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Mercury’s near-zero obliquity and impact-roughened topography (1) 
prevent direct sunlight from reaching substantial portions of its polar 
regions. Lacking major convective or conductive sources of heat, the 
permanently shadowed, near-surface regolith experiences temperatures 
similar to those of the icy Galilean satellites (2). It has long been be-
lieved on theoretical grounds that such conditions are favorable to the 
accumulation of volatiles (3, 4). Even with Mercury’s close proximity to 
the Sun, extremes of daytime temperature are not expected to allow sur-
face heat to penetrate regolith to substantial depth, allowing near-surface 
water ice, if present, to remain stable against sublimation for billions of 
years (2). Such hypotheses were renewed when Earth-based radar obser-
vations of Mercury, at wavelengths from 3.6 to 70 cm (5–9), revealed 
regions of high backscatter and depolarization at both poles. Radar ob-
servations suggested that deposits of nearly pure water ice up to several 
meters thick lie at or near the surface. Analysis of altimetry and rough-
ness measurements from the Mercury Laser Altimeter (MLA) (10, 11) 
on the MErcury Surface, Space ENvironment, GEochemistry, and Rang-
ing (MESSENGER) spacecraft (12) indicates that craters hosting radar-
bright deposits at high northern latitudes are not anomalously shallow, 
nor do they display distinctive roughness properties in comparison with 
craters that lack such deposits (13). Consequently, the radar-bright mate-
rial does not form a thick layer overlying regolith (13). A thinner surfi-
cial layer containing substantial concentrations of ice would, however, 
be optically brighter than the surrounding terrain (14) and should be 
detectable by active remote sensing. 

We report here measurements with MLA of surface reflectance in 
permanently shadowed north polar regions of Mercury. The MLA in-
strument illuminates surface spots 20–80 m in diameter at 350–450-m 
intervals (10). The receiver system measures threshold-crossing times of 
the received pulse waveforms at two voltages (15). A single low-

threshold crossing provides surface 
elevation, and the timing of the rising 
and falling signal levels for strong 
returns at both low and high thresholds 
enables MLA to estimate the received 
pulse energy and make active meas-
urements of surface reflectance rs via 
the lidar link equation (16, 17) and 
preflight sensor calibrations (10). 

During its primary mapping mis-
sion, MESSENGER orbited Mercury 
in an eccentric orbit with a 12-hour 
period and a ~200–400-km periapsis 
altitude at 60-70°N. In this orbit the 
MLA ranged to Mercury from 29 
March 2011 to 16 April 2012, densely 
sampling the north polar region in 
nadir mode northward to 83.5° N and 
sparsely in off-nadir mode at more 
northerly latitudes (Fig. 1A) (1). More 
than 4 million topographic and 2 mil-
lion reflectance measurements were 
collected at latitudes greater than 65°N 
in the first year of mapping. Of 700 
orbital profiles, 60 targeted latitudes 
higher than 84°N with off-nadir rang-
es, some yielding energy measure-
ments and some not (fig. S1). Orbital 
geometry and power and thermal con-
straints precluded observations of 
many polar craters, and measureme nts 
of those that were accessible at oblique 
incidence returned noisier measure-

ments than at nadir orientation. 
A map of radar cross-section in the north polar region at S-band 

(12.6-cm wavelength) (9) (Fig. 1B) shows many regions of high 
backscatter cross-section; other such regions extend beyond the limits of 
the map to latitudes as low as 67°N. The polarization characteristics of 
these regions are suggestive of cold-trapped volatiles (5, 6, 18). These 
radar-bright (RB) features generally coincide with high-latitude, steep-
walled craters of which the southern floors are permanently shadowed 
from direct sunlight because of Mercury’s near-zero obliquity. The larg-
est RB features lie north of 85° N, whereas the 108-km-diameter Proko-
fiev crater [previously given the informal name “K” (18)] has a crescent-
shaped RB region behind its steep (17° slope) north-facing wall, just 
south of 85°N (Fig. 1B). With a depth-to-diameter ratio of 0.025, typical 
for a complex crater of this size, only a portion of its floor can lie in 
permanent shadow, consistent with the shape of the RB region. An un-
named 1.5-km-deep, 18-km-diameter crater “Z” lies on the central floor 
of Prokofiev and is RB. The 62-km-diameter crater Kandinsky (formerly 
“J”) to the north has a nearly circular RB region (Fig. 1B). These and 
similar regions may now be subjected to illumination models that utilize 
detailed polar topography (19). 

A plot of the maximum illumination flux over 10 solar days is 
shown in Fig. 1C. We modeled the primary shadowing of the finite disk 
of the Sun with the orbital and rotational geometry of Mercury following 
an earlier methodology (20). Zero flux corresponds to areas of near-
permanent shadow that receive only scattered light. Mercury’s orbital 
eccentricity and 3:2 spin–orbit resonance result in lower average solar 
flux near longitudes of 90° and 270°E. Shallow, degraded craters and 
craters lying near the 0° and 180°E longitudes of Mercury’s equatorial 
“hot poles” have higher average illumination. Except for relatively fresh 
craters on the northern smooth plains (1), there are few RB features 
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along these azimuths south of 85°N. 
The reflectance measurements binned at 1  1 km resolution are 

shown in Fig. 1D. The log-normally distributed quantity rs has a mean of 
0.17 ± 0.05, and 98% of returns have rs < 0.3 (fig. S1). For comparison, 
the broadband geometric albedo of Mercury from space is 0.142 (21). 
About 7% of returns comprise a secondary “MLA-dark” (MD) mode 
distinguished by rs < 0.1. This mode is seen in regions that are markedly 
darker than their surroundings. These regions coincide with areas where 
many received pulses do not trigger at the high threshold (fig. S2), alt-
hough weak laser output, oblique incidence, steep terrain, and/or ex-
treme range, as well as low reflectivity, can lead to poor signal recovery. 
The deficit of energy measurements in many MD regions indicates that 
the measured rs values are upper bounds for surface albedoes that are 
lower by factors of 2–3 than their surroundings. 

Many of the MD regions are associated with polar craters containing 
RB material (Fig. 2). The larger MD regions generally enclose the RB 
features. MD returns lie mainly within regions of very low peak illumi-
nation, although not necessarily permanent shadow. The reflectance is 
low over the southern floors and the northward-facing walls of virtually 
all craters at latitudes between 75° and 84°N. Darkening also occurs on 
some poleward-facing exterior rim slopes of craters in the otherwise 
smooth plains within the 320-km-diameter Goethe basin. Such darkening 
extends into regions that are partially illuminated. 

The asymmetric distribution of MD regions with respect to terrain 
slope direction does not simply result from observing geometry, surface 
roughness, or the magnitude of the surface slope. The pulses returning 
from the MD portions are not noticeably wider or narrower than those 
from the illuminated portions, nor do equator-facing portions of the floor 
show lower reflectance. If surface slope or roughness were causing re-
duced energy return, the darker regions would have a circular outline. 
The correspondence of dark material with pole-facing slopes and the 
lack of such darkening in most craters southward of 70°N appears to rule 
out instrumental effects or observational geometry as a cause of the surf-
icial darkening. 

To assess the relationship between MLA-dark features, RB deposits, 
and illumination, we examined (22) 175 regions of low illumination 
identified as lying within craters varying in size from ~7 to 108 km in 
diameter (23) and from 65°N poleward (Table 1). All craters with RB 
deposits and sufficient MLA sampling show at least some MD features 
in their poleward facing portions. Of 128 RB craters with RB deposits, 
96 contain collocated MD portions, whereas there are 28 additional cra-
ters with MD material that lack a corresponding RB signature. Two such 
craters (b5, f5) that are shown in Fig. 2 and fig. S3 are relatively pristine 
(> 1 km deep), so their interiors may not be visible to Earth-based radar. 
Twelve such craters are < 14 km in diameter. Those craters with MD 
material that lack a RB signature and are 14 km or larger in diameter are 
at latitudes south of 80°N. As with the RB regions, MLA-dark deposits 
are more prevalent near 90° and 270°E, longitudes that receive less aver-
age illumination as a result of Mercury’s spin–orbit resonance and ec-
centric orbit, and in fresh craters on the smooth plains. At latitudes north 
of 75°N, 15 similar shadowed regions (putatively small craters) with 
neither a RB signature nor MD material are located mainly on an elevat-
ed area surrounding Purcell crater between longitudes 170° and 230°E. 
Radar coverage may be partially obscured by rough terrain in this sector, 
but the lack of RB features more likely has a thermal origin at these “hot 
pole” longitudes in locations where partial illumination might preclude 
stability of near-surface water ice, as illustrated in fig. S4. 

Although the MLA-dark regions are more abundant and extensive 
than RB regions, there are at least nine areas within the largest RB re-
gions at very high latitudes in which the MLA reflectances are optically 
bright. The nine craters hosting RB material, at latitudes between 82.5° 
and 88.5°N, have portions with rs > 0.3 as well as areas that are anoma-
lously dark or that return no reflectance measurements. The two most 

prominent such craters are north of 84.9°N latitude. 
Craters Kandinsky and Prokofiev, for which high radar cross-

sections suggest thick, near-surface ice deposits (18), are shown in Fig. 
3. Their regions of permanent shadow (Fig. 1C) have many reflectance 
values in excess of 0.3 (pink or white symbols), especially along the 
southern portion of Prokofiev. Three profiles crossing the RB region are 
plotted along-track in Fig. 3B–D. Profile 3B grazed the uppermost kilo-
meter of the crater wall and recorded no high-threshold detections in 
regions of shadow. Profile 3C passed 2 km into the interior along the 
north-facing wall and shows many strongly reflective returns (red sym-
bols) up to the edges of the crater, where such returns dropped out for 
several seconds. Profile 3D reached portions of the crater floor that are 
in permanent shadow and recorded variable reflectance. These profiles 
are the only ones to date obtained over the shadowed interior of Prokofi-
ev at the relatively small incidence angles (6°–7°) for which reflectance 
measurements are most reliable. Two profiles nearest to crater Z (Fig. 
3A) also include returns with rs > 0.3, as do several traversing crater 
Kandinsky to the north, but the measurements are noisier owing to inci-
dence angles greater than 25°. 

The observations of 1064-nm reflectance from laser altimetry thus 
fall into three categories: most are typical of Mercury reflectivity as a 
whole; a subset is much darker; and a smaller subset is substantially 
brighter. The association of MD regions with RB regions in near-
permanent shadow suggests that a thin, radar-transparent layer of opti-
cally dark material overlies and surrounds the postulated polar ice depos-
its. If water ice were present in the ground as a matrix between mineral 
grains, it could lower the reflectance relative to dry ground but would 
sublimate rapidly and lose optical contrast if exposed to high tempera-
tures. The presence of MD regions in many smaller craters without RB 
deposits, areas where scattered light raises average temperatures (2, 24), 
indicates the presence of volatiles that are both darker than water ice and 
stable to higher temperatures. 

The identification of optically bright regions associated with large 
RB features at the highest (>84.9°N) latitudes is consistent with the hy-
pothesis that water ice is exposed at the surface in areas where surface 
temperatures are never sufficiently high for substantial loss by sublima-
tion. The surface measurements are averages over footprints that are 
dozens of meters in extent and could represent a thin or unevenly dis-
tributed layer of optically bright material that has not been covered by 
dust or regolith. To the extent that MLA-bright and RB characteristics 
are sampling the same material, however, the associated deposits must 
have a thickness of at least several meters. The reflectance measure-
ments presented here strongly suggest that one of the largest and deepest 
regions of permanent shadow in crater Prokofiev is a host for water ice 
deposits exposed at the surface. 

The existence of these dark and bright surfaces and their association 
with topography indicates that their formation processes operated during 
geologically recent times and may be active on Mercury today. The rates 
of darkening and brightening must be higher than those for processes 
that act to homogenize surface reflectance, such as impact gardening. 
Were vertical mixing by impact gardening dominant at the meter scale, 
we would expect that the polar deposits would have reflectance values 
(and radar backscatter characteristics) more similar to those of surround-
ing terrain. 

Detailed thermal models (25) suggest that surface temperatures in 
the majority of the high-latitude craters with RB deposits that MLA has 
observed to date are too warm to support persistent water ice at the sur-
face, but the temperatures in their shadowed areas are compatible with 
the presence of surficial dark organic material. Modeled subsurface tem-
peratures in these dark regions are permissive of stable water ice beneath 
a ~10-cm-thick layer of thermally insulating material. In contrast, ther-
mal modeling of the bright areas is supportive of surface water ice. This 
interpretation of the surface reflectance at 1064 nm is fully consistent 
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with the radar results as well as with neutron spectroscopic measure-
ments of Mercury’s polar regions (26). The bright and dark areas can be 
ascribed collectively to the deposition of water and organic volatiles 
derived from the impacts of comets or volatile-rich asteroids on Mercu-
ry’s surface and migrated to polar cold traps via thermally stimulated 
random walk (27–29). 
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Table 1. Classification of 175 craters according to radar and opti-
cal characteristics of associated deposits. 

 

Radar MLA dark MLA bright/mixed MLA normal MLA undetermined 

Bright 96 9 0 24 

Dark 28 0 15 3 
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Fig. 1. Maps of topography, 
radar cross-section, solar 
illumination, and reflectance, in 
polar stereographic projection 
southward to 75°N. Kandinsky 
and Prokofiev craters are 
outlined in three of the four 
panels. (A) Topography (color 
scale in km) and shaded relief; 
the datum is a sphere of radius 
2440 km. (B) Earth-based radar 
image (9) displayed as 
dimensionless radar cross-
section per unit area. (C) 
Maximum incident solar flux over 
a 10-year period as a percentage 
of the solar constant at 1 AU 
from an illumination model. The 
red box outlines the region 
shown in Fig. 2. (D) 1064-nm bi-
directional reflectance from MLA 
low- and high-threshold 
measurements in near-nadir 
directions, median-averaged in 1 
km by 1 km bins. At latitudes 
poleward of 84°N, MLA obtained 
only a limited number of off-nadir 
profiles, and the projected 
reflectance data in this region are 
interpolated by a nearest-
neighbor weighted average only 
within 2 km of data whose 
incidence angles were less than 
10°. 
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Fig. 3. (A) MLA reflectance measurements (colored dots) of the north polar region from longitude 0° to 90° E and latitude 82.5° to 
90° N. Background is a mosaic of MDIS (34) frames at different illumination geometries and has a nonlinear contrast stretch for 
visibility. Three profiles through Prokofiev (b-b’, c-c’, d-d’) were acquired at near-nadir orientation. Profiles through Kandinsky were 
acquired at ~30° off-nadir orientation. (B,C,D) Profiles of height (black) and reflectance (red dots) through Prokofiev acquired on 22-
24 March 2012 starting at 0308 UTC on each day, at a 5-7° nadir angle. Vertical exaggeration is 10:1. The profiles are centered at 
longitude 60°E and traverse the poleward-facing wall of Prokofiev crater in an approximately west-to-east direction. The blue lines 
show the modeled extent of low average solar flux (< 50 W m−2 or < 0.04 of terrestrial) 

Fig. 2. Regional view of the area outlined in Fig. 1, in 
polar stereographic projection. Red circles show the 
outlines of six craters. (A) Maximum incident solar flux, 
as a percentage of the solar constant at 1 AU. (B) Radar 
cross-section per unit area. The projected radar map (9) 
has been shifted by 2 km to achieve optimal registration 
with the MLA-based maps. Regions of interest (22) are 
labeled. (C) MLA reflectance (colored dots). 
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