its soma. As is typical 20 sec
of insect neurosecretory cells (24, 25), the
somata of the new MB neurons were electrically excitable, capable of supporting overshooting action potentials with durations of approximately
50 msec. Thus, as a group these neurons were uniquely recognizable during recording sessions. As it proved impossible to maintain somatic
activity with dye-filled microelectrodes, we were unable to distinguish between the two anteriormost pairs of new MB cells. We collected CAP
activity by erecting a Vaseline well (volume -0.1 ml) around the transverse nerve at a point distal to the transverse nerve-ventral nerve
anastomosis. The contents of the well were collected at various times, frozen on Dry Ice, and stored at -20°C, usually for less than 24 hours, until
bioassayed for CAP activity. Abbreviations: TN, transverse nerve; DN, dorsal nerve; VN, ventral nerve; MN, median nerve. (C)
Cardioacceleratory activity of samples collected during intracellular stimulation of a new MB cell. Each sample was sequentially bioassayed on
the same in vitro Manduca heart as described (16, 17, 21). For these experiments, the variability in the basal heart rate was < I percent. Arrows
denote application of samples. The heart rate increased after application of the Stim sample. A standard lepidopteran saline (16) was used in all
experiments.
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