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[ISO 9847]
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1 Introduction

Concentrated Solar Power (CSP) projects require accurate assessment and monitoring of the

available direct beam resource. To this end, ground measurements on site are inexpendable.

Pyrheliometers with thermopile sensors as specified in [ISO 9060] are the standard instruments

for field measurements of direct beam irradiance. During long-term deployment however, their

comparatively high accuracy can only be maintained if the window through which the direct

beam enters the instrument is cleaned frequently [Geuder and Quaschning, 2006]. In the case

of long-term solar resource assessments on site this can pose a problem in terms of logistics

and maintenance costs. This is particularly relevant, if the measuring site is in a remote

location.

Rotating Shadowband Irradiometers (RSI) on the other hand have a lower accuracy to start

with due to systematic errors of its photodiode sensor. However, they are less affected by

soiling [Geuder and Quaschning, 2006] and provide higher accuracy in long-term measuring

campaigns at sites where cleaning is not possible on a daily basis. Furthermore, they are

comparatively inexpensive and do not require as much additional equipment i.e. a tracking

system. A solar panel is sufficient for power supply.

The systematic errors of the sensor used in RSIs are caused by cosine and temperature effects

and its spectral non-uniform responsivity. A number of correction functions can be employed

to reduce these errors significantly. Additionally, a thorough calibration of the sensor with

application of the correction functions can further improve the quality of measurements.

The calibration procedures of thermopile pyranometers and pyrheliometers are well docu-

mented in standards such as [ISO 9059], [ISO 9846] and [ISO 9847]. Because these standards

are not applicable to RSIs due to their inherent characteristics specific calibration procedures

for this type of instrument were developed. This work shall discuss the differences between

calibration procedures for thermopile irradiometers and RSI and aspects which can be trans-

ferred from the existing standards to RSI calibration.

Some of the existing calibration methods have been successfully employed for a number of

years. However, a thorough assessment of the necessary calibration duration with multiple

measurements from several instruments has not been carried out before this project. There-

fore, besides the comparison of calibration methods this work examines to which extend the

RSI calibration results fluctuate in dependence on the duration of the calibration measuring

period and furthermore provide a basis on which to choose the most suitable duration.

1



2 Radiometers

2.1 General remarks on thermopile and silicon sensors

Both, thermopiles and photodiodes (silicon sensors) are commonly used in irradiometers.

However, while [ISO 9060] defines the specification and classification of pyranometers and

pyrheliometers with thermopile sensors, it explicitly excludes so called silicon-pyranometers

(short, Si-pyranometers) due to their specific attributes. ISO working groups are discussing

an update could overcome this restriction. The following will point out the differing charac-

teristics of silicon sensors and thermopile sensors.

A thermopile is a serial circuit of thermocouples. Thermocouples are connecting points be-

tween wires from different materials which generate an electric potential upon exposure to

temperature differences between one connecting point and another. The materials can be

two metals such as antimony and bismuth. Combining a number of thermocouples into a

thermopile increases the generated voltage signal [Pedrotti et al., 2008]. Other possible ma-

terial combinations are bismuth-silver, silver-palladium and differently doped semiconductors

[Naumann et al., 2014].

For measurement of solar flux by thermopiles the temperature difference between the ther-

mocouples is induced by a black absorber surface which is exposed to solar irradiance and a

thermally insulated reference [Pedrotti et al., 2008]. Usually the absorber surface is a thin

layer of black metal or a semiconductor material that uniformly absorbs the full range of

wavelengths in natural light. Thus, typical thermopile radiometers respond uniformly to the

whole spectral range of solar irradiance as depicted in figure 2.1.

Silicon sensors on the other hand are based on the photoelectric effect only respond to a

limited spectral range from 400 nm to 1100 nm (see figure 2.1) which does not cover the

whole spectrum of irradiance (250 to approx. 2500 nm). Furthermore, its responsivity varies

for different wavelengths. Because of the influence of the air mass (AM) on the spectral

composition of the irradiance this results in significant inaccuracy during low solar elevation

angles [Augustyn et al., 2004].

Nonetheless, Si-pyranometers like the LI-COR LI-200 (figure 2.2) are widely used for their

lower acquisition costs, fast response time and ease of maintenance. Silicon sensors respond

within microseconds [Stoffel et al., 2010]. Thermopiles usually need 1 - 5 seconds to reach 95 %

of their final value. Instruments that use thermopile sensors i.e. pyranometers and pyrhe-

2



Radiometers
2.2 Pyranometers

Figure 2.1: Spectral responsivity of thermopile and silicon sensors with energy density per
nm wavelength of DN I at sea level. [Lovegrove and Stein, 2012]

Figure 2.2: LI-COR LI-200SA Silicon-Pyranometer [LI-COR, 2005].

liometers react strongly to soiling of their protective window or glass dome while the Li-200

with its photodiode under a diffusor lense is only slightly affected [Geuder and Quaschning,

2006]. This amounts to a tangible difference in maintenance costs and is the foremost argu-

ment for using Si-pyranometers at remote measurement sites. All LI-COR LI-200 sensors are

delivered precalibrated for global horizontal irradiance (G H I) measurements with an uncer-

tainty of 5 % (see specifications in Appendix table E.1).

2.2 Pyranometers

Pyranometers as defined in [ISO 9060] use thermopile sensors and can be classified as second

standard, first class and second class for G H I measurement. Besides G H I they can also be

applied for diffuse horizontal irradiance (D H I) measurements in combination with a tracked

shading device such as a shadow ball or disc (see upper right in figure 2.3).

Essential for the correct operation of pyranometers is the exact horizontal alignment which

can be achieved through its adjustable feet. This is most relevant for measurement of G H I

due to the cosine effect of the angle of incidence (AOI) on the direct irradiance reaching the

sensor. Measurements of D H I on the other hand are less affected by misalignment, since the

diffuse irradiance has almost uniform intensity from all directions.

3



Radiometers
2.2 Pyranometers

Figure 2.3: DLR reference measurement system for RSI calibration. Upper right: pyra-
nometer with shadow ball. Lower right: pyrheliometer. [Quaschning, 2011]

Pyranometers are equipped with a double glass dome which protects the sensor from convec-

tion and usually have a build in bubble for leveling. In most models a white plastic cover

(sun shield) protects the metal body from heating up and reduces reflection. Furthermore

silicon granules absorb humidity which eventually enters the sealed off instrument over time.

Because thermopiles are temperature dependent in their responsivity, some of the high end

models incorporate temperature sensors. This allows an increased accuracy through linear

temperature correction functions. Commonly used temperature sensors are thermistors and

PT100. Figure 2.4 depicts the typical build of Kipp & Zonen pyranometers.

Figure 2.4: Pyranometer (here Kipp & Zonen models CMP6, CMP11, CMP21 and CMP22).
[Kipp&Zonen, 2013]
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Radiometers
2.3 Pyrheliometers

Figure 2.5: Optical construction of a pyrheliometer. [Kipp&Zonen, 2008]

2.3 Pyrheliometers

The most common pyrheliometers have thermopile sensors and are used for measurement

of DN I . One example is the Kipp & Zonen CHP1 depicted in figures 2.3 and 2.5. Their

[ISO 9060] classification goes from second standard to second class in dependence on not only

the instruments individual specifications and calibration procedure but also its traceability to

the World Meteorological Organization (WMO).

Pyrheliometers resemble a tube with the thermopile sensor in its back end. By this design

the diffuse irradiance is shaded off while a small window at the front of the tube allows the

direct beam to reach the detectors surface. Essential for its correct operation is its alignment

towards the sun for which permanent tracking is required.

In the calibration of pyrheliometers an absolute cavity pyrheliometer is often used as the

reference instrument. Only this variation of pyrheliometers qualifies for the highest classifi-

cation as first standard [ISO 9060]. Their operational principle is not based on thermopiles.

The instrument’s tube is alternately exposed to and shaded from irradiance. In one common

variation of absolute cavity irradiometers the measurements are taken by monitoring the elec-

tric current which is necessary to compensate the absence of heat flux from solar irradiance

during the shaded phase. Further details on absolute cavity pyrheliometers can be found in

[ISO 9060] and [WRC, 2001].

2.4 Rotating Shadowband Irradiometers

Manufacturers use varying names for their RSI models. Three examples of commercially

available models are the Rotating Shadowband Radiometer by Irradiance Inc. (RSR2), the

Rotating Shadowband Pyrheliometer by Reichert GmbH (RSP4G) and the Twin-RSI by CSP

Services GmbH (Twin-RSI) (see figure 2.6) The three models were compared to the same ref-

5



Radiometers
2.4 Rotating Shadowband Irradiometers

Figure 2.6: Rotating Shadowband Irradiometers. Left: RSR2, center: RSP4G, right: Twin-
RSI. [Wilbert et al., 2014]

erence data set in [Vuilleumier et al., 2017]. In this work the term RSI is used to refer to the

instrument type and a specific instrument of this instrument type independent of the exact

model (RSR2, RSP4G and Twin-RSI).

All presently existing variations of RSI use the LI-200 sensor. This is owed primarily to its

fast response which is a prerequisite for the RSI’s principle of operation [Kern, 2010].

Depending on the model, a shadowband rotates about once or twice per minute around the

horizontally mounted Si-pyranometer. During the shadowbands rotation the signal of the pho-

todiode is recorded. While the sensor is unshaded, thus fully exposed, G H I measurements

take place. During the instance in which the sensor is completely shaded by the shadowband,

only D H I can reach the sensors surface. This results in a sudden drop of the measured value

as represented by the burst in figure 2.7. The lowest value is less than the D H I because the

shadowband shades off a portion of the sky and thus not only blocks direct irradiance from

reaching the sensor but also a small fraction of diffuse irradiance. Therefore, shoulder values

as depicted in figure 2.7 are determined for D H I measurements and its difference to the G H I

is added to the minimum [Wilbert et al., 2014]. With the G H I and D H I measurements the

DN I can be calculated by the sun position along equation 2.1.

DN I = G H I −D H I

cos(SZ A)
(2.1)

Besides not needing a tracking system for the determination of DN I RSI also profit from the

silicon sensors advantages over thermopile irradiometers in regards to costs of acquisition and

maintenance (see section 2.1). This makes it possible to leave the instrument unattended for

longer periods of time than alternative instruments such as pyrheliometers.

During field deployment the measured data of the RSI is stored in one minute averages. The

mode of data sampling differs among the three models in accordance to table 2.1.

6
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2.4 Rotating Shadowband Irradiometers

Figure 2.7: Irradiance signal logged during a rotation of the shadowband and derived irra-
diances. [Wilbert, 2014]

Table 2.1: Mode of data sampling for three types of RSIs [Wilbert et al., 2014]

Rotation frequency G H I D H I DN I

Twin RSI
1 / (30 sec) 1 / sec Shadowband correction Calculated from G H I , D H I and

alternating for averaged with previous solar position as 1 min average
both sensors value with correction for D H I drift

RSR2
at least 1 / (30 sec) 1 / (5 sec) Averaged for each Averaged for each

up to 1/(5 sec) if rotation rotation
20 W/m² change in

G H I
RSP4G

1 / (60 sec) 1 / sec Calculated once per Calculated every second from
minute as average 1 second G H I samples and
of two rotations 1 minute D H I samples.

Averaged every 60 seconds
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3 Correction functions for Rotating Shadowband Irradiometers

Irradiance measurements by RSI are affected by a number of systematic errors. Correctional

functions use correlations to environmental parameters for error reduction. This section

introduces several sets of correction functions.

3.1 Correction functions by King, Myers, Augustyn and Vignola

This set of corrections is the outcome of a number of publications by King and Myers, Au-

gustyn et al. and Vignola. In some cases the correction functions have been published in

different versions. The version presented here will describe the functions as used at DLR.

Prof. Vignola confirmed that these are the correct formulas.

The functional parameters are sensor temperature, SZ A, the AM , G H I and D H I . In this

method the G H I is corrected first since its corrected value is used for calculating the cor-

rected D H I . The DN I is determined from both corrected values as described along equation

2.1.

The GHI correction as fomulated in [Augustyn et al., 2004]:

G H Icor =G H Iraw ·
Fα

FA ·FB ·FC
(3.1)

where: G H Iraw : Uncorrected G H I value

Fα : Temperature parameter

FA : Spectral response parameter (AM correction)

FB : Cosine response parameter

FC : Solar height (Cat ear) parameter

8



Correction functions for Rotating Shadowband Irradiometers
3.1 Correction functions by King, Myers, Augustyn and Vignola

Figure 3.1: Course of sensor response FA in correlation to AM [King et al., 1998].

1. Temperature correction

[King and Myers, 1997] determined a temperature coefficient of αL,K= 8.2 ·10−4 by evaluat-

ing seven LI-COR sensors with a method that is commonly used for photovoltaic reference

cells. Equation 3.2 is used to calculate the temperature correction parameter in depen-

dence on the sensor temperature ϑRSI with a reference of ϑref= 25◦C .

Fα = 1−αL,K · (ϑRSI −ϑref) (3.2)

Where ϑRSI can not be measured inside the sensor it can be substituted by an estimate

using the ambient temperature ϑamb:

ϑRSI =ϑamb + (−4.883 ·10−6
·G H Iraw

2 +0.00953 ·G H Iraw −0.5) (3.3)

2. Spectral response correction

In [King et al., 1998] the changing spectrum of the solar irradiance was determined to

be correlated to the change of AM . It is compensated by an empirically developed cubic

function (equation 3.4 and figure 3.1) which uses AM as parameter. It proved to be

applicable at a wide range of sites during clear sky conditions.

FA = 2.631∗10−4
· AM 3 −6.319 ·10−3

· AM 2 +5.401 ·10−2
· AM +0.932 (3.4)

9



Correction functions for Rotating Shadowband Irradiometers
3.1 Correction functions by King, Myers, Augustyn and Vignola

Figure 3.2: Course of sensor response FB in correlation to the AOI in degree. [King et al.,
1998]

3. Cosine response correction

The cosine response in [King et al., 1998] has also been characterized by an empirical

derived function (equation 3.5) in accordance to figure 3.2. Since RSI are mounted in

horizontal position the sensors AOI is identical with the SZ A.

FB =−4.504 ·10−7
·SZ A3 +1.357 ·10−5

·SZ A2 +6.074 ·10−4
·SZ A+1 (3.5)

This function has been published in contradictory versions. In [King et al., 1997] the last

coefficient is given as 6.074 ·10−5. At DLR this is assumed to be by error and the definition

in [King and Myers, 1997] is used since it is consistent with [King et al., 1998] and [Vignola,

2006].

4. Cat ear correction

[Augustyn et al., 2004] introduces the term cat ear for the increased inaccuracy (figure 3.3)

of the sensor during SZ A> 75◦ which peaks at SZ A= 81◦. In [Vignola, 2006] this function

is stated with differing coefficients. After comparison of available sources at DLR this is

assumed to be by error [Wilbert et al., 2014]. Figure 3.4 shows the respective correction

as given in [Augustyn et al., 2004] which is defined by three functions depending on the

SZ A (see equation 3.6).
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Correction functions for Rotating Shadowband Irradiometers
3.1 Correction functions by King, Myers, Augustyn and Vignola

Figure 3.3: The cat ear error: G H Icor (before cat ear correction) / G H I reference. SZ A
from 65 to 85°[Augustyn et al., 2004]

Figure 3.4: Cat ear correction [Augustyn et al., 2004]

FC =


10.164664−0.24242 ·SZ A+1.603 ·10−3 ·SZ A2 if 75◦ < SZ A < 81◦

−58.03442+1.457577 ·SZ A−8.99 ·10−3 ·SZ A2 if 81◦ ≤ SZ A < 83.2◦

1 if 0◦ ≤ SZ A ≤ 75◦∨SZ A ≥ 83.2◦

(3.6)

5. D H I correction

D H I under clear sky conditions contains a great contribution from short wavelength (blue)

and the Si-pyranometers are not very sensitvy to these wavelengths. Therefore DHI is

measured too low during clear days and [Vignola, 2006] formulated a D H I correction

(figure 3.5 and equations 3.7 and 3.8). The correction uses the already corrected G H Icor

as a parameter.
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Figure 3.5: Comparison of D H Iraw (here DFRSP) and D H Icor (here DFR) against G H Iraw

(here RSP Global)[Vignola, 2006]

For G H Icor≤ 865.2 W/m2:

D H Icor = D H Iraw +G H Icor · (−9.1 ·10−11 ·G H Icor
3 +2.3978 ·10−7 ·G H Icor

2

−2.31329234 ·10−4 ·G H Icor +0.11067578794)
(3.7)

and for G H Icor> 865.2 W/m2:

D H Icor = D H Iraw +G H Icor · (0.0359−5.54 ·10−6
·G H Icor (3.8)

3.2 Correction functions by Geuder et al.

Another set of correction functions is presented in [Geuder et al., 2003]. An improved update

was given in [Geuder et al., 2008]. Correctional functions are applied to account for the pa-

rameters ambient air temperature, sensor temperature, AM , ambient pressure, solar elevation

angle (SE A), the intensities of DN I and D H I and a spectral parameter which is calculated

from the intensities of the three irradiance components i.e. G H I , DN I and D H I . Most of

these functions have not been fully published for which they can not be elucidated in the

same detail as done in section 3.1.
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1. Temperature correction

[King and Myers, 1997] introduced a temperature dependence which differed from the

Figure 3.6: Dependence of the LI-COR sensors responsivity on temperature. [Geuder et al.,
2008]

one given by the sensor manufacturer (see equation 3.2 and table E.1 for comparison).

Therefore another independent investigation was undertaken by DLR. The outcome was

a temperature dependence of αL,G= 7 ·10−4 for deviations from a reference temperature of

ϑref= 25◦C [Geuder et al., 2008]. Using this α the temperature correction factor is calculated

along equation 3.2. Missing temperature measurements can be substituted by an estimate

along equation 3.3, using αL,G instead of αL,K.

2. Spectral influence on measurement of diffuse irradiance

Because of the LI-200 sensors non-uniform spectral responsivity (see section 2.1) the D H I

measurement is affected especially during clear deep blue skies and could be underesti-

mated by up to 50% under these conditions [Geuder et al., 2008]. Therefore a spectral

parameter Πspec was found for a functional correction (see figure 3.7) including an ambient

temperature coefficient. The parameter Πspec is calculated along:

Πspec = DN I ·G H I

D H I 2 (3.9)

3. Air mass correction

In [Geuder et al., 2008] both, G H I and D H I measurements undergo a functional air mass

correction. Its main parameter is the air mass factor (AMF ) as defined in [Young, 1994]. It

is calculated with the true SZ A in accordance to an algorithm from [Michalsky, 1988] and
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Figure 3.7: Correlation between the spectral correction factor for D H I and the spectral
parameter Πspec in dependence on the ambient temperature. [Geuder et al.,
2008]

corrected for ambient pressure. Figure 3.8 visualizes the correction function in dependence

on the pressure corrected AMF .

4. The solar elevation angle influence on measurements of G H I

As described in section 3.1 the so called cat ear effect is the increase of inaccuracy at low

SE A. [Geuder et al., 2008] introduced two correction functions for SE A below and above

3◦ to reduce this influence from the already AMF corrected G H I . Figure 3.9 displays the

corrections factors course in dependence on the elevation angle.

5. Irradiance intensity correction

Finally the remaining deviations of D H I and DN I from their reference values are reduced

by a cubic and a linear function respectively. The functions parameter are the intensities of

irradiance. A logarithmic correction for DNI was introduced in a later publication [Geuder

et al., 2016].
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Figure 3.8: Correction for pressure corrected AMF . Left: G H I correction. Right: D H I
correction with and without spectral correction. [Geuder et al., 2008]

Figure 3.9: Mean curve of (AMF corrected) correction factor for G H I in dependence on the
SE A [Geuder et al., 2008]
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3.3 Correction functions by Hanussek

Based on the correction functions from [Geuder et al., 2008], Hanussek contributed a new

correction function to [Geuder et al., 2011]. The most noteable change is that the incidence

angle correction is only applied on the direct component of the irradiance and not on the

global irradiance including the diffuse irradiance as in the case of [Geuder et al., 2008]. The

correction functions used the same spectral correction. A small reduction of measurement

errors was found compared to [Geuder et al., 2008]. However, the functions are currently

not used to the knowledge of the authors of this report.

3.4 Correction functions by Vignola et al., 2017

In [Vignola et al., 2017] a new set of correction functions and the corresponding calibration

is presented. In a first step the temperature correction is performed for DNI and DHI com-

ponents. Then a spectral correction is applied for DNI and DHI. The spectral correction

for DHI is different for clear sky and cloudy sky cases which is a main difference to other

correction functions. The spectral adjustment factors are derived based on the spectral

response data of the pyranometer and spectra created for the expected atmospheric con-

ditions at the site using a clear sky model. For cloudy conditions the DHI correction also

includes an additional empirical correction term. For skies with some or total cloud cover,

the DHI correction factor is adjusted by the mix of diffuse and DNI values. This comes

from the assumption that under totally cloudy skies, the DHI responsivity will be very

close to the direct horizontal irradiance responsivity and the mix of clear sky responsivity

and total cloud cover responsivity is obtained by fitting to the DHI reference data. An

incidence angle correction finalizes the DNI correction and then GHI is calculated from

DNI and DHI. The incidence angle correction is derived from the remaining error after

the temperature correction and spectral correction of DNI. Because this new method uses

the spectral irradiance data adapted to the site it has the potential to reduce the site

dependence of the measurement uncertainty and the calibration.
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4 Calibration of thermopile sensors

4.1 Calibration of field pyrheliometers - using a reference pyrheliometer

This calibration method uses a reference pyrheliometer for comparison and is described in

detail in [ISO 9059]. The following will outline this method for the purpose of comparison

to RSI calibration. For further details and practical instructions the reader is referred to the

standard.

The DN I is measured by a reference pyrheliometer and one or more field pyrheliometers.

Calibration takes place by comparing the field instruments to the reference. Around 20 data

series are taken over the course of at least three days. In each series 1 integrated or 10 instan-

taneous readings are recorded. From each reading and each series a preliminary calibration

factor is calculated. After statistical data treatment the final calibration factor can be calcu-

lated as the average value of the remaining preliminary factors.

Measuring equipment

1. Field pyrheliometer to be calibrated

2. Reference pyrheliometer

Has to be of the same or higher category than the test pyrheliometer. A reference of

the same classification category is only acceptable for field pyrheliometers (first class and

second class instruments, also see [ISO 9060]).

3. Sun tracker

4. Data acquisition system with a resolution of at least 0.05 % of the maximum pyrheliometer

reading and at least four channels. Measurements should be in synchronicity within one

second.

Meteorological and site variables

1. If pyrheliometers with open aperture are used, the wind speed should be low (also see 6.3).

2. Ideally, clouds should cover less than 12.5 % of the sky. In any case their angular distance

from the sun has to be greater than 15° in order not to obstruct direct irradiation from

reaching the instruments (also see [ISO 9060]).

3. Atmospheric turbidity should be similar to intended field deployment conditions. High

turbidity is problematic for pyrheliometers with wide aperture angles since it causes too

high measurements due to scattering towards the instrument (also see [ISO 9060]).
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4. DN I ideally should have values of 700 W/m2 and higher. The acceptable minimum is 300

W/m2. Low irradiance may require longer measuring periods.

Preparation

1. The distance between separately mounted measuring instruments has to be less than 20

meters

2. The measuring system is started and tested at least 30 minutes prior the measurements.

3. Alignment of the instruments to the sun needs to be checked immediately before beginning

a measurement series.

4. The instrument windows needs to be cleaned before each series.

5. A log-book has to be prepared. This is used to report important occurrences.

Data sampling

1. Data is taken in 20 series of 10 to 20 minutes in length.

2. In each series at least 1 integrated or 10 instantaneous measurements are taken.

3. The sampling rate has to be at least 1 per second.

4. Meteorological conditions like the mean SE A and mean ambient temperature are docu-

mented for each series.
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Data treatment

1. Data from all pyrheliometers aquired during operational problems noted in the log-book

is rejected.

2. Calculation of the preliminary calibration factors C Fph(i) for each reading i :

C Fph(i ) = DN IRef(i )

VI(i )
(4.1)

where: DN IRef : DN I value of the reference pyrheliometer

VI : DN I voltage signal of the field pyrheliometer

3. All C Fph(i) which deviate by more than 2 % from the mean of their respective series are

rejected.

4. The final calibration factor is calculated as the mean of the remaining C Fph(i) with m as

the number of remaining readings:

C Fph = 1

m
·

m∑
i

C Fph(i ) (4.2)

5. The STD of the C Fph(i) is calculated separately per series. The STD of the individual

means of each series is calculated as well. Both indicate the stability of measurements.

Documentation

The calibration certificate or protocol has to include the following information:

1. Calibration method

2. Field pyrheliometer: manufacturer, type, model and serial number.

3. Reference pyrheliometer: manufacturer, type, model and serial number.

4. Calibration of the reference and thus the test instrument has to be traceable to the World

Radiometric Reference (WRR).

5. Final calibration factor for the field pyrheliometer as well as the STD.

6. Meteorological conditions during calibration.

7. Number of evaluated single measurements and the number of measuring days.

8. The calibration data needs to be stored for at least 5 years
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4.2 Calibration of field pyranometers

[ISO 9846] and [ISO 9847] give instructions for the calibration of pyranometers. [ISO 9060] is

often referenced for further details. This section is intended to give the reader the necessary

background for understanding the differences to RSI calibration. For further details and

practical instructions the reader is referred to the respective norm.

4.2.1 Using a reference pyrheliometer

[ISO 9846] refers to this outdoor calibration method as the alternating sun- and shade method.

Due to its more complicated procedure it is usually only applied for calibrating the first pyra-

nometer. Once calibrated it can be used as a reference in the procedures described in section

4.2.2 and section 4.2.3 for calibrating multiple pyranometers at once. While DLR applies

annex D of [ISO 9846] for improved accuracy the following summary will refer to the basic

version of this method.

The pyranometer is equally shaded and exposed in turns while comparing it to a reference

pyrheliometer. At the end of each shaded state the D H I is recorded from the pyranome-

ter. At the end of the exposed state the pyranometer records the G H I . Simultaneously, the

pyrheliometer measures and writes the DN I values. By taking the difference of the D H I and

G H I values and comparing it to the DN I value the calibration factor for the pyranometer

is calculated. At least 3 intervals (shaded + exposed + shaded = 3 intervals ) need to be

measured per series. This has to be repeated for at least 10 series.

Measuring equipment

1. Pyranometer to be calibrated

2. Reference pyrheliometer with at least first class classification (see [ISO 9060] for classifica-

tion and recalibration requirements).

3. Sun tracker

The necessary accuracy of the sun tracker depends on the slope angle of the pyrheliometer.

4. Shadowball/disc

The radius of the shadowball/disc must be larger than the outer radius of the pyranometers

glass dome by a minimum of its distance times tan(0.5◦).

5. Data aquisition system with an uncertainty of 0.1 % of the pyranometers calculated output

at 1100 W /m2 is required. All data needs to be read simultaneously.
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Meteorological and site variables

1. Clear sky conditions. Clouds are tolerable if they are at a far distance from the sun, i.e.

more than 45°.

2. Strong winds towards the pyrheliometers window are to be avoided (see section 4.1 and

6.3).

3. Obstacles on the horizon seen from the pyranometer should not obscure the sun or cause

specular reflections.

Preparation

1. The radiometers and the data acquisition system shall commence operation at least 30

minutes before the start of the measurements.

2. The tilt angle of the pyranometer is 0°.

3. The distance between separately mounted measuring instruments has to be less than 30

meters.

4. Zero-point, polarity and nominal strength of signals need to be checked for all irradiome-

ters.

5. Windows and glass domes of the instruments shall be cleaned before measurements.

Data sampling

1. Data sampling is performed in at least 10 measurement series. The measurements should

be taken over the course of at least 3 days and during AOI that deviate less than ±5 %

from the later intended operation conditions.

2. Each series has to start and end with a shaded interval.

3. Each series should include at least 3 intervals (i.e. shaded, exposed, shaded) but should

not take longer than 36 minutes.

4. The interval duration t0 is is the response time in which the pyranometer signal achieves

99.7 % of its final theoretical value. The norm allows to choose t0 up to 20 % longer, if

wind or dust conditions are unstable.

5. Method of signal reading (see figure 4.1)

At the end of the shaded interval a D H I voltage signal VD is read.

At the end of the shaded interval a G H I voltage signal VG is read, as well as one integrated

DN I reference signal DN IRef by the pyrheliometer which corresponds to the same time

span.

The ambient temperature ϑamb needs to be measured at least once prior to and once after

each series.
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Figure 4.1: Data sampling scheme for one series. ED,β = DHI, EG ,β = GHI and E I = DNI
reading. [ISO 9846]

Mathematical treatment

1. Calculate the responsivity Spr,a(i) for each set i of measurements (1 set = shaded, exposed,

shaded) separately for each a series along:

Spr,a(i ) = VG(2i )−0.5 · [VD(2i −1)+VD(2i +1)]

DN IRef(2i ) · si n [SE A(2i )]
(4.3)

2. Reject those Spr,a(i) of each series which deviate by more than 1 % from the series mean

responsivity. If more than half of the Spr,a of a series are rejected, the whole series is

excluded.

3. The remaining data is then used to calculate the final responsivity Spr,a as the mean value

of all remaining Spr,a(i). The calibration factor C Fpa,a is defined by its reciprocal:

Spr,a = 1

m
·

m∑
i

Spr,a(i ) (4.4)

C Fpa,a = 1

Spr,a
(4.5)

Where the ambient temperature ϑamb during a set of measurements i deviates significantly

from the intended operation temperature ϑop and the pyranometer has a specified temper-

ature coefficient a temperature correction factor Fα,Pa is applied to the respective Spr,a(i)

before calculating Spr,c:

Fα,Pa(i ) = 1−αPa · (ϑamb(i )−ϑop) (4.6)
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Documentation

See pyrheliometer calibration (section 4.1).

Additional requirements:

1. The pyranometers serial number and position angles.

2. Date and time of calibration, calibration site (latitude, longitude and altitude), special

remarks.

3. Shadow ball/disc geometry.

4. Final resonsivity and calibration factor for the pyranometer as well as the responsivities

STD.

5. Range of parameters in which the the calibration results are valid (e.g. SE A, Temperature

etc.)

6. Data storage is not required.

4.2.2 Using a reference pyrheliometer and a reference pyranometer

In [ISO 9846] the following calibration procedure is referred to as the continuous sun- and

shade method. It can be used as soon as one has a calibrated pyrheliometer and a calibrated

pyranometer. This method allows the simultaneous calibration of multiple pyranometers. The

reference pyrheliometer and the shaded reference pyranometer are continuously collecting data

for DN I and D H I measurements respectively, which is then summed up and compared to the

G H I measured by the field pyranometers under calibration.

Measuring equipment

See alternating sun- and shade method (section 4.2.1).

The reference pyranometer has to be of a higher class (see [ISO 9060] for classification) than

the field pyranometer’s and with documented calibration history. The last outdoor calibration

by the alternating sun- and shade method (section 4.2.1) has been within less than 12 months

and under conditions similar to those during the field pyranometer calibration (not further

specified). Furthermore, it should exhibit a high long-therm stability (not further specified).

These requirements are listed in [ISO 9847] to which [ISO 9846] refers.

Meteorological and site variables

See alternating sun- and shade method (section 4.2.1).

A higher degree of cloudiness is tolerable, if clouds move slowly without obstructing the sun

or causing more than 1 % D H I variation within 10 seconds.

Preparation
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See alternating sun- and shade method (section 4.2.1).

Data sampling

1. Each series consists of 10 to 20 sets of measurements.

At least 10 series have to be recorded in the course of at least 3 days.

2. Each series should spread over 10 to 30 minutes.

3. Each set consists of a G H I signal VG from the test pyranometer

a D H I reference signal D H IRef from the shaded pyranometer

a DN I reference signal DN IRef from the pyrheliometer

the corresponding time and temperature.

4. Measurements should take place during the most stable periods.

5. Each measurement has to be completed within 1 second and at a sampling rate between

0.5 to 2 sets per minute (The lower sampling rates refer to the use of an absolute cavity

pyrheliometer).

Mathematical treatment

1. All measurements which deviate by more than 5 % from the average of their series are

excluded. A whole series is canceled if more than 50 % of its values have been eliminated.

2. From the filtered data the responsitivities Spr,c(i) for all sets of measurement are calculated:

Spr,c(i ) = VG(i )

DN IRef(i ) · si n [SE A(i )]+D H IRef(i )
(4.7)

3. The final responsivity Spr,c is defined by their mean and the calibration factor C Fpa,c by

its reciprocal. They are calculated along equations 4.4 to 4.6 while using Spr,c instead of

Spr,a.

Documentation

See alternating sun- and shade method (section 4.2.1).

4.2.3 Using a reference pyranometer

[ISO 9847] describes outdoor and indoor calibration methods for field pyranometers in hor-

izontal and tilted angles which use only a pyranometer as reference. Since RSI are always

operated in horizontal alignment this section will describe the outdoor calibration for hori-

zontal positioning to which the norm refers to as outdoor calibration method Ia.

The reference pyranometer must have been calibrated through comparison to a pyrheliome-

ter in accordance to the alternating sun- and shade method in section 4.2.1. The necessary

24



Calibration of thermopile sensors
4.2 Calibration of field pyranometers

duration of data sampling varies depending on the overall sky conditions. While during clear

sky two to three days are sufficient, for continuous cloudy sky conditions a minimum duration

of 10 days is required. This long-term characteristic requires careful monitoring of data sam-

pling conditions and data consistency in order to eliminate influences by operational problems.

Measuring equipment

1. Field pyranometers to be calibrated

2. Reference pyranometer

same as in the continuous sun- and shade method (section 4.2.2).

3. Precision calibration table at 0° horizontal tilt.

4. Data acquisition system

The data logger has to be capable of recording three separate channels (also see section

4.2.1).

Meteorological and site variables

1. Objects on the horizon should not exceed an elevation angle of 5° and must not cause

specular reflection onto the instruments.

2. If the field pyranometer is to be applied for solar resource monitoring, the G H I should

consist by at least 80 % of Edi r,hor . Also an angular cloud distance from the sun of at least

30◦ is required. Note: The last criteria can be replaced by an irradiation threshold which

indicates obstruction by clouds.

Preparation

1. All pyranometers are installed on a common calibration table at 0° tilt angle.

2. Checks for zero-point, polarity and nominal strength and stability of signals are carried

out.

3. The instruments domes get cleaned.

4. Equal influence of foreground reflections is tested by switching the instrument positions.

5. Tilt angles need to be rechecked during calibration in dependence on the tables mechanical

and thermal stability.

Data sampling

All voltage readings are taken simultaneously.

The procedure differs in dependence on the sky conditions:

1. Stable cloudless sky conditions:

The data is sampled from a period of 2 to 3 days (longer periods are optional). It has
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to be obtained at varying solar elevation angles > 20°. The solar noon must be included.

Measurements are taken in at least 15 series of which each includes at least 21 voltage

readings within 10 to 20 minutes.

2. Unstable sky conditions (clouds at > 30° distance from the sun):

The data is sampled from a period of 5 to 14 days. It has to be obtained at varying

solar elevation angles > 20°. The solar noon must be included. Measurements are taken

in at least 15 series of which each includes at least 21 continuous voltage readings within

1 to 5 minutes and under steady irradiation conditions. Alternatively each series can be

integrated over 1 to 5 minutes.

3. Cloudy sky conditions:

If the field pyranometers are to be used for solar resource monitoring, cloudy sky conditions

are not suitable for calibration.

The data is sampled for at least 10 days. The obtained data has to be taken at different

solar elevation angles and varying cloudiness. Its hourly mean G H I has to be greater than

100 W/m2. At least 50 integrated 1 hour measurement intervals are taken.

Mathematical treatment

1. Reject all data which has been subject to operational problems.

2. The ratio C Fpa,Ia(i) is calculated for each reading:

C Fpa,Ia(i ) = G H IRef(i )

VG(i )
(4.8)

In either of the following three cases the G H IRef needs to be fitted to the calibration

conditions (e.g. temperature) before calculating the C Fpa,Ia(i):

a) Reference and field pyranometer are not of the same model

b) Reference and field pyranometer do not have the same temperature response

c) The reference pyranometer has not been calibrated for the intended field operation

conditions (e.g. temperature ϑop).

3. Reject measurements for which C Fpa,Ia(i) deviates by more than 2 % from the mean of its

respective series.

4. The final calibration factor C Fpa,Ia is calculated as the mean of the remaining C Fpa,Ia(i).

C Fpa,Ia = 1

m
·

m∑
i

C Fpa,Ia(i ) (4.9)

If the ϑamb during calibration deviates strongly from ϑop and the temperature responsivity

of the field pyranometers from the reference, a temperature correction in accordance to

equation 4.6 needs to be applied to the C Fpa,Ia(i) before calculating C Fpa,Ia.

5. The STD of the mean C Fpa,Ia(i) per series from the final calibration factor represents the
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stability of the calibration and should be less than ± 0.5 %.

Documentation

See alternating sun- and shade method (section 4.1).

Additional requirements:

1. Reference and field pyranometer instead of pyrheliometers.

2. pyranometer positioning and tilt angles during calibration.

3. Results should also include the absolute uncertainty.

4. Range of validity (parameters: SE A, temperature, etc.)

5. Data storage is not required.
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5 Calibration of Rotating Shadowband Irradiometers

This section will outline four calibration methods for RSIs. Two of them are developed and

performed by DLR at CIEMAT’s Plataforma Solar de Almeŕıa (PSA). Each of the method

refers to one of the two sets of correction functions introduced in section 3. Therefore, this

section differentiates between the DLR calibration method corresponding to functional cor-

rections by [Geuder et al., 2008] (DLR2008) and the DLR calibration method corresponding

to functional corrections by King, Myers, Augustyn and Vignola (DLR-VigKing). In addition

the RSI calibration method described in [Kern, 2010] (Kern) as practiced by Irradiance Inc.

and Vignola et al., 2017 will be briefly introduced.

While the Kern method only calibrates for G H I the other methods assign specific calibration

factors to different types of irradiance. In both DLR methods and in the Vignola et al., 2017

method the RSI is compared to a reference DN I (DN IRef) and a reference D H I (D H IRef) mea-

sured with a pyrheliometer and a pyranometer shaded with a shadowball. The reference G H I

(G H IRef) is calculated from both reference instruments since this yields higher accuracy than

G H I measurement by a pyranometer (see [ISO 9060]). Nonetheless a second pyranometer is

used to monitor the quality of reference measurements by redundancy.

Data collection at PSA usually takes place continuously over the course of 30 to 120 days.

Due to the manifold environmental and operational influences that can occur during this time

span the raw data needs to be screened and manually reviewed for errors and temporary sys-

tem failures. At DLR the calculation of calibration factors is based on minimizing the root

mean square deviation (RMSD) but differs for both methods.

An examination presented in [Geuder et al., 2011] compared the RMSD of RSI measurements

from the reference for different calibration methods as well as the bias of their annual sum of

irradiation. It was found that the Kern method improved measurements of G H I and more

so D H I . In comparison to the other methods under examination the Kern method brought

the least reduction in RMSD of DN I measurements. DLR-VigKing whilst using data from

a wider range of meteorological conditions and assigning three separate calibration factors

(see section 5.2) performed better in regard to DN I while using the same set of correction

functions (section 3.1). Yet better results in all three irradiance components were achieved by

using the DLR2008 method. Only little experience has been collected so far with the Vignola

et al., 2017 method, but this method is promising as it is more physical and includes means

to reduce site dependence.

The description of the DLR calibration methods have been extracted from DLR’s RSI cali-

bration software. Other references than these are cited in the text below.

28



Calibration of Rotating Shadowband Irradiometers
5.1 Calibration method DLR2008

5.1 Calibration method DLR2008

This calibration method assigns two calibration factors: C FG for G H I and C F D for D H I .

Since both G H I and D H I have different spectral compositions the sensor’s responsivity differs

among the two. The difference in responsivity was incorporated into the correction functions

and hence the correction refers to the mean among the group of instruments used for the

development of the correction functions. However, the difference in responsivity for G H I and

D H I is specific to each individual sensor. Thus, better results are achieved by using separate

calibration factors [Geuder et al., 2008].

Because DN I is the desired measurand, C FG is optimized for determination of the DN I as

further explained in the following. The corrected and calibrated DN I , DN Icor is determined

from the corrected and calibrated G H Icor and D H Icor.

The calibration method for DLR2008 was also adapted to the Hannusek correction functions

and the version of the DLR2008 corrections with the logarithmic corrections from [Geuder

et al., 2016].

Measuring equipment

1. The RSI to be calibrated

2. Table 5.1 lists all other instruments presently used at the PSA for RSI calibration as they

appear on the calibration protocol. For specifications of the reference irradiometers, sun

tracker and data logger see Appendix E.

Table 5.1: Instruments for RSI calibration as used in Q3 2014 (source: DLR)

Meteorological and site variables
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1. Various weather conditions should occur during the measuring period (see [Geuder et al.,

2011]).

2. No objects in the vicinity or on the horizon cause shade or reflections on any of the instru-

ments.

Preparation

This overview refers to the measuring site at the PSA where all reference instruments are

already set up and are continuously operated and monitored regardless of RSI calibration.

1. All instruments are operated in close vicinity to each other (< 10 meters).

2. RSIs are mounted in horizontal position with their shadowbands towards ±5◦ from the

geographical north [Wilbert et al., 2014]. Horizontal misalignment of the LICOR sensor

should be within ±0.1◦ and needs to be monitored during the measuring period.

3. The RSIs are connected to the data logger and registered in the calibration database.

Data sampling

1. G H IRef, D H IRef and DN IRef are sampled every second and recorded as one minute average

values as well as the ambient pressure and temperature.

2. The RSI values for G H I , D H I and DN I are averaged and recorded once per minute. The

sampling rate before calculation of one minute values differs for RSR2, RSP4G and Twin-

RSI as detailed in table 2.1. In RSP4G and Twin-RSI the sensor temperature is recorded

as well.

3. Monitoring the measurements:

In order to identify and resolve operational problems the recorded data of all instruments is

scrutinized at least once per weekday by manually reviewing the course of G H I , DN I and

D H I of RSI and reference instruments. Furthermore, the instruments are inspected in situ

for anomalies. The redundant G H I measurement is used to confirm correct operation of

the reference instruments. Operational errors are documented in the calibration database.

4. Instrument cleaning during the measuring period:

The window of the pyrheliometer, the glass domes of the pyranometers as well as the

diffusor disks of the RSI are cleaned daily except for weekends. The exact time of each

cleaning event is documented.

5. All relevant events in the vicinity (e.g. construction works, maintenance of nearby instru-

ments) are documented.

Data treatment

1. For each data channel 10 minutes mean values are calculated.
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2. A screening algorithm performs a quality check of all recorded channels as recently pre-

sented in [Geuder et al., 2015]. Among others, the quality check screens if measured values

are physically possible, if their fluctuation (or lack of it) is realistic and excludes data

which has been manually flagged during the measuring period.

3. A soiling correction algorithm is applied to DN IRef in accordance to the documented clean-

ing events (see [Geuder and Quaschning, 2006]).

4. The LI-COR calibration factor C FLicor is applied to the RSI data.

5. The RSI and reference data is compared for consistency:

If a time stamp or one of its respective irradiance measurements is missing, it is removed

in both reference and RSI.

6. For RSI without temperature sensor (e.g. RSR2) the sensor temperature is estimated

by an algorithm based on G H I and ambient temperature. Another estimation algorithm

substitutes missing pressure measurements in all RSI using the barometric formula.

7. G H IRef is calculated from DHI, DNI and the sun height angle using the apparent sun height

at the middle of each 10 minutes interval.

8. The irradiance data is manually reviewed:

First, the G H Iraw, D H Iraw and DN Iraw (RSI data with applied C FLicor) and the reference

data are checked for plausibility by comparison. Irradiance data which has been flagged

by the screening algorithm is excluded as well. In a second check the deviation of RSI data

from the reference data before and after application of the functional corrections (specific

to the calibration method, here DLR2008) are compared to each other. Erroneous data is

marked for exclusion and a comment is saved in the database.

9. All data exclusions are applied.

10. Calculation of calibration factors

a) G H IRef and D H IRef as well as their deviation from the corrected RSI measurements

G H Icor and D H Icor are screened for the calibration limits (CL) as defined in table 5.2.

Table 5.2: Calibration limits used at DLR [Geuder et al., 2011]

Reference DN I [W/m2] > 300
Reference G H I [W/m2] > 10
Reference D H I [W/m2] > 10
SE A [◦] > 5
Max deviation between corrected RSI and reference [%] ± 25

b) The screened data is used to determine the D H I calibration factor C F D by an algorithm

which minimizes the RMSD of the corrected and calibrated D H IRSI from D H IRef through

variation of C F D [Geuder et al., 2011]. Further information concerning the application

of C F D is given in the next paragraph.

c) While ignoring the previous G H I and D H I data screening the DN IRef and its deviation
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from the corrected RSI measurement DN Icor is screened for CL (table 5.2).

d) With applied C F D the screened data is used to determine the calibration factor C FG for

G H I by an algorithm which minimizes the RMSD of DN Icor from DN IRef by variation

of C FG [Geuder et al., 2011]. Further information concerning the application of C FG

is given in the next paragraph.

11. Calibration results are manually reviewed:

Deviation of RSI data from the reference before an after calibration is compared. If further

erroneous data is found it can be marked for exclusion and steps 9 to 11 are repeated.

12. Bias, STD and RMSD of the corrected and calibrated RSI data from the reference are

calculated.

Application of the calibration factors to the RSI data

1. The functionally corrected and calibrated G H I is obtained by multiplying the calibration

factor to the functionally corrected G H Icor:

G H IRSI =C FG ·G H Icor (5.1)

2. The functionally corrected and calibrated D H I is determined with the functionally cor-

rected D H Icor and the D H I calibration factor.

If DN Iraw≥ 2W/m2:

D H IRSI =C F D ·D H Icor (5.2)

In case of DN Iraw<2 W/m2:

D H IRSI =C F D ·G H IRSI (5.3)

3. The corrected and calibrated DN I is determined as:

DN IRSI = G H IRSI −D H IRSI

cos(SZ A)
(5.4)

Documentation

1. RSI and LI-200 serial number

2. Details of reference instruments including last calibration (table 5.1).

3. Calibration factors

4. RMSD of G H Icor and DN Icor from the reference.

5. Calibration period and effective period after data exclusions.

6. Summary of the calibration procedure (e.g. temporal resolution (10 min) and CL applied

during calibration)

7. The calibration data and all data exclusions are stored at DLR for future reference.
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5.2 Calibration method VigKing

DLR-VigKing determines three separate calibration factors C F g , C F d and C F n for G H I ,

D H I and DN I respectively [Geuder et al., 2011]. In DLR2008 the G H I error is slightly in-

creased by optimizing its calibration factor for determination of DN I . The assignment of

three separate factors in DLR-VigKing avoids this effect. Each calibration factor is optimized

for RMSD of the measurand it is applied to.

In all aspects other than the correction functions, the assignment of calibration factors and the

application thereof this method is identical to DLR2008 (see 5.1 for reference). The following

will elucidate the differences by, replacing step no. 10 of the data treatment in DLR2008 and

clarifying how the calibration factors are to be applied. In deviation from the account given

in [Geuder et al., 2011] in todays practice the same CL (table 5.2) are used in both calibration

methods.

Data treatment

10. Calculation of calibration factors

a) G H IRef and D H IRef as well as their deviation from the corrected RSI measurements

G H Icor and D H Icor are screened for the CL as defined in table 5.2.

b) The screened data is used to determine the G H I calibration factor C F g by an algorithm

which minimizes the RMSD of the corrected and calibrated G H IRSI from G H IRef.

c) The previous data screening for CL is repeated with applied C F g [Geuder et al., 2011].

d) The screened data is used to determine the D H I calibration factor C F d by an algorithm

which minimizes the RMSD of the corrected and calibrated D H IRSI from D H IRef [Geuder

et al., 2011].

e) C F g and C F d are applied successively. While ignoring the previous data screenings the

DN IRef and its deviation from the corrected RSI measurement DN Icor is screened for

CL (table 5.2).

f) with applied C F g and C F d the screened data is used to determine the DN I calibration

factors C F n by an algorithm which minimizes the RMSD of the corrected and calibrated

DN IRSI from DN IRef [Geuder et al., 2011].
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Application of the calibration factors to the RSI data

1. The functionally corrected and calibrated G H I is obtained by multiplying the calibration

factor to the functionally corrected G H Icor:

G H IRSI =C F g ·G H Icor (5.5)

2. The functionally corrected and calibrated D H I (D H IRSI) is determined along equations 3.7

and 3.8 with G H IRSI instead of G H Icor and multiplication with the calibration factors for

D H I :

For G H IRSI≤ 865.2 W/m2

D H IRSI =C F d ·
[
D H Iraw +G H IRSI · (−9.1 ·10−11 ·G H IRSI

3 +2.3978 ·10−7 ·G H IRSI
2

−2.31329234 ·10−4 ·G H IRSI +0.11067578794)
] (5.6)

and for G H IRSI> 865.2 W/m2

D H IRSI =C F d ·
[
D H Iraw +G H IRSI · (0.0359−5.54 ·10−6

·G H IRSI
]

(5.7)

3. The corrected and calibrated DN I (DN IRSI) is determined as:

DN IRSI =C F n ·
G H IRSI −D H IRSI

cos(SZ A)
(5.8)

5.3 Calibration method Kern

Another calibration method is practiced by Irradiance Inc. and has been examined by [Kern,

2010]. This method calibrates for G H I only and replaces the sensor manufacturers calibration

factor C FLicor. Therefore, this calibrations can be performed without mounting the sensor on

a RSI since no D H I measurement and thus no shadowband is required.

The method applies G H I correction functions (Temperature, spectral response and cosine

response) which were published in [King et al., 1998] (see section 3.1). The calibration factor

is determined by averaging the ratios between RSI and a reference. The following will outline

a brief overview of the procedure:

1. The reference instruments and data logger are of the same class as in the DLR methods

(sections 5.1 and 5.2). The reference G H I is calculated from a pyrheliometer and a shaded

pyranometer.

2. The LI-200 sensors are horizontally mounted on a calibration table in close proximity of

the reference.

3. Data is continuously collected over a period of 12 to 49 days and divided into 7 to 33 series.
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4. Test G H I is sampled in 3 second intervals and recorded as 1 minute averages.

5. G H IRef is also recorded as 1 minute means.

6. Operational problems and relevant events are recorded in a log-book.

7. The data treatment includes an automatic check for validity of the measurements using

the Data Quality Management System by Augustyn & Company.

8. Measurements are filtered for following requirements:

10 W/m2 < G H I < 1500 W/m2, and AM≈ 1.5 (at the measuring site in [Kern, 2010] the

AM requirement translated into 56.8◦ < SE A < 58.8◦). Additionally a G H I fluctuation of

less than 10 W/m2 per minute is required. Clear sky conditions are ensured by using the

DN I and the [Bird, 1984] model (see [Kern, 2010]).

9. Preliminary calibration factors are calculated as the ratio between corrected G H Icor and

G H IRef and reviewed by the operator.

10. Those series whose preliminary calibration factors deviate by more than 5 % from the mean

are excluded.

11. The final calibration factor is calculated as the mean of the remaining preliminary factors.

5.4 Calibration method Vignola et al., 2017

The most recent and most physical correction functions from [Vignola et al., 2017] are de-

scribed already together with an appropriate calibration method. The method uses a reference

station with thermal pyranometers and pyrheliometers and determines a DNI and a DHI cal-

ibration factor. In addition also the SZA dependency is determined for each sensor. The

procedure for DNI calibration is summarized as follows:

1. Determine a preliminary calibration factor to obtain a DNI as close as possible to the

reference DNI from the RSI’s DNI

2. After adjusting for the temperature dependence of the pyranometer, determine the DNI

responsivity as a function of the SZA and normalize these correction factors to 1 at

SZA=45°

3. Calculate clear sky DNI spectra a a function of the SZA for the expected conditions

during the calibration and, using the typical spectral response of the pyranometer,

determine the spectral error and the appropriate correction factor. Normalize these

correction factors to 1 at SZA=45°.

4. Multiply the instrument DNI values that are temperature adjusted by the spectral

correction factor and obtain a cosine correction function as a function of SZA by dividing

the spectrally corrected DNI values by the measurements of the reference pyrheliometer.

For DHI the following procedure is used:
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1. Determine a preliminary calibration factor under clear sky conditions to obtain a DHI

as close as possible to the reference DHI from the RSI’s DHI

2. After adjusting for the temperature dependence of the pyranometer, determine the DHI

responsivity as a function of the SZA and normalize these correction factors to 1 at

SZA=45°

3. Calculate clear sky DHI spectra as a function of SZA for the expected conditions during

the calibration and, using the typical spectral response of the pyranometer, determine

the spectral error and appropriate correction factor. Normalize these correction factors

to 1 at SZA=45°.

4. The DHI correction factor for totally and partially cloudy skies is a function of the clear

sky DHI adjustment factor and the clear sky DNI adjustment factor depending on the

cloudiness. If data are available, a fit to local data can be determined. Otherwise use

the generic fit in [Vignola et al., 2017].

5. If the sensor is used at a site with different climate the spectral correction factors can

be derived for the local clear sky spectra and applied instead of those for the conditions

during the calibration.

If the sensor is used at a site with different climate the spectral correction factors can be

derived for the according clear sky spectra and applied instead of those for the conditions

during the calibration.
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6 Comparison of RSI calibration to calibration of thermopile

sensors

As elaborated in section 2 there are distinct differences between thermopile sensors and the

LI-200 Si-pyranometer. Additionally, RSIs are used to determine three irradiance components

virtually at once while pyranometers and pyrheliometers measure only one component (or at

least one at a time in the case of pyranometers). Due to its attributes the RSI requires very

specific calibration procedures (section 5) which also involve correction of its systematic errors

(section 3).

All calibration methods for pyranometers and pyrheliometers with thermopiles use similar

modes of data collection and the same basic principles of data treatment. While the Kern

method is orientated along these principles, the RSI calibration methods performed by DLR

and the Vignola et al., 2017 method differ in both areas. The duration of data acquisition,

the data rejection process and calculation of calibration factors are fundamentally different.

In the following the calibration methods are compared in regards to the measuring equipment,

measuring site, mode of data acquisition and data treatment. The different requirements in

these categories are summarized in table 6.1.

6.1 Measuring equipment

All calibration methods under discussion except pyranometer calibration with a reference

pyranometer (section 4.2.3) involve the use of a tracking system for either field or reference

instruments or both. Pyranometer calibration with pyrheliometers and RSI calibration re-

quire a tracked shading device. All calibration methods involve sensors for measurements of

ambient temperature and where possible temperature of the irradiance sensors.

Besides the RSI itself the RSI calibration methods by DLR employ the same setup of equip-

ment as the continuous sun- and shade method (section 4.2.2) for measurement of DN I , D H I

and G H I .

Since the photodiode sensor has a higher uncertainty than thermopile pyranometers the in-

structions in regard to tracking and installation of the measuring system given in [ISO 9846]

are downward compatible and can be transferred to RSI calibration.

The requirements for the data logger’s voltage measurement from the existing calibration

standards are also applicable to RSI calibration.
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Table 6.1: Comparison of selected requirements in RSI and thermopile sensor calibration

Calibration method Data sampling Duration Irradiance SEA cloud conditions

Pyrheliometer
[ISO 9059] 20 series of 10 to 20 min ≥ 3 days DN I ≥ 300 W/m2 intended <12 % of sky

better: DN I ≥ 700W/m2 field SE A ± 5◦ >15◦ distance from sun

Pyranometer
[ISO 9846], alternating sun/shade ≥ 10 series of ≤ 36 min ≥ 3 days - - >45◦ distance from sun
[ISO 9846], continuous sun/shade 10 to 20 series of 10 to 30 min ≥ 3 days - - >45◦ distance from sun
[ISO 9847], cloudless sky ≥ 15 series of 10 to 20 min 2 to 3 days DN I ≥ 0.8 ·GHI >20◦ clear sky
[ISO 9847], unstable sky ≥ 15 series of 1 to 5 min 5 to 14 days DN I ≥ 0.8 ·G H I >20◦ >30° distance from sun
[ISO 9847], cloudy sky ≥ 50 integrated intervals ≥ 10 days mean G H I > 100 W/m2 - -

of 1 hour each

RSI
Both DLR methods continuous 30 to 120 days G H I > 10 W/m2 >5° -

D H I > 10 W/m2

DN I > 300 W/m2

Kern continuous, 12 to 49 days G H I > 10 W/m2 - clear sky
division into 7 - 33 series G H I changes < 10 W/(m2 ·min)

56.8◦to 58.8◦
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6.2 Site variables

Due to pyranometers 360° field of view angle all calibration methods which involve this type

of instrument require the absence of reflections from objects in the vicinity above the sensor

as well as on the horizon. Such reflections can cause additional irradiance on the sensor and

thus affect the measured value. Also objects on the horizon should not obscure the sun. The

LI-COR Si-pyranometer has a 360◦ field of view angle as well and its calibration involves

thermopile pyranometers. Thus, these aspects need to be considered in RSI calibration. In

pyrheliometer calibration this is not the case since the pyrheliometer’s field of view is restricted

by its aperture. While in [ISO 9846] for pyranometer calibration with a pyrheliometer this

requirement is not further quantified [ISO 9847] (pyranometer calibration using a reference

pyranometer) limits the elevation angle of objects on the horizon to <5◦. This limit also oc-

curs in RSI calibration since only measurements taken during SE A>5° are used (see table 5.2).

6.3 Data acquisition and treatment

Data aquisition

In calibration of pyranometers and pyrheliometers measurements are taken in 10 to 20 series

of up to 36 minutes each. Exception to this rule is a variation of the outdoor calibration

method for cloudy sky conditions as defined in [ISO 9847] (calibration of pyranometer using

a pyranometer, see section 4.2.3) where measurements are taken in sets of one hour duration

over a period of at least 10 days. In terms of duration this method is the closest to RSI

calibration methods.

However, the RSI calibration methods require substantially longer measuring periods in or-

der to include a sufficient variety of spectral composition of irradiance. This is owed to the

nonuniform responsivity of the LI-COR sensor. In order to produce accurate measurements

with a calibrated RSI during varying conditions the calibration needs to cover a similar vari-

ety.

Both [ISO 9059] and [ISO 9846] require low wind speeds (not further specified) and directions

other than towards the pyrheliometers aperture. As stated in [ISO 9059], this is relevant

only where a pyrheliometer with an open aperture (e.g. an absolute cavity pyrheliometer)

is involved. If field pyrheliometers are used as a reference instrument or if the test sensors’s

uncertainty is significantly higher than the uncertainty caused by the wind, this restriction is

not required. Both is the case in RSI calibration and hence the wind speed is not relevant.

Furthermore, calibration methods for thermopile sensors have varying individual requirements

in regards to aspects such as overall cloudiness and position of clouds and turbidity. Clouds

reduce the overall G H I as well as and especially the DN I if they mask the sun. Clouds can
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also reflect radiation if they are close to the sun and hence increase G H I . Since these are the

measurands for pyranometers and pyrheliometers respectively a high energy flux in each is

desirable during calibration. In pyrheliometer calibration the required angular cloud distance

from the sun is half as much as in pyranometer calibration due to the pyrheliometers nar-

rower field of view. On the other hand, pyrheliometer calibration requires a very low overall

cloudiness. For turbidity related requirements in pyrheliometer calibration see section 4.1.

Similarly, also the Kern method only calibrates with data collected during very specific me-

teorological conditions. Clear sky conditions at an AM1.5 are desired.

Data rejection

All methods reject measurements which took place during documented operational problems.

In other aspects the data rejection in DLR methods for calibration of RSI differs from Kern

and thermopile calibration. The rejection criteria for Vignola et al, 2017 are currently not

published.

DLR2008 and DLR-VigKing: Data rejection takes place in three ways. First, an automated

screening for quality of the recorded measurements is applied [Geuder et al., 2015]. Second,

rejection is done by an experienced operator who identifies erroneous data by visually com-

paring the course of measurements and if necessary, by investigating documented records and

collected data from other instruments in the vicinity. And ultimately, by automated screening

for CL in dependence which calibration factor is calculated (see section 5.1). This includes

rejecting all RSI measurements which deviate by more than 25 % from the reference.

The CL include thresholds for the acceptable minimum irradiance and SE A. While the CL

threshold for G H I and D H I lower than a limit given in [ISO 9847] for pyranometer calibration

with pyranometers and cloudy conditions the DN I threshold matches the minimum tolerable

DN I during pyrheliometer calibration. The DN I and SE A requirements in DLR2008 and

DLR-VigKing are owed to the purpose of solar resource monitoring since CSP plants only

operate during these conditions.

Thermopile sensors and Kern: The deviation of preliminary calibration factors is used as a

common criteria for rejecting individual measurements. For each measurement it is compared

to the mean of all preliminary calibration factors in its respective series. The threshold differs

between the methods and ranges from 1 % to 5 %. For example, in pyranometer calibration

methods a whole series is discharged once half of its measurements has been rejected.

Correction functions

In all RSI calibration methods functional corrections are applied for a range of parameters.

Calibration of thermopile sensors only have temperature corrections (and in some pyranome-

ters incidence angle correction) in common with RSI calibration. However, such corrections

during thermopile calibration are applied only on a case to case basis since they influence the
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measured irradiance less than for RSIs. These differences are a direct result of the LI-200

sensor’s systematic errors.

Calculation of calibration factors

Calibration methods for pyranometers and pyrheliometers as well as the Kern method calcu-

late a single calibration factor by determining the mean value of the ratio between reference

and field instrument measurements. RSI calibrations by DLR or the Vignola et al., 2017

method on the other hand determine two or three separate calibration factors. Additionally,

the LI-200 sensors calibration factor assigned by the manufacturer is used during calibration

and needs to be applied along with the new calibration factors during field deployment of

the calibrated instrument. The SZA dependence can be added to the calibration result for

thermopile sensors and this is also the case for the Vignola et al. 2017 method.

Statistical analysis

The quality of calibration of thermopile sensors and RSI calibration by Kern is evaluated by

using the STD. Only in the outdoor calibration method described in [ISO 9847] (section 4.2.3)

a clear limit is given for acceptable STD. In RSI calibration at DLR bias, STD and RMSD

of the RSI from the reference are reviewed. Bias can occur for RSI calibration with these

methods due to the minimization of the RMSD. The optimization parameters for Vignola et

al, 2017 are currently not published.

6.4 Summary

It was found that the requirements and instructions in regard to tracking and set up of the

measuring system in the continuous sun- and shade method [ISO 9846] as well as the limit of

an elevation angle of 5 ◦for objects on the horizon from [ISO 9847] have been transferred to

RSI calibration. Other than these two aspects the RSI calibration has different requirements

and procedures. Table 6.1 lists an excerpt of the discussed aspects for comparison.

Since RSI are used for determination of three measurands with different spectral compositions

the assignment of multiple calibration factors is one of the most apparent advantages of the

DLR and Vignola et al., 2017 methods in comparison to Kern (see section 5). For this purpose

the test measurements are taken while the RSI’s Si-pyranometer is mounted in an operational

RSI instead of on a calibration table without the rotating shadowband. Furthermore, the data

used in DLR calibrations includes a variety of spectral and other meteorological conditions as

they occur during the operation of a CSP plant. All RSI calibration methods use correctional

functions to compensate the LI-COR sensor’s systematic errors.

Calibration of thermopile sensors on the other hand uses data with preferably high intensity

of the measurand. Under such conditions a smaller amount of data is required. As seen in
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[ISO 9847] (section 4.2.3), the lower the irradiance conditions are the longer the measuring

period has to be.

The range of calibration duration presently used for RSI calibrations at DLR (see table 6.1)

is rather wide. It is desirable to either narrow the range or to clarify the specific conditions

under which a longer or shorter duration is required. This will be addressed in chapter 7.
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7.1 Introduction

Since the RSI calibration at DLR is optimized for determination of DN I the same should be

the case for its duration. In general the measuring period should include all relevant weather

conditions. Its necessary duration can vary in dependence on the location [Geuder et al.,

2014]. Furthermore, some sites may not be suitable for calibration measurements during

certain times of the year. At the PSA however, calibrations are assumed to be possible

throughout the year.

Since timely delivery of the calibrated instruments is important to the end user, this aspect

needs to be taken into consideration. Nonetheless, the calibration duration should be long

enough to keep the fluctuation of results of individual calibrations within acceptable limits.

In addition to evaluating the calibration duration in terms of stability of results the possibility

of seasonal influences shall be investigated as well.

To both ends, results of multiple short-term calibrations need to be compared to the result

of a calibration with the longest possible measuring duration which is assumed to deliver the

best result. For technical reasons the direct comparison was substituted by an alternative

method which is expected to provide equivalent conclusions as will be elaborated in section

7.2.

A total of seven long-term data sets from five instruments (see table 7.1 and figure 7.1) has

been evaluated in regard to DN I for durations from 1 day up to 180 days duration.

The majority of these data sets was courteously provided by Suntrace GmbH for which the

authors wish to express their gratitude.

ure

Figure 7.1: Evaluated data sets. Total period covered (including the gap between RSR2-
0017 and RSP-4G-08-10-3): 2342 days or ∼ 6.5 years
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Table 7.1: Evaluated data sets

Instrument from to Duration [days]

RSP-4G-08-10-1 2008-08-08 2009-09-16 404
RSP-4G-08-10-3 2010-07-29 2014-02-07 1289
RSR2-0017 2009-09-09 2010-05-16 251
RSR2-0018 2007-05-17 2008-10-15 517
RSR2-0036 2007-11-12 2008-08-12 274
RSR2-0039-1 2007-11-12 2008-08-13 292
RSR2-0039-2 2011-01-01 2012-01-18 382

Total (with overlapping) 3391
Total (without overlapping) 2342

7.2 Evaluation method

In order to compare the results of short-term calibrations to the results of long-term calibra-

tions, a large number of calibrations would be necessary to derive statistically sound conclu-

sions. Although in the course of this project a modification of the calibration software was

programmed to produce calibrations of moving intervals with varying duration this method

has been given up due to the excessive time consumption of calculations and its workspace

memory issues in Matlab. Therefore, a different method has been applied which was already

used in [Geuder et al., 2014].

The following sections 7.2.1, 7.2.2 and 7.2.3 line out the chosen method of data treatment

and its validation. These sections refer to DLR2008 but the method was also applied to

DLR-VigKing with its respective correction functions and calibration factors.

7.2.1 Moving average method

For differentiation from an evaluation based on actual short-term calibration results this eval-

uation method as outlined in the following shall be referred to as the moving average method

(MAM). An instrument is calibrated for a long-term measuring period. The thereby derived

calibration factors C FGlongcal and C F D longcal are applied to the functionally corrected RSI

raw data. This produces functionally corrected and calibrated 10 minute mean values of the

RSI measurements from the calibration period. The same manual and automatic data exclu-

sion including CL as applied during the calibration process is kept in place while calculating

the ratios of reference to RSI irradiance RGHI,wd, RDNI,wd and RDHI,wd along equations 7.1 to 7.3.

RGHI,wd(t ) = G H IRef(t )

G H IRSI(t )
(7.1)
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RDNI,wd(t ) = DN IRef(t )

DN IRSI(t )
(7.2)

RDHI,wd(t ) = D H IRef(t )

D H IRSI(t )
(7.3)

where: G H IRSI : corrected and calibrated RSI G H I

DN IRSI : corrected and calibrated RSI DN I

D H IRSI : corrected and calibrated RSI D H I

t : timestamp

In the next step the data needs to be checked for sensor drift as elaborated in section 7.2.2.

Thereafter the (if necessary) drift corrected ratios RGHI, RDNI and RDHI are used to calculate

their moving average (here: moving in steps of 24 hours) values for moving short-term intervals

of duration T :

MR,GHI(T , td ) = 1

n
·
∑

t
RGHI(t ) with t ∈

[
td − T

2
, td + T

2

]
(7.4)

MR,DNI(T , td ) = 1

n
·
∑

t
RDNI(t ) with t ∈

[
td − T

2
, td + T

2

]
(7.5)

MR,DHI(T , td ) = 1

n
·
∑

t
RDHI(t ) with t ∈

[
td − T

2
, td + T

2

]
(7.6)

where: td : 12:00 pm timestamps within long-term period

n : Number of timestamps in short-term interval

Thereafter, the ratio Π of the moving short-term means to the long-term mean of the whole

measuring period is calculated. Π represents the deviation of daily short-term calibrations

from the long-term calibration with sufficient accuracy as will be shown in section 7.2.3.

All further statistical analysis for calibration duration represented by T will be based on its

respective course of Π.

ΠGHI(T , td ) = MR,GHI(T , td )

LR,GHI
(7.7)

ΠDNI(T , td ) = MR,DNI(T , td )

LR,DNI
(7.8)

ΠDHI(T , td ) = MR,DHI(T , td )

LR,DHI
(7.9)

where: LR,GHI : Mean value of RGHI over whole long-term duration
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LR,DNI : Mean value of RDNI over whole long-term duration

LR,DHI : Mean value of RDHI over whole long-term duration

7.2.2 Elimination of sensor drift

In some data sets a significant drift of the sensor’s responsivity was observed. In [Geuder

et al., 2014] it was stated that in rare cases the drift of a sensor can exceed the ±2 % per year

(see [LI-COR, 2011]) specified by the manufacturer. However, most of the sensors examined

in [Geuder et al., 2014] exhibited a drift of less than 1 % per year.

The RSI calibration software for the DLR2008 and DLR-VigKing methods as well as the Kern

method do not take drift into account. Since drift occurs over time its effect on short-term

calibrations is relatively small. However, in regards to long-term calibrations drift needs to

be addressed because the derived calibration factors will refer to the mean of the sensors

responsivity during the calibration period. The irradiance before and after the point of time

when the mean responsivity occurs will either be under- or overestimated.

Figure 7.2: Course of RDNI / LR,DNI in 10 min values for RSP-4G-08-10-3. The upper graph is
before (subscript ”wd”: with drift) and the lower graph is after drift elimination.

Therefore, the drift affects the ratios of reference to RSI irradiance which subsequently causes

a rotation of the Π course. Figure A.3 in the Appendix shows a clear example of this for a

3.5 years calibration.

Without removing the influence of drift from strongly affected data any statistical evaluation

of Π in regards to fluctuation of calibration results will be inherently flawed due to its extreme

values towards the beginning and end of the period.
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It was found that the influence of drift can be removed from the ΠDNI by correcting the data

after calibration took place. To this end a linear fitting function is placed through the ratio

of RDNI,wd to LR,DNI (see upper graph in figure 7.2). As defined in section 7.2.1 the RDNI,wd

are the 10 min averages of the ratio between the reference and the corrected and calibrated

RSI DN I . Since LR,DNI is the mean of RDNI,wd the average of the ratio between the two is 1.

The drift is removed by dividing the RDNI,wd by the linear fitting function. Thereafter, in order

to check the result the ratio of the corrected RDNI to the original LR,DNI is plotted anew (lower

graph in figure 7.2). Due to inaccuracy of the fitting function in some cases this process may

cause an offset of the now horizontally aligned graph. In such cases the process is repeated

(the new fitting function is a horizontal line representing the offset) until the mean of the

corrected RDNI is identical to the original LR,DNI.

Similarly, this process is carried out for G H I and D H I as well.

Even though this process is required in some cases it has to be used with care since the

algorithm can not differentiate between seasonal changes and sensor drift. Therefore, this

data treatment was only applied where the fitting function represents a clear non-seasonal

drift (see section A).

7.2.3 Validation of the moving average method

In order to verify that the moving mean method is a valid strategy for the purpose of this

evaluation the following calculations have been performed in regard to DN I .

First, a number of short-term calibrations was carried out for a given set of raw data (RSR2-

0018 in the examples below) from a long-term measuring period.

For each short-term calibration the obtained calibration factors C FGshortcal and C F Dshortcal

depend on its period of time which is defined by its interval duration T and its middle

timestamp td . The calibration factors were applied to the corresponding data set which

produced a separate set of calibrated DN Ishortcal for each combination of T and td . DN Ilongcal

is defined similarly, using the results of the long-term calibration C FGlongcal and C F D longcal.

The DN Ishortcal and DN Ilongcal were then put in relation by calculating Πcal,DNI, the mean of

the ratio of the former to the latter for the time period that corresponds to the respective

short-term calibration.

Πcal,DNI(T , td ) = 1

n
·
∑

t

DN Ishortcal(T , td , t )

DN Ilongcal(t )
with t ∈

[
td − T

2
, td + T

2

]
(7.10)

Finally, Πcal,DNI was compared to the ΠDNI for each short-term interval in respect to coin-

cidence. In this way it is possible to estimate if the results of the MAM are sufficiently

representative for the deviation of actual short-term calibration results from a long-term cal-

ibration.
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Figure 7.3: Comparison of course of ΠDNI and Πcal,DNI for 270 calibrations with T =60 days.
Evaluated data set: RSR2-0018.

Figures 7.3 and 7.4 show the correlation between ΠDNI and Πcal,DNI for 270 calibrations of

60 days duration and for 428 calibrations of 90 days duration. These examples exhibit a

maximum deviation of the ΠDNI from the Πcal,DNI of about ±0.5 %. However, during most of

the examined periods the coincidence is within ±0.2 %. Further exemplary comparisons have

been performed with similar outcome. Therefore, within it’s limitations the MAM can be

considered sufficiently accurate for the purpose of investigating general tendencies of short-

term calibrations in comparison to long-term calibrations.

7.2.4 Comparison to data treatment in [Geuder et al., 2014]

The starting point of this investigation was the work presented in [Geuder et al., 2014] where

the data set RSR2-0018 was evaluated in regard to calibration duration by using the MAM.

ΠDNI was plotted for a period of six months from a 17 month data set for one day, one week and

one month calibrations. This was accomplished by using an Excel-sheet with implemented

visual basics code which used to be the standard for RSI calibrations at DLR before the

presently used software was developed. It was found that at the PSA a site specific minimum

duration of one month should be sufficient for satisfactory calibration results [Geuder et al.,

2014].

In the course of this present work the RSR2-0018 data set has now been reevaluated for the

whole 17 months. Additionally, the original plot (figure 7.5) has been reproduced in order to

ensure correct understanding of the previous work and to address eventual differences.

The new calculations show a similar result. However, they differ from the original ones which
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Figure 7.4: Same as figure 7.3 for 428 calibrations with T =90 days.

Table 7.5: Calibration limits used in [Geuder et al., 2014] plot for RSR2-0018

Reference DN I [W/m2] > 250
Reference G H I [W/m2] > 10
Reference D H I [W/m2] > 10
Sun height angle [◦] > 5
Max deviation of RSI raw data from reference [%] ± 15

can be compared by the plots in figures 7.5 and 7.6. Since the original calculation’s data files

and programs were available, the origin of these differences was investigated by step by step

comparison. First of all, it has to be noted that the original plot from [Geuder et al., 2014]

was done for DLR-VigKing calibration (section 5.2) with the exception of using different

definitions for the correction functions FB [King et al., 1997] and FC [Vignola, 2006]. For

further details on varying definitions of correction functions the reader is referred section 3.1.

Secondly, the calibration limits for data exclusion used at the time (see table 7.5) differ from

those in table 5.2 which are used today. In the case of the RSR2-0018 data set only negligible

drift was present. This was already stated in [Geuder et al., 2014]. Thus, neither in the

previous nor in the present work drift correction was considered necessary.

Another minor difference is that the presently used calibration software substitutes missing

ambient pressure measurements by an estimated value while the Excel-sheet didn’t perform a

calculation in such cases. Additionally, the plot by [Geuder et al., 2014] associated the ΠDNI

values to the first timestamp of their intervals while the new plots presented in this work place

49



Evaluation of RSI calibration duration
7.2 Evaluation method

Figure 7.5: Course of ΠDNI in RSR2-0018 data set of 2007 as presented in [Geuder et al.,
2014]; based on DLR-VigKing calibration with definitions for FB and FC as given
in [King et al., 1997] and [Vignola, 2006]. The vertical axis refers to ΠDNI. The
horizontal axis refers to the date.

Figure 7.6: Same as 7.5 with definitions for FB and FC as specified in section 3
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them in middle of their intervals. This causes a horizontal shift of the curves which represent

moving mean intervals of more than one day.

In detail comparison revealed that the greater part of the differences between the graphs in

both figures 7.5 and 7.6 was caused by the differing definitions of FB and FC. Subsequently, in

both the Excel-sheet and the software used in the present work it was possible to reproduce

the result of the other by adjusting the definitions of FB and FC. Therefore, both evaluation

tools have the same validity with respect to the definitions they use.

7.3 Data analysis

In the following the data sets which were introduced in section 7.1 will be evaluated in regard

to the influence of calibration duration on calibration results based on ΠDNI (see MAM in

section 7.2.1). As elucidated in section 7.2.2 it was necessary to remove sensor drift from

some data sets. This was the case for RSP-4G-08-10-1, RSP-4G-08-10-3 and RSR2-0039-2.

A discussion of the presence of drift in individual data sets can be found in Appendix A.

7.3.1 Calibration duration - DLR2008

Figure 7.7 displays the distribution of ΠDNI for each data set (table 7.1) for varying calibration

duration in form of boxplots. The equivalent plots for ΠGHI and ΠDHI can be found in the

Appendix (figures B.7 and B.8).

Boxplots visualize a number of statistical parameters which help to characterize the distribu-

tion of values in a set of data. Since some readers might not be familiar with boxplots the

following provides a brief summary. See table 7.6 for reference.

The upper and lower edges of the box itself are defined by the 0.25-quantile (lower quartile,

Q1) and the 0.75-quantile (upper quartile, Q3). The difference between both defines the

interquartile range (IQR) which therefore includes half of all values. The 0.5-quantile (me-

dian, Q2) is represented by the horizontal line within the box. The boxplots used here also

include the arithmetic mean which is represented by a circle. For the outer whiskers different

definitions can be used. In this version the whiskers are defined as the lowest value greater

than Q1−1.5 ·IQR and the highest value smaller than Q3+1.5 ·IQR. In the case of normal

distribution they include 99.3 % of all values. The values outside the whiskers are shown as

individual data points and considered as potential outliers. By the whiskers the reader can

identify the maximum deviation from zero.

Generally, for short durations T the data sets are symmetrically distributed around zero.

With increasing T the range of distribution of ΠDNI values narrows. As the interval duration

T increases the whiskers get closer to zero while the symmetry is reduced. In most data sets
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Figure 7.7: ΠDNI in dependence on calibration duration for seven data sets.

Table 7.6: Boxplot definitions

Q1
Lower quartile or 0.25-quartile.

25% of all values ≤ Q1

Q2
Median or 0.5-quartile.
50% of all values ≤ Q2

Q3
Upper quartile or 0.75-quartile.

75% of all values ≤ Q3

IQR Interquartile range. IQR=Q3−Q1

Lower whisker lowest value > Q1−1.5 ·IQR
Upper whisker highest value < Q3+1.5 ·IQR

Lower potential outliers All values < lower whisker
Upper potential outliers All values > upper whisker

Mean Arithmetic mean of all values
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zero is outside the IQR for T= 180 days.

In figure 7.7 it can be observed that all evaluated T including single day calibrations produce

in about half of all data sets MR,DNI within ±1 % their respective LR,DNI. However, the rest

of the single day moving averages reach deviations in the range of ±15 % from the respective

long-term mean. Similar behavior was observed for duration of up to seven days with slight

reductions of scatter.

A significant reduction of scatter was reached with increasing the duration to 14 days. For

T= 14 days all ΠDNI stayed within the range of ±3 %. Scatter keeps reducing with increasing

calibration duration.

Comparing the results of T= 30 to T= 60, for all data sets in figure 7.7 except RSR2-0039-1

the range of ΠDNI reduced from ±2.5 % to ±1.75 % and less. Except for RSR2-0039-1 all upper

whiskers reduced their value by at least 0.5 %.

Further increase of duration T from 60 days to 90 days yields reduction of ΠDNI whiskers by less

than 0.25 % for the cost of increasing the measurement period by its half. Longer durations

than T= 90 days are rarely considered practicable due to time consumption. Therefore, up

to this point the sighting of distributions of ΠDNI confirm DLR’s general preference of a

T= 60 days calibration duration. However, evaluation of seasonal tendencies as discussed in

the following section 7.3.2 implicated an alternative approach to calibration duration.

7.3.2 Calibration duration: seasonal influences - DLR2008

In order to identify seasonal tendencies the ΠDNI for T= 14 days, T= 60 days, T= 90 days and

T= 180 days were plotted over the time span of the long-term calibration measuring period

for various RSIs. While evaluating the timelines it needs to be considered that each plotted

data point refers to the middle timestamp of its interval (see section 7.2.1).

Out of all available data sets the RSP-4G-08-10-3 covers the longest time span and is there-

fore most useful to observe seasonal changes although a two month period of erroneous data

(2013-04-01 to 2013-05-30) had to be excluded from calibration.

The horizontal axis in figure 7.8 indicates the date. The first day of each month is represented

by a grey vertical line. The left vertical axis displays ΠDNI. The second vertical axis provides

the daily number of timestamps which where usable for calibration.

The number of usable timestamps per day clearly coincides with the seasons, reaching its peak

around solstice in middle of June and its minimum around solstice in middle of December

while spring and autumn behave similar to each other. This is common to all data sets (table

7.1) at hand and is a clear correlation to the daily hours of daylight. Therefore, a calibration

of the same duration differs in the amount of usable data in dependence on the time of the

year it is performed in. For detailed ΠDNI curves of each individual data set introduced in

table 7.1 see figure 7.8 and in the Appendix figures B.1 to B.6.
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Figure 7.8: Course of ΠDNI for varying calibration duration for RSP-4G-08-10-3 with daily
number of usable timestamps. The vertical gridlines indicate the first day of
each month.

Because the RSP-4G-80-10-3 data set begins in summer and ends in winter, all seasons are

equally represented in the long-term mean LR,DNI of the reference/RSI ratio. Around early

summer ΠDNI often reaches a negative percentage for all T≥ 14 days which indicates that RSI

calibrations during such times tend to underestimate the DN I in comparison to the long-term

calibration. During winter the tendency is to overestimate the DN I (see section 7.2.1 and

7.2.3 for definition and correlation of ΠDNI and Πcal,DNI).

Figure 7.9 displays the course of ΠDNI for T= 120 days for the seven (table 7.1) evaluated

data sets. This duration was chosen because moving averages of the interval length T= 120

days result in fluctuations of ΠDNI which are steady enough to recognize reoccurring seasonal

tendencies in this form of visualization. In this graph during summer the greatest deviations

of MR,DNI from LR,DNI occur before solstice. In winter the greatest deviation occurs between

October and first of January which coincides with the low number of usable timestamps as

seen in figure 7.8. However, the most apparent observation taken from figure 7.9 is the ex-

traordinary amplitude of ΠDNI(T =120 days) on the first of January 2008 and in April 2008.

Since three data sets from that period were available (all three taken by different instruments)

and all three show the same characteristics in ΠDNI, ΠGHI and ΠDNI (see Appendix C) it is

save to attribute the high amplitudes to the extraordinary irradiance conditions at the time.

Distributions by duration and starting month

In order to derive recommendations in regard to the necessary calibration duration for different

times of the year the ΠDNI of the seven data sets (table 7.1) was sorted by calibration starting
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Figure 7.9: ΠDNI(T=120 days) from seven evaluated data sets (table 7.1).

month and the combined distribution thereof was visualized in boxplots as presented in figure

7.10. This allows the reader to choose the required duration in dependence on the starting

time of measurements and the acceptable distribution of ΠDNI. The same was done for ΠGHI

and ΠDHI in figures 7.11 and 7.12. Since most of the time the greater part of G H I is due

to DN I the seasonal course of ΠGHI distributions displays more similarities with the seasonal

course of distributions of ΠDNI than of ΠDHI. Among the three types of Π pertaining to the

three components of irradiance the widest range is present in the distribution of

MR,DHI / LR,DHI ratios.

Most boxes in figure 7.10 are well centered around their mean. The course of the ΠDNI

reaches its peaks between November and January and between March and May. This was

to be expected after the observations made in figure 7.9 and indicates that a shorter calibra-

tion duration suffices during most part of the year in order to produce calibration results of

uncertainty similar to calibrations which start during the mentioned periods with a longer

measuring duration. Since the data in figure 7.10 is sorted by calibration starting month the

highest mean values of ΠDNI occur earlier for longer durations T than for shorter durations.

The comparatively high Q3 and upper whiskers in November and December as well as the

lower outliers in April and May are due to the unusual meteorological conditions during the

period from the end of 2007 to late spring in 2008. This period not only exhibits strong

fluctuations of calibration results, but it is also over-represented by its three data sets. In

comparison among the monthly ΠDNI distributions from individual data sets for T= 60 days

(figure 7.13) this is recognizable. However, removing the RSR2-0036 and the RSR2-0039-1

data sets from the evaluation (thus representing the period with only one data set) would
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Figure 7.10: ΠDNI for T =14 days, 30 days, 60 days, 90 days and 120 days sorted by calibra-
tion starting month.

only bring marginal changes to the visualization of ΠDNI distributions in figure 7.10.

The upper outliers for starting dates in March are caused by the unusual behavior of the

RSP-4G-08-10-3 data set during March 2011 (see figure 7.8).

With DLR2008 calibration the determined DN I values are a direct function of G H I and D H I

measurements (section 5.1). Consideration of the distributions of ΠGHI and ΠDHI (figures 7.11

and 7.12) allows to interpret some of the ΠDNI distributions characteristics. For example, for a

calibration duration of T= 30 days the positive ΠDNI from November to January (figure 7.10)

coincide with negative ΠDHI (figure 7.12) and ΠGHI close to zero (figure 7.11). Therefore,

it appears that in this example the seasonal tendency is to produce calibrations which (in

comparison to a long-term calibration) overestimate DN I as a result of underestimation of

D H I (see equation 5.4).

Similarly, the ΠDNI values of T= 30 days decrease with the month of the year for calibration

starting dates from March to May for a relatively constant low range of ΠGHI values (figure

7.11) and increase of ΠDHI from negative values towards positive values (figure 7.12). This

indicates that calibrations tend to produce increasing D H I calibration factors (C F D) as the

calibration starting date progresses from March through May and thus measure increasingly

low DN I values (relative to a long-term calibration).

The described effects (as in above example for T =30 days) are due to the meteorological

conditions during these periods which influence the ΠDNI of all calibration durations alike.

However, with increased duration T (e.g. T =120 days) the effects can be reduced significantly.

56



Evaluation of RSI calibration duration
7.3 Data analysis

Figure 7.11: Same as figure 7.10 for ΠGHI.

Figure 7.12: Same as figure 7.10 for ΠDHI.
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Figure 7.13: ΠDNI for T= 60 d ay s by data set and starting month of calibration. Boxplots with 15 or less data points are marked as
such.

58



Evaluation of RSI calibration duration
7.3 Data analysis

Discussion of duration for specific starting months

The general observation in section 7.3.1 was that the longer the calibration duration the closer

the outcome will be to a long-term calibration. While this is true in most cases, some excep-

tions were found.

In figure 7.10 for starting dates in November the ΠDNI with a duration of T= 60 days are

distributed further from zero than with any other of the evaluated durations from T= 14 days

to T= 120 days. This is true for all indicators the boxplot provides alike. However, a duration

of T= 60 days exhibits a far better (in terms of coincidence with zero) distribution of ΠDNI

than durations of 14 days and 30 days for starting dates in the following month of December.

For starting dates in January the differences between the distribution of ΠDNI for 30 days and

60 days duration is further increased. This indicates that the meteorological conditions in

November and February are generally more suitable for DLR2008 calibration than in Decem-

ber and January.

Furthermore, starting dates in January produced closer coincidence between ΠDNI and zero

with a duration of T= 90 days than a duration of T= 120 days. The ΠDNI of starting dates in

February exhibited the closest coincidence with zero for durations of T= 60 days along with

T= 30 days. 90 days periods starting in January and 60 days periods starting in February

have in common that they end in April while the respective longer periods include all of April

and a part of May. Remarkably, the duration T= 120 days generated the greatest deviation

of ΠDNI values from zero for starting dates in February. This is owed to its inclusion of the

entire period of less suitable meteorological conditions in April and May.

However, out of all data visualized in figure 7.10 the ΠDNI distributions for starting dates in

May and June with T= 120 days exhibited the smallest distance between upper and lower

whiskers as well as the closest coincidence with 0 % since the respective periods of time are

dominated by the more suitable conditions from June onward.

As shown by these examples the general rule that longer calibration durations yield better

results does not always apply, due to the meteorological conditions (i.e. spectral composition

of irradiance) at the time.

Recommendations for choice of calibration duration

In section 7.3.1 it was found that a calibration duration of T= 60 days is preferable in the

case of using a constant duration throughout the year.

In consideration on the seasonal tendencies however, it appears to be more comprehensive to

choose the calibration duration in dependence on the month in which measurements are com-

menced. This allows to keep the monthly maximum deviation of MR,DNI from LR,DNI within

a given maximum ΠDNI (ΠDN I ,max) and thus creates results of constant viability while min-

imizing calibration duration. Table 7.7 provides a summary of required minimum durations

for varying ΠDN I ,max .
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Table 7.7: Minimum required calibration duration in days for given maximum ΠDNI and
starting time - DLR2008

ΠDN I ,max Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

±2.5 % 30 14 14 14 14 14 14 14 14 14 14 60
±2.25 % 30 14 14 14 14 14 14 14 14 14 14(1) 60
±2 % 60 14 14 14 30 14 14 14 14 14 90 90
±1.5 % 60 14 14 90 60 30 30 30 14 30 120 120
±1 % 90 30(2) 120 90 60 30 60 30 90 90 - 120

±0.75 % 90 - - 120 90 90 90 120 - 90 - -

lowest 90 30 120 120 120 120 120 120 120 120 120 120

(1) 60 days is not suitable
(2) only 60 days and 30 days are suitable

Even if a constant calibration of T= 60 days is preferred to choosing the duration individually

by month of the year, it should be considered to reduce the duration of calibration starting

in November to T= 30 days only, since for this month a duration of T= 60 days exhibits the

highest deviations of MR,DNI from LR,DNI in comparison to any other examined duration.

The evaluation of seasonal influences established the correlation between ΠDN I ,max , calibration

duration and the month in which a calibration is commenced. ΠDNI is also closely correlated

with Πcal,DNI as discussed in section 7.2.3. Πcal,DNI on the other hand represents the deviation

of calibration results from the result of a long-term calibration (section 7.10, equation 7.10).

Therefore, ΠDN I ,max in combination with the relative uncertainty of the reference pyrheliome-

ter (DN IRef) can be used for a conservative estimate of calibration uncertainty along equation

7.11.

∆DN Ical,rel ≈
√

(∆DN Iref,rel)2 + (∆Soi lph)2 + (ΠDN I ,max )2 (7.11)

In accordance with [WMO, 2010] the relative uncertainty of the reference pyrheliometer is

∆DN Iref,rel=1.8 %. Additionally, an error due to pyrheliometer soiling of ∆Soi lph≈ 0.2 % can

be estimated in respect of the findings in [Geuder and Quaschning, 2006].

An exemplary calculation for ΠDN I ,max=2.25 % obtained an estimate of ∆DN Ical,rel≈ 3 % for

the calibration uncertainty.

7.3.3 Calibration duration - DLR-VigKing

The MAM was also applied to DLR-VigKing calibrations of the same data sets (table 7.1) as

before for DLR2008.
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Figure 7.14: same as figure 7.10 for DLR-VigKing calibrations

Without discussing the results in the same detail as in the sections 7.3.1 and 7.3.2 pertaining to

the DLR2008 the findings will be briefly outlined and presented in boxplots for the distribution

of ΠDNI (figure 7.14) and a table for calibration duration (table 7.8). The equivalent plots

for ΠGHI and ΠDHI can be found in the Appendix (figures D.4 and D.5). Plots for constant

calibration duration throughout the year are depicted in the Appendix as well (figures D.1

to D.3). Drift correction was applied to the same data sets as previously for DLR2008 (see

Appendix A).

In comparison to DLR2008 the DLR-VigKing method results in similar seasonal distributions

of ΠDNI. However, in figure 7.14 it is noticeable that the DLR-VigKing produces wider IQRs

of ΠDNI. This is especially true for starting dates during the time from November to January.

During this period the distributions are exceptional symmetrically centered around zero but

exhibit the widest range of ΠDNI values.

Similary as in DLR2008, also DLR-VigKing calibrations with durations of 60 days exhibited

smaller maximum ΠDNI for starting dates in February than any other duration. In DLR-

VigKing (figure 7.14) the ΠDNI distributions for starting dates in March where the closest to

zero for durations of 30 days. Contrarily, in the following two months of April and May the

distributions of ΠDNI for a duration of T= 30 days deviates further from zero than for other

durations. This observation indicates that the meteorological conditions during April and

May are not well suited for DLR-VigKing calibrations. In the case of calibrations which start
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Table 7.8: Minimum required calibration duration for given maximum ΠDNI and starting
time - DLR-VigKing

ΠDN I ,max Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

±2.25 % 30 14 14 14 60 14 14 14 14 14 30 30
±2 % 30 14 14 60 60 14 14 14 14 14 30 60
±1.5 % 60 30 14 90 60 14 60 60 30 14 120 90
±1 % 90 60(1) 30(1) 120 90 60 120 120 90 - - 120

±0.75 % 90(1) - - 120 90 60 - - 120 - - -

lowest 90 60 30 120 120 90(2) 120 120 120 90 120 120

(1) only this duration is suitable
(2) positioning of IQR better than 120 days

in April or May but reach well into the months of June or July a far closer coincidence of the

ΠDNI with zero is achieved. This is caused by the more suitable conditions from June onward.

A similar general tendency was observed in DLR2008.

In DLR2008 the duration (figure 7.10) of 60 days produced the highest upper ΠDNI whiskers

among calibrations starting in November. This is not true for DLR-VigKing where only T= 14

days exhibits higher values than T= 60 days. On the other hand, in regard to maximum ΠDNI

and IQR a duration of T= 30 days exhibits a more desirable distribution for this starting

month than a duration of 60 days.

Measurements starting in October with 30 to 90 days duration resulted in smaller ΠDNI than

120 days duration due to the adverse conditions during the Winter months. In consideration

of the IQRs of ΠDNI a duration of 90 days appears to perform best for calibration starting in

the month of October.

Recommendations for choice of calibration duration

It is recommended to choose the calibration duration in accordance to table 7.8 in dependence

on the month of the year and the desired ΠDN I ,max .

If a constant calibration duration throughout the year is preferred, also for DLR-VigKing

a duration of T= 60 days is advised as a compromise between producing results close to a

long-term calibration and not consuming more time than reasonable. Similarly to DLR2008

one should resort to a shorter duration of T= 30 days for calibrations starting in November.

In DLR-VigKing the same is true for calibrations starting in March. Figure 7.14 (also see

figure D.1 in the Appendix) suggests a deviations from a long-term calibration below 2 % for

T= 60 days throughout the year.
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7.3.4 Conclusion

As shown in section 7.2.3 the course of ΠDNI closely coincides with Πcal,DNI (the deviation of

results of short-term calibrations from the result of a long-term calibration). Therefore, the

examination of ΠDNI makes it possible to draw conclusions in regard to the effect of calibration

duration on the fluctuation of calibration results.

While longer calibration durations generally yield smaller values for ΠDNI and therefore less

fluctuation of results, seasonal influences need to be taken into consideration since the range

of ΠDNI values differs considerably in dependence of the month of the year. Seasonal changes

in meteorological conditions lead to seasonal tendencies of calibration results. For example,

in DLR2008 calibrations a RSI calibrated at the PSA between September and January is

likely to measure higher DN I values than if it was calibrated between February and June. In

DLR-VigKing the same is true for the period from July to October in comparison to March

to May.

In both calibration methods the evaluation indicated that measurements taken exclusively

during the months of November, December, January, April and May have the tendency to

lead to high fluctuation of calibration results and are more likely to produce strong deviations

from a long-term calibrations.

However, by choosing a calibration duration which includes sufficient data from outside these

particular periods the maximum occurring deviation from a long-term calibration can be

reduced substantially. In some cases it is preferable to choose a shorter duration in order to

avoid collecting too much data from these periods.

By using the tables 7.7 and 7.8 it is possible to choose the necessary calibration duration in

dependence on the month of the year and the ΠDN I ,max which the operator deems desirable.

A reasonable ΠDN I ,max should be chosen in regard to the overall uncertainty of the RSI.

While the results obtained here provide a basis on which to choose different calibration du-

rations during different times of the year, there are limitations which need to be taken into

consideration.

One limitation is the number of data sets. Seven data sets (table 7.1) were evaluated. They are

a viable basis on which to draw conclusions of a general nature, but as the period from winter

2007 to April 2008 demonstrated some years can exhibit comparatively extreme fluctuations.

Furthermore, some data sets were measured during the same period of time. Additionally,

the validation of the MAM in section 7.2.3 did exhibit differences of up to 0.5 % between the

ratios of actual calibrations and the ΠDNI. In respect to the above mentioned limitations a

conservative estimate of the calibration uncertainty as discussed in section 7.3.2 has higher

viability for generalization than the attempt of an exact determination of calibration error.
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8 Conclusion and outlook

Calibration methods for thermopile irradiometers are similar to each other in their require-

ments and procedures. Measurement samples are taken during specific meteorological condi-

tions. Clear sky conditions and a minimum cloud distance from the sun is required in many

cases in order to ensure a high intensity of direct beam irradiance. The calibration factor is

calculated as the mean of the ratios between measurements from the reference and the test

instrument.

DLR’s calibration methods for RSIs on the other hand have a different modus operandi. The

most significant differences are found in the acquisition of test measurements and methods

of data treatment. It is required to take measurements under a wide range of meteorological

conditions and continuously during the entire measuring period. The data treatment includes

application of a number of correctional functions for reduction of the sensor’s systematic

errors. After automatic and manual screening of data quality, the calibration factors are

determined by an algorithm for minimization of RMSD of the test instrument from the ref-

erence. Furthermore, two or three (for DLR2008 and DLR-VigKing respectively) calibration

factors are assigned to the different measurands instead of a single factor as in the calibration

of thermopiles. Similarities between thermopile calibration and RSI calibration were found in

regard to the setup of the measuring systems and the measuring site.

Calibration methods for thermopile irradiometers generally require measuring periods of less

than 14 days. If the required conditions from the standards are fulfilled, as little as three days

can be sufficient. Contrarily, RSI calibration by DLR presently uses data which is collected

over a period from 30 to 120 days. Until the present day a duration of 60 days was most

commonly used. Longer durations were chosen in dependence on the available time frame.

In this project it was found that the seasonal meteorological conditions at the PSA cause sea-

sonal tendencies and fluctuation of RSI calibration results. Furthermore, the fluctuations are

influenced by the calibration duration. Thus, it was possible to quantify correlations which

can be used to optimize the calibration duration in dependence on the time of the year in

which a calibration takes place.

However, one of the most important findings is the identification of seasons of adverse mete-

orological conditions. Test measurements from within the months November to January and

April and May are less suitable for DLR2008 and DLR-VigKing than measurements during

the remainder of the year. By including a sufficient amount of data from outside these periods
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the adverse effects can be reduced.

Consequently, the duration of data acquisition for calibrations starting during these months

should generally be longer than for calibrations starting during the rest of the year. In spring

it is advantageous to limit the duration of calibrations starting before these periods. E.g. a

DLR2008 or DLR-VigKing calibration starting in February with a duration of T =60 days has

less tendency to deviate from a long-term calibration than a calibration with a duration of

T =120 days or T =90 days.

Although longer durations are generally advisable during the winter months, one exception

was found for DLR2008: Calibrations starting in November with a duration of T =60 days

are more likely to exhibit deviations from a long-term calibration than with durations of

T =30 days or even T =14 days. This seasonal effect is caused by the adverse meteorological

conditions during the month of December.

In order to enable the reader to apply the results of this analysis, two tables where comprised

which allow to choose the calibration duration for both DLR calibration methods in depen-

dence on the month of the year in which measurements are commenced and the maximum

tolerable value of ΠDN I ,max which represents the fluctuation of calibration results (tables 7.7

and 7.8). For DLR2008 a constant calibration duration of 30 days throughout the year with

the exception of calibrations starting in December (60 days) is sufficient to keep ΠDN I ,max

within 2.5%. In DLR-VigKing calibrations the same applies with the exception of using 60

days duration for calibrations starting in the month of May instead of December.

The data and methods presented in this report are suitable to examine the correlation between

seasonal fluctuations and calibration duration. To make a final statement on the subject of

calibration uncertainty is not within the scope of this work. However, a conservative estimate

based on the presented findings can contribute to the ongoing studies of the overall accuracy

of RSIs. Additionally, based on the observation that during certain times the deviation of

calibration results exhibits one-sided tendencies towards the positive (November to January)

or the negative (April and May) it could be investigated, if these seasonal effects can be

compensated by functional corrections.

The amplitude of seasonal fluctuations as well as the month in which the amplitude is reached

can vary to some extent among different years. If further investigations of seasonal fluctuations

are carried out, it would be desirable to increase the total time span covered. Ideally, each

long-term calibration would cover 12 months or multiple entire years. Even without using

more data the accuracy of the evaluation method can be improved by using actual daily

calibrations instead of moving averages. With a modification of the evaluation software which

was created in the course of this project this is within the range of possibility.

The most recent calibration and correction method from [Vignola et al., 2017] could overcome
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the complications of site dependence of calibration and calibration duration. Further studies

of this new method are needed to proof this expectation.
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A Discussion of sensors drift in evaluated data

Figure A.1: Timeline for ΠDNI(T=120 days) from all data sets without removing drift

Before the final evaluation as presented in section 7.3.1 and 7.3.2 took place it was necessary

to identify data sets in which significant drift is present. This was done after DLR2008 cali-

brations.

In data sets which cover a full year or multiple years drift can be recognized by comparing the

same season in different years. However, even if drift is found to be present, the application

of the drift correction as elaborated in section 7.2.2 can reduce the quality of the data. This

will be discussed here on a case to case basis. For the drift removal procedure see section

7.2.2.

In the case of RSP-4G-08-10-3 the necessity of removing drift is apparent and doesn’t need

to be further elaborated (see figure A.1). In regard to RSR2-0018 the extend of drift can be

estimated by comparing data of the same month in two different years. As already stated

in [Geuder et al., 2014] the drift in this data set is negligible small. Similarly the data sets

RSR2-0036 and RSR2-0039-1 match all three Π courses of RSR2-0018. The three data sets

confirm each other. A slight drift is probable in RSR2-0039-1, but cannot be improved due

to the nature of the drift removal algorithm.

The RSP-4G-08-10-1 data set is from the same sensor as the RSP-4G-08-10-3. It covers more

than a year of measurements and exhibits similar drift (see figure A.2). Furthermore, after
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correction of its drift a closer coincidence with the adjacent RSR2-0018 and RSR-0017 data

sets was observed (see figures 7.9 and A.1).

RSR2-0039-2 covers slightly more than a year. Comparing the course of ΠDNI, ΠGHI and

ΠDHI all three have similar drift over the period (see figure A.5). The drift corrected curve of

RSR2-0039-2 seems to convey a better representation of the seasonal changes (see figures 7.9

and A.1).

The data sets RSR2-0036 and RSR2-0039-1 were used in their original state without drift cor-

rection. These data sets cover less than a year and make it difficult to differentiate between

seasonal changes and drift. Comparison to the observed seasonal tendencies in the longer

data set RSR2-0018 can help to reach a better understanding. However, regardless of drift

being present or not the fitting functions (see section 7.2.2) are not suitable here, since the

seasonal fluctuations are significantly stronger than any sensor drift.

In RSR2-0017 (see figure B.2 and A.4) the course of the ΠDNI curves is mostly seasonal. No

apparent drift was recognized.
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Figure A.2: Π for RSP-4G-08-10-1 without treatment for drift removal

Figure A.3: ΠDNI for RSP-4G-08-10-3 without treatment for drift removal
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Figure A.4: ΠDNI with varying T for RSR2-0017 without drift removal treatment.

Figure A.5: Π with varying T for RSR2-0039-2 before treatment for drift removal
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B Supplemental plots for discussion of calibration duration with

DLR2008
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Supplemental plots for discussion of calibration duration with DLR2008

Figure B.1: Same as figure 7.8 for RSP-4G-08-10-1

Figure B.2: Same as figure 7.8 for RSR2-0017

Figure B.3: same as figure 7.8 for RSR2-0039-1
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Figure B.4: same as figure 7.8 for RSR2-0018

Figure B.5: same as figure 7.8 for RSR2-0036

Figure B.6: same as figure 7.8 for RSR2-0039-2
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Figure B.7: ΠGHI in dependence on calibration duration for seven datasets - DLR2008

Figure B.8: ΠDHI in dependence on calibration duration for seven datasets - DLR2008
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C Discussion of overlapping calibrations from different sensors

with DLR2008

Some data sets were measured during the same time span (see figure 7.1). Comparison of

their ΠDNI during the overlapping intervals leads to the following observations:

RSR2-0018, RSR2-0036 and RSR2-0039-1

These data sets can be seen figures B.4, B.3 and B.5. They overlap during the period from

2007-11-12 to 2008-08-12. There are differences in the values of ΠDNI but the general fluctu-

ation of increase and decrease of the values during this period is common to all three. The

course of ΠDNI of RSR2-0039-2 as seen in figure 7.9 crosses both other data sets while they

are parallel to each other. This could be a sign of sensor drift as mentioned above. Further

minor differences are attributed to the individually varying spectral sensitivity of each sensor.

A recalibration of the RSR2-0018 for only the overlapping period reduced the ΠDNI during

the winter months (on 2008-01-01 by as much as 1 %) while its course during the summer

only displayed minor changes. After recalibration the coincidence with the RSR2-0036 data

set had increased significantly (see figure C.3).

By comparison of the data of both calibrations of RSR2-0018 during its MAM processing

steps it was found that LR,DNI had only changed by 0.06 % while the calibration factors C FG

and C F D had changed by 0.18 % and 0.11 % respectively. This demonstrates that even among

long-term calibrations with T> 180 days the measuring period has a noticeable influence on

calibration results.

The recalibration included less summer months than the original longer calibration period.

Thus the data collected during the winter months had a stronger influence on the calibration

result than previously. Therefore, a reduced ΠDNI during winter was to be expected.

RSP-4G-08-10-3 and RSR2-0039-2

In opposition to the above observations a comparison of RSP-4G-08-10-3 to RSR2-0039-2

for the time span from 2011-01-01 to 2012-01-18 (figures B.6 and C.1) reveals only slight

similarities. Few of the curve characteristics (e.g. the peaks of ΠDNI(T =14 in August 2011)

are similar in both data sets. Subsequently, the RSP-4G-08-10-3 was recalibrated for the

same period as in the RSP2-0039-2. The ΠDNI of the recalibrated data set displayed the

same characteristics as before recalibration (see figure C.2). Thus, in the case of RSP-4G-

08-10-3 and RSP2-0039-2 the differences between both data set are owed to the individual
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characteristics of each sensor instead of the time span of the data used for calibration.

Comparing recalibrations with the original calibrations

The RSIs RSR2-0039 and RSP-4G-08-10 have been used twice for long-term measurements

and thus two separate data sets were available for each of the two sensors. However, compar-

ing two data sets of the same sensor does not reveal any specific similarities apart from the

presence of sensor drift in both RSP-4G-08-10 data sets. For RSR2-0039 see figures B.3 and

B.6. For RSP-4G-08-10 see figures 7.8 and B.1.

Taking into account all of the above observations it can be stated that the meteorological

conditions during the calibration period are the predominant factor in formation of ΠDNI. The

same is the case for the determined calibration factors. Individual attributes of each sensor

also play a role but the general tendencies clearly depend on the meteorological conditions.
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Figure C.1: same as figure 7.8. RSR-4G-08-10-3 for the period that matches RSR2-0039-2.

Figure C.2: ΠDNI for RSP-4G-08-10-3 calibration from 2011-01-01 to 2012-01-18
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Figure C.3: ΠDNI for RSR2-0018 calibration from 2007-11-12 to 2012-08-12

Figure C.4: ΠDNI for RSR2-0018 calibration from 2007-05-17 to 2012-10-15 plotted from
2007-11-12 to 2012-08-12
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D Supplemental plots for discussion of calibration duration with

DLR-VigKing

Figure D.1: ΠDNI in dependence on calibration duration for seven datasets - DLR-VigKing
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Figure D.2: ΠGHI in dependence on calibration duration for seven datasets - DLR-VigKing

Figure D.3: ΠDHI in dependence on calibration duration for seven datasets - DLR-VigKing
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Figure D.4: ΠGHI by measurement starting month - DLR-VigKing

Figure D.5: ΠDHI by measurement starting month - DLR-VigKing
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E Li-200 Si-pyranometer specifications

Total Solar Radiation

The LI-200SA Pyranometer is designed for field measure-

ment of global solar radiation in agricultural, meteorologi-

cal, and solar energy studies.  In clear, unobstructed daylight

conditions, the LI-COR pyranometer compares favorably

with first class thermopile-type pyranometers (5, 11), but is

priced at a fraction of the cost.

Patterned after the work of Kerr, Thurtell and Tanner (7), the

LI-200SA features a silicon photovoltaic detector mounted 

in a fully cosine-corrected miniature head.  Current output,

which is directly proportional to solar radiation, is calibrated

against an Eppley Precision Spectral Pyranometer (PSP)

under natural daylight conditions in units of watts per

square meter (W m-2).  Under most conditions of natural

daylight, the error is <5% (7).

The spectral response of the LI-200SA does not include the

entire solar spectrum, so it must be used in the same light-

ing conditions as those under which it was calibrated.

Therefore, the LI-200SA should only be used to measure

unobstructed daylight. It should not be used under vegeta-

tion, artificial lights, in a greenhouse, or for reflected solar

radiation.

TOTA
LI-200SA Specifications

Calibration: Calibrated against an Eppley Precision Spectral
Pyranometer (PSP) under natural daylight conditions.
Typical error under these conditions is ± 5%.

Sensitivity: Typically 90 µA per 1000 W m-2.

Linearity: Maximum deviation of 1% up to 3000 W m-2.
Stability: < ± 2% change over a 1 year period.
Response Time: 10 µs.
Temperature Dependence: 0.15% per °C maximum.
Cosine Correction: Cosine corrected up to 80° angle of
incidence.
Azimuth: < ± 1% error over 360° at 45° elevation.
Tilt: No error induced from orientation.
Operating Temperature: -40 to 65°C.
Relative Humidity: 0 to 100%.
Detector: High stability silicon photovoltaic detector
(blue enhanced).
Sensor Housing: Weatherproof anodized aluminum case
with acrylic diffuser and stainless steel hardware.
Size: 2.38 Dia. × 2.54 cm H (0.94” × 1.0”).
Weight: 28 g (1 oz).
Cable Length: 3.0 m (10 ft).

Ordering Information

The LI-200SA Pyranometer Sensor cable terminates with a

BNC connector that connects directly to the LI-250A Light

Meter or LI-1400 DataLogger.  The 2220 Millivolt Adapter

should be ordered if the LI-200SA will be used with a strip

chart recorder or datalogger that measures millivolts.  The

2220 uses a 147 ohm precision resistor to convert the 

LI-200SA output from microamps to millivolts.  The sensor

can also be ordered with bare leads (without the connector)

designated LI-200SZ.  Both are available with 50 foot

cables, LI-200SA-50 or LI-200SZ-50.  The 2003S Mounting

and Leveling Fixture is recommended for each sensor unless

other provisions for mounting are made.  Other accessories

are described on the Accessory Page.

LI-200SA Pyranometer

LI-200SZ Pyranometer

LI-200SA-50 Pyranometer

LI-200SZ-50 Pyranometer

2220 Millivolt Adapter

2003S Mounting and Leveling Fixture

2222SB-50 Extension Cable

2222SB-100 Extension Cable

0.25

0.20

0.15

0.10

0.05

0
0 0.2 0.4 0.80.6 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

50

100

SOLAR  IRRADIATION  CURVE  OUTSIDE  ATMOSPHERE

SOLAR  IRRADIATION  CURVE  AT  SEA LEVEL

CURVE FOR BLACKBODY CT 5900°K
03

H O
2

02 H O
2

H O
2
H O

2
H O

2

H O
2 H O, CO

2        2

H O, CO
2        2 H O, CO

2        2

WAVELENGTH   ( µ )

S
P

E
C

T
R

A
L

 I
R

R
A

D
IA

N
C

E
 (

S
λ)

 -
 W

 m
  

A
-2

  
 -

1

P
E

R
C

E
N

T
 R

E
L

A
T

IV
E

 R
E

S
P

O
N

S
E

 T
O

 I
R

R
A

D
IA

N
C

E

03

PYRANOMETER SENSOR

LI-200SA PYRANOMETER SENSOR

LI-200SA Pyranometer Sensor

The LI-200SA Pyranometer spectral response is illustrated

along with the energy distribution in the solar spectrum (8).

Figure E.1: LI-COR LI-200SA specifications (SA: with BNC connector) [LI-COR, 2011]
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