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TLR11 Activation of
Dendritic Cells by a Protozoan

Profilin-Like Protein
Felix Yarovinsky,1* Dekai Zhang,3 John F. Andersen,2

Gerard L. Bannenberg,4. Charles N. Serhan,4 Matthew S. Hayden,3

Sara Hieny,1 Fayyaz S. Sutterwala,3 Richard A. Flavell,3

Sankar Ghosh,3 Alan Sher1*

Mammalian Toll-like receptors (TLRs) play an important role in the innate
recognition of pathogens by dendritic cells (DCs). Although TLRs are clearly
involved in the detection of bacteria and viruses, relatively little is known
about their function in the innate response to eukaryotic microorganisms. Here
we identify a profilin-like molecule from the protozoan parasite Toxoplasma
gondii that generates a potent interleukin-12 (IL-12) response in murine DCs
that is dependent on myeloid differentiation factor 88. T. gondii profilin ac-
tivates DCs through TLR11 and is the first chemically defined ligand for this
TLR. Moreover, TLR11 is required in vivo for parasite-induced IL-12 production
and optimal resistance to infection, thereby establishing a role for the recep-
tor in host recognition of protozoan pathogens.

Mammalian Toll-like receptors (TLRs) play

a fundamental role in the initiation of im-

mune responses to infectious agents through

their recognition of conserved microbial mo-

lecular patterns (1). TLR signaling in antigen-

presenting cells, such as dendritic cells (DCs),

results in the production of cytokines and

costimulatory molecules that are required for

initiation of the adaptive immune response

(2, 3). Human and mouse TLR family mem-

bers have been shown to have distinct ligand

specificities, recognizing molecular structures

such as lipopeptide (TLR2) (4), lipopolysaccha-

ride (TLR4) (5, 6), flagellin (TLR5) (7), double-

and single-stranded RNA (TLR3 and TLR7)

(8–11), and CpG motifs of DNA (TLR9) (12).

Although several TLRs have been shown to be

important for immune responses to microbial

products in vitro, their role in host resistance

to infection appears to be complex and not
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readily attributed to the function of a single

TLR (13). Of particular help in assessing the

role of TLR functions has been a mouse car-

rying a deletion in the gene encoding myeloid

differentiation factor 88 (MyD88), an adap-

tor molecule that is essential for most TLR,

interleukin-1 (IL-1), and IL-18 signaling (14).

MyD88–/– mice have been shown to be acutely

susceptible to a wide variety of bacterial, fun-

gal, protozoan, and viral agents (13).

A critical host mediator produced in re-

sponse to TLR activation is IL-12. This cyto-

kine is synthesized by DCs, macrophages, and

neutrophils and plays a pivotal role in the

production of interferon-g (IFN-g), which in

turn activates antimicrobial effector cells (15).

In previous studies, we have shown that IL-12

is essential for host resistance to the proto-

zoan parasite Toxoplasma gondii and that

DCs produce large quantities of the cytokine

in response to stimulation with this pathogen

(16, 17). Both host resistance to T. gondii

and parasite-induced IL-12 production by DCs

have been shown to require MyD88, which

strongly suggests the involvement of TLR

signaling (18). Nevertheless, the question of

which TLR molecule or molecules govern

T. gondii–induced IL-12 production by DCs

remained unanswered.

In addition to MyD88 signaling, activa-

tion of DCs by T. gondii has been shown to

involve ligation of the chemokine receptor

CCR5 by a T. gondii protein, cyclophilin-18

(C-18) (19, 20). Because stimulation by C-18

does not explain the MyD88 dependence of

the IL-12 response to the parasite, we searched

for an additional ligand in T. gondii that might

trigger DC IL-12 production by a MyD88-

dependent but CCR5-independent pathway.

We used DCs from CCR5-deficient mice as

responder cells in purifying an IL-12–inducing

fraction from STAg, a soluble extract of the

tachyzoite stage of the parasite (17). Pilot

studies indicated that the cytokine-stimulating

activity was protease-sensitive (fig. S1A), and

we therefore fractionated STAg by gel filtra-

tion (Fig. 1A). A low-molecular-weight peak

consisting of the two most active fractions

(B7 and B8) was further separated, yielding a

single fraction (fig. S1B) that stimulated high

levels of IL-12 production and contained a sin-

gle silver-stained band on SDS–polyacrylamide

gel electrophoresis (SDS-PAGE) (Fig. 1B),

which was analyzed by mass spectrometry,

followed by Sequest peptide mapping (fig.

S1C). A high-scoring match was found for a

tryptic peptide in the T. gondii clustered ex-

pressed sequence tag (EST) database (http://

ToxoDB.org). Based on its complete sequence,

the T. gondii protein identified by us has a

predicted molecular mass of 17.5 kD and con-

tains consensus motifs shared by profilins, a

class of actin-binding proteins (21). Database

searches performed with the T. gondii pro-

filin (PFTG) sequence revealed significant

homology only with profilin genes that are

present in other apicomplexan protozoa (Fig.

1C and figs. S2 and S3).

The cloned T. gondii profilin-like gene

was used to transform Escherichia coli, and

1Immunobiology Section, Laboratory of Parasitic Dis-
eases; 2Medical Entomology Section, Laboratory of
Malaria and Vector Research; National Institute of
Allergy and Infectious Diseases, National Institutes
of Health, Bethesda, MD, USA. 3Section of Immuno-
biology and Department of Molecular Biophysics and
Biochemistry, Howard Hughes Medical Institute, Yale
University School of Medicine, New Haven, CT 06520,
USA. 4Center for Experimental Therapeutics and Reperfu-
sion Injury, Department of Anesthesiology, Perioperative
and Pain Medicine, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA 02115, USA.

*To whom correspondence should be addressed.
E-mail: asher@niaid.nih.gov (A.S.); fyarovinsky@niaid.
nih.gov (F.Y.)
.Present address: Departamento Genética Molecular
de Plantas, Centro Nacional de Biotecnologı́a, 28049
Madrid, Spain.

Fig. 1. Isolation of a major IL-12–inducing protein from T. gondii. (A) Initial separation of soluble
tachyzoite extract (STAg) on Superdex-75 Sepharose and assay of individual fractions for their
ability to stimulate IL-12 production by splenic DCs from CCR5–/– mice. mAU, relative milliabsorb-
ance at 280 nm. (B) Further purification by Mono Q anion-exchange chromatography of fractions B7
and B8 from the first separation. The inset at right shows a silver-stained SDS-PAGE analysis of the
fraction (C2) with peak IL-12–inducing activity compared with the starting sample (S.S.). (C) Amino
acid sequence alignment of the cloned T. gondii IL-12–inducing protein with its nearest homologs in
the National Center for Biotechnology Information database. All these sequences are profilin-like
proteins from the related apicomplexan parasites Neospora caninum (93% homology), Crypto-
sporidium parvum (63% homology), Cryptosporidium hominis (63% homology), Eimeria tenella (67%
homology), Plasmodium falciparum (58% homology), and Theileria parva (53% homology).
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the resulting lysate induced IL-12 production

by DCs at approximately 20 times the level

seen with controls (fig. S4A). The purified

PFTG recombinant protein induced potent

IL-12 p40 and IL-12 p70 responses from

splenic DCs and was approximately 100 times

more active in a dose-response analysis than

unfractionated STAg (Fig. 2). In contrast,

recombinant C-18 was found to be less ac-

tive than STAg in inducing IL-12 production

(20, 22).

T. gondii is known to preferentially induce

IL-12 production in CD8aþ DCs (17), and a

similar DC subset restriction was observed for

IL-12 (Fig. 2 and fig. S4B), tumor necrosis

factor (TNF), and IL-6 induction by PFTG

(fig. S4C). Consistent with the known MyD88

dependence of T. gondii–induced cytokine

production (18), DCs from MyD88–/– mice

displayed severely impaired IL-12, TNF, and

IL-6 responses to PFTG (Fig. 2 and fig. S4,

B and C).

Two distinct TLRs have been implicated

in the recognition of protein ligands. TLR5

has been shown to be triggered by bacterial

flagellin, whereas TLR11 signaling is stimu-

lated by protease-sensitive molecules in uro-

pathogenic bacteria (7, 23). We observed that

TLR11 but not TLR5 transfectants displayed

dose-dependent nuclear factor kB (NF-kB)

activation when stimulated with PFTG

(Fig. 3A). We next compared the response

to PFTG and STAg stimulation of splenic

DCs from TLR11–/– mice with the response

of DCs from other TLR-deficient mice. Unlike

DCs from wild-type animals, TLR11–/– DCs

failed to produce IL-12p40 (Fig. 3B), TNF,

or IL-6 (22) in response to either PFTG or

STAg at doses as high as 1 mg/ml, whereas

no significant defects in cytokine response

were observed with comparable DC popula-

tions from TLR2- (4), TLR3- (8), TLR4- (6),

TLR7- (24), or TLR9-deficient (12) mice (fig.

S5A) (22). Fluorescence-activated cell sorter

analysis confirmed that the defective re-

sponse observed with the TLR11–/– cell pop-

ulation was not the result of a deficiency in

CD8aþCD11cþ DCs (fig. S5B). TLR11 mRNA

was detected in both CD8aþ and CD8a–

DCs, although at higher levels in the former

subpopulation (fig. S5C).

To investigate whether the PFTG-TLR11

interaction was also critical for IL-12 induc-

tion in vivo, wild-type and TLR11–/– mice

were injected with STAg or PFTG and ex-

amined for serum cytokine levels. In contrast

to the control animals, which produced a vig-

orous IL-12 response, TLR11–/– mice failed

to produce detectable levels of the cytokine

(Fig. 4A). Moreover, splenic DCs in STAg-

or PFTG-injected TLR11–/– mice as well as

MyD88–/– mice failed to migrate into T cell

areas (Fig. 4B) or stain with monoclonal

antibody to IL-12 (22), which is the response

typically seen in wild-type animals (17). Fi-

nally, to test whether TLR11 also governs

IL-12–dependent host resistance to live para-

site infection, control and TLR11–/– mice were

infected with ME-49, an avirulent T. gondii

strain. In contrast to infected wild-type animals,

which produced high levels of circulating IL-

12p40 and IFN-g, T. gondii–exposed TLR11–/–

mice displayed low serum IL-12 levels, which

were only slightly elevated above those seen in

MyD88–/– animals, as well as reduced levels

of IFN-g (Fig. 4C). Nevertheless, in contrast

to MyD88–/– animals, the infected TLR11–/–

mice survived the acute phase of infection.

However, the TLR11–/– mice clearly showed

impaired resistance, as was made evident by

a nearly fivefold elevation in the numbers of

brain tissue cysts relative to wild-type ani-

mals measured during the chronic phase of

infection (Fig. 4D).

The results presented here identify the first

chemically defined ligand for TLR11 and dem-

onstrate previously unappreciated roles for

TLR11 signaling in pathogen-induced cyto-

kine production by DCs, as well as host

resistance to protozoan infection. The initial

observation that proteinase K digestion de-

stroys the ability of uropathogenic E. coli ly-

sates to stimulate TLR11 had suggested that

this receptor recognizes proteins (23). Our

findings confirm this hypothesis by demon-

strating direct TLR11 stimulation by a re-

combinant parasite protein. Although studies

are in progress to determine whether struc-

turally related ligands also exist in uropatho-

genic bacteria, T. gondii profilin homologs

are clearly present in other apicomplexan

parasites (Fig. 1C and figs. S2 and S3). In

this regard, we have found that recombinant

profilins from Cryptosporidium parvum and

Plasmodium falciparum induce IL-12 produc-

tion in varying degrees (fig. S6), and a profilin

cloned from Eimeria tenella was recently

Fig. 3. PFTG is a TLR11
ligand. (A) PFTG stim-
ulates TLR11- but not
TLR5-transfected cells.
CHO-K1 cells transfected
with empty vector (black
bars), TLR5-expressing
vector (white bars, left pan-
el), or TLR11-expressing
vector (gray bars, right
panel) were stimulated
with increasing con-
centrations of recom-
binant PFTG, STAg (1
mg/ml), flagellin C (1
mg/ml, InvivoGen), or
left untreated in medi-
um (med), and NF-kB
luciferase activity was
measured 4 hours la-
ter. The data shown
are means of duplicate
points from a represent-
ative experiment out
of two performed. (B) TLR11 is required for the IL-12 response of DCs to both PFTG and STAg. Total
splenic DCs from wild-type (black bars) or TLR11–/– (gray bars) mice were exposed to graded doses
of either STAg, PFTG, or CpG (10 mM), and IL-12p40 production was measured after overnight
incubation. The data shown are the mean T SD of triplicate assays performed at each dilution and
are representative of three experiments performed (G0.05 0 below the limit of detection).
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shown to have similar activity (25). Together

these findings suggest that TLR11 may broad-

ly recognize apicomplexan profilins.

Host resistance to T. gondii in mice has

previously been shown to depend on both

MyD88 and IL-12 production, and DCs are a

major source of this cytokine (16–18). The

data presented here establish TLR11 as the

major pattern recognition receptor involved

in the triggering of DC IL-12 production

by T. gondii and identify the first parasite-

derived protein TLR ligand. Although DC

IL-12 production appeared to be almost to-

tally impaired in infected TLR11–/– mice,

these animals, unlike either MyD88–/– or IL-

12–/– mice (18), retained partial resistance to

challenge and survived the acute phase of the

infection, most likely because of a residual

IFN-g response. This unexpected resistance

may reflect the contribution of other MyD88-

dependent IL-1/TLR family members (13)

functioning together with the small amount of

IL-12 still produced in the infected TLR11–/–

mice. In this regard, it is of interest that

TLR2–/– mice show increased susceptibility

to T. gondii infection, but only when abnor-

mally high challenge doses are used (26).

Rodents are important intermediate hosts

in the natural life cycle of T. gondii, and al-

though it causes disease in humans, the para-

site is also a major pathogen of livestock.

Although our results establish a role for TLR11

in the response of mice to T. gondii, human

TLR11 is nonfunctional because of the pres-

ence of a stop codon in the gene (23). At

present, it is not clear whether TLR11 rec-

ognition of T. gondii is of importance in lim-

iting infection in other mammalian species or

whether humans use alternative pattern rec-

ognition receptors in the innate response to

T. gondii.

The T. gondii profilin-like molecule de-

scribed here is the second known microbial

protein recognized by a TLR, the first being

flagellin, the ligand for TLR5 (7). Flagellin

is required for bacterial motility, and the re-

gion of the molecule involved in TLR5 in-

teraction is highly conserved and necessary

for this function (27). Profilin-like molecules

structurally related to PFTG are present in a

number of apicomplexan protozoa. Although

their exact cellular functions have not been

established, their predicted actin-binding ac-

tivity suggests that, like flagellin, they may

be involved in parasite motility and/or in-

vasion (28). Studies are in progress to both

define the structural domain in PFTG that is

necessary for TLR11 interaction and to de-

termine whether it is phylogenetically con-

served among related protozoa and therefore

serves as a pathogen-associated molecular

pattern for this group of eukaryotes.
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Fig. 4. TLR11 plays a major role in the in vivo IL-12 response to STAg and PFTG as well as to
infection with live T. gondii. (A) TLR11 is required for IL-12 production in response to injected
STAg or PFTG. TLR11 knockout (KO), littermate controls, and MyD88 KO mice (n 0 3 or 4 per
group) were injected intraperitoneally with 10 mg of STAg or recombinant PFTG and were bled at
the time points indicated. The data shown are the group means T SD from duplicate IL-12p40
enzyme-linked immunosorbent assay (ELISA) measurements performed on each mouse. (B) TLR11
is required for the migration of splenic DCs induced by STAg or PFTG. TLR11–/– or wild-type (WT)
animals were injected with STAg or PFTG as described above, and spleens were removed 6 hours
later for immunocytochemistry. The brown stain indicates CD11cþ cells, whereas the blue stain
marks B220þ cells to localize B cell areas in the spleen. The images shown are representative of
multiple sections examined in three or four mice per group. Sections from injected MyD88–/– mice
were indistinguishable from those from TLR11–/– mice (22). (C) TLR11–/– mice infected with an
avirulent strain of T. gondii display deficient IL-12 and IFN-g production. C57BL/6, MyD88–/–, and
TLR11–/– mice (five animals per group) were infected with an average of 20 cysts per mouse of the
ME49 strain of T. gondii, and serum IL-12p40 and IFN-g responses were measured 5 days later by
ELISA. The data shown are pooled from two individual experiments that gave comparable results.
(D) Cumulative survival of the mice shown in (C). All surviving animals were killed on day 30 and
brain cysts counts were determined as a measure of infection level. The cyst numbers shown are
the pooled means T SD from the two experiments performed.
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