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ABSTRACT We have defined a molecular 
surface representation that describes precisely 
and concisely the complete molecular surface. 
The representation consists of a limited number 
of critical points disposed at key locations over 
the surface. These points adequately represent 
the shape and the important characteristics of 
the surface, despite the fact that they are mod- 
est in number. We expect the representation to 
be useful in areas such as molecular recogni- 
tion and visualization. In particular, using this 
representation, we are able to achieve accurate 
and efficient protein-protein and protein-small 
molecule docking. o 1994 wiey-Liss, Inc.* 
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INTRODUCTION 
Shape complementarity plays an important role 

in molecular recognition. The shape of a molecule is 
often described operationally by a surface represen- 
tation. A representation originating from the Lee 
and Richards’ concept of solvent accessible surface 
and defined by Connolly generates a molecular sur- 
face by rolling a probe ball over the van der Waal’s 
surfaces of the atoms of the Protein sur- 
faces generated this way have shown satisfactory 
complementarity at their interfaces: and this rep- 
resentation has become popular for protein recogni- 
tion problems. Connolly’s surface can be computed 
analytically, and is continuous in essence. However, 
in applications such as protein docking, discrete dots 
are often used instead, in order to facilitate numer- 
ical  scheme^.^-'^ Using the dot surface as the sur- 
face representation, however, creates a dilemma for 
the applications: to accurately describe the surface, 
the dots should be at high density (typically tens per 
surface atom); on the other hand, the computational 
costs of the applications that use the dot surface rise 
with dot density nonlinearly, often from quadrati- 
cally to exponentially, both in time and in memory. 
In addition, a change in dot density alters the local- 
ity of the dots, which in turn varies the surface prop- 
erties associated with them. For example, the orien- 
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tation of surface normals is highly sensitive to the 
location of the dots. While, unfortunately, the choice 
is often subjective, proper choice of dot density is 
vital to such applications. Due to limited computer 
power, reducing the number of dots is frequently a 
primary consideration. However, the way a poorer 
representation affects an application is hard to fore- 
see and. can be devastating. Undesirable perfor- 
mance in costs and/or results is discernible in the 
protein docking schemes which are based on the dot 
~u r face ,~  despite their success to various extents. 
Some of the schemes achieve accurate docking in 
affordable time (on the scale of hours) by confining 
the search to a likely binding site and removal of 
some surface atoms? Such measures, however, can 
be susceptible to subjectivity. These difficulties are 
evidently associated with the surface representation 
the applications employ. In demand is hence a mo- 
lecular surface representation which is both precise 
and concise. 

Here we present a surface representation that is 
accurate (represents the true shape of the surface), 
complete (covers the whole molecule), concise (a few 
points per surface atom), rich in describing local sur- 
face properties (surface normal, area, curvature, 
connectivity, etc.), uniquely defined, and indepen- 
dent of the density of a dot surface. Using this rep- 
resentation, we have accurately docked proteins and 
small molecules to receptor proteins within a few 
minutes. 

The representation describes a surface by a set of 
critical points, derived from Connolly’s molecular 
surface. By definition, such a critical point is ob- 
tained by projecting the gravity center of a Connolly 
face (see methods) onto the surface. A critical point 
can be defined on either a convex, concave, or sad- 
dle-shaped face, correspondingly being dubbed as a 
cap, a pit, or a belt. These projected gravity centers 
represent the faces effectively both in their location 
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and in the orientation of their associated normals. 
The collection of these points covers the key loca- 
tions of the extrusion and indentation of the molec- 
ular surface, effectively preserving the shape of the 
molecule. The locations of these points and their sur- 
face normals, as well as other associated properties, 
do not depend on a given dot density. Since each face 
produces exactly one critical point and each surface 
atom is associated with only a few faces, only a few 
critical points are generated per surface atom. This 
results in a substantial reduction from the usual 
number of dots describing a dot surface and hence in 
the costs of the applications, while at the same time 
still maintaining a healthy dose of redundancy to 
tolerate imperfect data and methods. This surface 
representation satisfies the demand of being accu- 
rate, concise, representative of the shape of the mol- 
ecule, and loaded with useful features such as the 
normal, the curvature, and the area associated with 
a point. In addition, the way these points are gener- 
ated readily facilitates a coarse-grained triangula- 
tion for fast visualization and for applications em- 
ploying geodesic measures.* Since the critical points 
are defined upon the Connolly faces, their genera- 
tion can adopt many of the relevant data structures 
and algorithms that have been already developed 
over the y e a r ~ . ~ , ’ l - ~ ~  !l’h e computation costs are ex- 
pected to be comparable to such algorithms. By vir- 
tue of these advantages, we believe this representa- 
tion should have general use in molecular 
recognition problems. 

METHODS 
A critical point is defined as the projection of the 

gravity center of a Connolly face on the molecular 
surface. To explain the above definition, let us begin 
with Connolly’s mechanism of constructing the mo- 
lecular ~u r face .~  Connolly’s surface consists of con- 
nected domains of atomic size, called faces. There 
are convex, saddle-shaped, and concave faces, whose 
generation requires a rolling probe ball to  touch tan- 
gentially only one, two, or three atoms, respectively. 
A convex face is the part of an atom’s van der Waal’s 
surface which the probe ball can touch. A concave 
face is the part of the probe ball surface which is 
bordered by the three atoms sustaining the ball. A 
saddle face is the part of the surface of a torus gen- 
erated by the probe ball rolling around the groove 
between two atoms; the line drawn through the cen- 
ters of the two atoms is called the torus axis and the 
trajectory of the probe ball center is called the torus 
central circle. 

To find the gravity center of a face is straightfor- 

*A straightforward and efficient triangulation takes advan- 
tage of the fact that every pit has three belts and three caps as 
neighbors, every belt has two caps and normally two pits as 
neighbors, and their neighboring relation has been established 
during the formation of the Connolly faces. 

ward. It is the integral of the coordinates of the sur- 
face area elements over the face, divided by the area 
of the face. Namely, the gravity center g is obtained 
by 

g = $ udSl$  dS 

where u is the vector to a surface element dS (for 
convenience we choose the origin, 0, at  the atomic 
center for a convex face, a t  the probe center for a 
concave face, and at  the center of the torus central 
circle for a saddle-shaped face). 

Our aim is to project the gravity center of a face 
onto the surface so that the direction of the projec- 
tion would coincide with the direction of the normal 
to  the surface at the projected point. First, it is nec- 
essary to find the projection center. A convex face is 
spherical, so that the projection center is simply the 
center of the generic atom. Similarly, a concave face 
is also spherical and the projection center is the cen- 
ter of the generic probe ball (Fig. la). For these faces 
the projection, c, is obtained by extending the vector 
from the projection center to the gravity center onto 
the surface. Namely, 

where R is the radius of either the atom or the probe 
ball, for a convex or a concave face, respectively. 
This procedure produces the cap and the pit. 

The projection center for a saddle-shaped face can 
be found on the torus central circle. Because the line 
from the projection center to  the gravity center is a 
normal of the torus, it lies on a plane through the 
torus axis. To find the projection center, a plane is 
first defined with the gravity center and the torus 
axis (this plane is in fact the mirror-symmetric 
plane of the saddle-shaped face). The projection cen- 
ter is the intersection of this plane with the torus 
central circle (Fig. lb). If a is a vector along the 
torus axis, and r is the radius of the torus central 
circle, the projection center p is obtained by 

p = ra x (g x a) / )a x (g x a)J. (3) 

Once the projection center is computed, the projec- 
tion c is found along the vector from the projection 
center to the gravity center at the length of R, the 
probe radius. Namely, 

(4) 

This gives us the belt. 
There are two cases when the critical point cannot 

be properly determined by the above calculations. 
The first occurs when the denominator in either Eq. 
(2) or (3) is zero, which can happen if a face is either 
a complete sphere so that its gravity center coincides 
with the spherical center, or a complete torus so that 
the gravity center falls on the torus axis, respec- 
tively. In such situations, Eqs. (2) and (3) diverge and 
it becomes impossible to cast a projection unequivo- 

c = p + R(g - p) / lg - PI. 
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cally. The second case occurs when a convex or a 
concave face contains a hole into which the projection 
happens to fall instead of on the surface. The exis- 
tence and the geometry of such holes are computable, 
for example, via the data structures prescribed by 
Connolly for analytical molecular surface computa- 
t i ~ n . ~ , ~ ~  These cases are associated with a few highly 
exposed or highly folded structural  feature^.^ 

One possible solution of these singularities may be 
to subdivide such “irregular” faces. However, we 
leave the options open, since whether a solution is 
plausible depends on the application and on the 
structure of the molecule. In our experience, we have 
examined 18 molecules, including proteins and small 
ligands, and found that for any individual molecule 
the nonintegrable faces occupied less than 0.08% of 
all the faces and the faces with holes less than 0.69%. 
The latter number did not exclude those occurrences 
where the critical point did not fall into the hole. To 
the samples in our docking experiments, these in- 
frequent occurrences add sporadic noise to the sur- 
faces. However, the Computer Vision based tech- 
nique (see below) we adopted is adequate to deal with 
these, since the technique is noise tolerant and ca- 
pable of recognizing partially obscured objects. Con- 
sequently, no remedy was performed for such cases in 
preparing samples for the docking experiments, ex- 
cept for discarding the nonintegrable faces. 

The coordinates of the sample structures ex- 
amined in this study were obtained from the 
Brookhaven Protein Data Bank.14 The atoms are 
given radii according to the extended atom model of 
CHARMM with polar h~dr0gens. l~ The radius of the 
probe ball was 1.8 A, unless specified otherwise. We 
generated the critical points of the samples by mod- 
ifying Connolly’s MS program” so that it approxi- 
mated the integration [Eq. (111 by summing over the 
Connolly dots, without actually outputting the dots. 
Such an approach introduced artificial noise into the 
location and the normal orientation of the critical 
points. We have estimated how much noise was in- 
troduced by varying dot density a t  1, 4, and 10 
dotslhi’ and evaluating the root-mean-squared devi- 
ations of critical point locations and normal orien- 
tation against a high density, 50 dotsIA’, for each of 
the 18 molecules. The average location deviations 
for these molecules were 0.305,0.154, and 0.107 A at  
the three densities, respectively; the worst among 
them were 0.333, 0.165, and 0.113 A. The corre- 
sponding average deviations in normal orientation 
were 10.4,5.4, and 3.8”, the worst were 12.8,6.9, and 
4.7”. The data presented below were obtained with 
the density 10 dotsIA’, which would give an uncer- 
tainty of critical point location of about 0.1 A, and an 
uncertainty of normal orientation of about 4”. 
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Fig. 1. An illustration of the generation of (a) caps and pits, 
and (b) belts, respectively. Symbols are as follows: S is a Connolly 
face, either convex (for caps) or concave (for pits) (a), and saddle- 
shaped (for belts) (b); 0 in (a) is either the atomic center (for caps) 
or the probe center (for pits). In b, 0 is the center of the torus 
central circle; in a and b, g and c are the gravity center of a face 
and its projection on the surface, respectively, and a and b are the 
two atoms along which the torus axis lies. 

RESULTS AND DISCUSSION 
A small molecule, the prothetic heme group of a 

metmyoglobin,16 is used as an example to demon- 
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strate the characteristics of this representation. 
Figure 2a and c illustrates the heme as van der 
Waal's balls and as a triangle mesh composed by the 
critical points, respectively. Comparing these two 
figures, it is obvious that the shape of the heme is 
nicely preserved by the critical points. It is also 
clear that  the critical points span the entire 
molecular surface rather evenly. Figure 2b shows 
the Connolly dots and the faces of the heme, as well 
as the critical points on these faces. The critical 
points are located at the commanding spots of the 
Connolly faces. Comparing Figure 2a and 2c, it  is 
clear that the critical points cover all the bumps 
and dents as well as the flat areas of the surface at 
key locations. Figure 2d compares the surface 
normals of a subset of the critical points, chosen by 
objective pruning criteria (see figure caption and 
below), that  match at the interface of the heme- 
myoglobin complex. The pairing normals are all 
less than 43" from antiparallel, with the average 
angle and the root-mean-squared deviation at 157.5 
* 12.3". We have also surveyed nine crystallo- 
graphic complexes at 2.7 A or better resolutions, 
including seven protein-protein complexes and two 
protein-small molecule complexes. At their inter- 
faces there are 261 to 471 pairs of critical points 
matched to within 1 A. The normals of these pairs 
are at the angles 156.1 * 15.0". Clearly, when the 
critical points are close spatially, their normals 
align fairly well. This dual complementarity dem- 
onstrates that the shapes of the surfaces are well 
represented. The dual location-orientation comple- 
mentarity is a highly desirable characteristic for a 
surface representation, since it allows the surfaces 
to be compared simultaneously by spatial and 
directional relations for effective and efficient 
recognition. Currently, commonly used docking 
methods employ matching schemes which either do 
not use the normals at all, use them as a minor 
supplement, or employ a redundant number of 
normals to compensate for their inaccura~y.~*~."  One 
of the difficulties associated with using the normals 
of the Connolly dots is the uncertainty of the 
location of the dots and thus the orientation of the 
normals. 

The remarkable reduction of the critical points 
from the Connolly dots is visible in Figure 2b and c. 
The heme is a 44-atom molecule. Using a 1.8 A 
probe ball, 5,355 Connolly dots have been obtained 
for the heme at the density of 10 dots/A2. With our 
representation, the surface is represented by 59 
caps, 120 pits, and 147 belts, totaling 326 critical 
points, achieving a 16-fold reduction against the 
number of Connolly dots. To reduce the Connolly 
dots to a comparable number, the dot density must 
be decreased below 0.64 dots/k2, a value impossible 
for most applications. In a survey of 19 proteins 
which contain between 200 and 3400 atoms, we find 
that on average a surface atom requires 125.4 Con- 

nolly dots on the surface, at probe radius 1.8 A and 
dot density 10/A2, while the surface atom needs only 
1.1 caps, 2.3 pits, and 3.0 belts in our representation. 
In addition, our experience shows that with only a 
fraction of the critical points, obtained by objective 
pruning criteria, molecules in complexes can still 
recognize each other. The pruning mechanism in- 
cludes (1) use only one set of the caps, pits, or belts, 
(2) weed points that are too close to each other, and 
(3) remove points that cover a face too small or too 
large. These measures are automatically performed 
on the entire surface for the sheer purpose of further 
reduction, taking no account of any particular fea- 
ture of the molecule or the surface. They result in a 
coarser, less precise surface. However, we find that a 
subset containing one point or less per surface atom 
still sufiices for an accurate docking (see below). 

It should be emphasized that the Connolly dots 
cannot precisely dictate the surface properties a t  
practical densities. Furthermore, these properties 
vary substantially with the change of density. In 
contrast, our representation does not depend on dot 
density, despite using a modest number of discrete 
points. Also, our representation differs essentially 
from the intermediate reduction of the Connolly dots 
performed by some docking  application^.^.' The lat- 
ter usually involves a time-demanding process to 
produce what is needed by the particular scheme the 
application employs; the resulting points usually do 
not constitute a representation of the complete mo- 
lecular surface. 
Our concise representation of the molecular sur- 

face facilitates employing combinatorial algorithms 
for molecular recognition problems. For example, 
pattern recognition techniques which have reached 
certain sophistication in association with computer 
vision and  robotic^'^.'^ are useful with this repre- 
sentation. These techniques have shown high efli- 
cacy in the problems of protein substructure com- 
paris~n,' '-~l where atoms are represented by 
isolated points. Similarly, the critical points in our 
representation are apart by nearly interatomic dis- 
tances. The sparseness of the critical points allows 
adopting methods which deal with discrete objects. 
Conversely, other discrete-point representations 
usually proximate continuous  surface^;^^'^*^^ their 
applications sometimes tend to derive schemes from 
the ideal, continuous limit, which find difficulty in 
the presence of imperfection. 

Among the potential applications of the represen- 
tation, protein docking methods are obvious candi- 
dates. First, the representation provides docking 
schemes with points which are limited in number 
while still cover the whole molecular surface at the 
same time. In terms of computational costs, the dif- 
ference in the number of points compounds nonlin- 
early via the complexity of docking algorithms. In 
terms of the capacity of searching the surface, no 
blank points are left, not only on the extrusions and 
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Fig. 2. An example of our molecular surface representation 
(the photographs are taken from screens displayed by QUANTA 
from the Molecular Simulation Inc., Waltham, MA.) (a) The heme 
displayed as the van der Waal’s balls of the atoms (ray-tracing 
plot). (b) Connolly’s dots (generated with the MS program” and 
the critical points on the heme surface. All points drawn as small 
crosses. Colors: light-green, convex faces; blue, concave faces; 
red, saddle-shaped faces; yellow, critical points. (c) The critical 
points connected in a triangle mesh. Colors: white, caps; blue, 
pits; red, belts. (d) Complementarity between the caps of the 

invaginations but also on the flat areas. Second, 
with this representation docking methods need not 
pursue perfect point-to-point matches out of imper- 
fect data and imperfect surfaces. Rather, the repre- 
sentation supports shape matching by a network of 
critical points, strategically disposed and ade- 
quately describing the shapes. An added benefit of 
adopting a multiple-point scheme is higher noise tol- 
erance. Third, our representation supports more 
complementary properties a t  high precision. Among 
them is the surface normal, an important descriptor 

heme and the pits of the myoglobin in their location and normal 
orientation. This picture is a side view perpendicular to those in 
(a-c). The caps of the heme are shown in small crosses. The 
normals are shown in strikes, outward from the caps of the heme 
and inward from the pits of the myoglobin. The normals are drawn 
only for those caps and pits whose mutual distances are within 2 
A. The pits have been pruned as discussed in the text. Colors: 
yellow, caps; orange, normals of the caps; blue, normals of the 
PltS. 

of the vectorial characteristic of local surface. Meth- 
ods based on dot surface are, unfortunately, unable 
to fully employ surface normals due to an uncer- 
tainty in the locality of the dots, thus losing a valu- 
able source of information. By including surface nor- 
mals we have observed a dramatic performance 
enhancement over our previous docking experi- 
m e n t ~ . ~ ~ ” ~  Docking methods can thus benefit from 
the conciseness, completeness, tolerance, and better 
complementarity featured by the representation. 

For a brief demonstration of our representation’s 
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actual performance in docking, we list in Table I 
some results from our recent docking experiments 
on known complexes taken from the Brookhaven 
Protein Data Bank.14 They include protein-protein 
docking (2mhb, hemoglobin a subunit with @ sub- 
unit; 2ptc, p-trypsin with pancreatic trypsin inhibi- 
tor; lcho, a-chymotrypsin with ovomucoid third do- 
main), and protein-small molecule docking (4mbn, 
myoglobin with heme; 3dfr, dihydrofolate reductase 
with methotrexate). We use these known complexes 
to examine whether the representation allows dock- 
ing to regenerate the crystallographic results in a 
timely fashion, and thus whether it capably repre- 
sents the molecular surface and benefits docking 
methods as we have expected. 

The Geometric Hashing paradigm has been previ- 
ously applied to protein structural matching,lg to 
detection of surface and to d o ~ k i n g , ’ ~ , ~ ~  
employing a different surface representation.26 Fol- 
lowing is a brief overview of our new docking 
method. The details will be reported ~eparately.’~ 

The Geometric Hashing technique has originated 
in Computer Vision as an object recognition para- 
digm.l7>l8 Recently, we have adapted this approach 
to protein comparison as a highly efficient, amino 
acid sequence-order-independent t e c h n i q ~ e , l ~ - ~ ~  for 
detecting a partial match of 3-D point sets. Proteins 
are represented as sets of unconnected 3-D interest 
points, e.g., their C,s. We seek a 3-D rotation and 
translation which would superimpose a C, atom- 
point set of one protein onto another so that a max- 
imal number of C, atom-points in one set would be 
“close enough” to points in the other set. When ap- 
plied to comparisons of protein structures,14 this 
method yields recurring “real” 3-D, substructural 
motifs, without a predefinition of the motif. The 
reader is referred to Bachar et a1.20 for a specific 
implementation of this approach. Obviously, the 
docking problem can be formulated in similar terms, 
given appropriate interest points. With ligand atoms 
and the Kuntz-styled negative image “spheres” on 
receptorsz6 as the interest points, we have demon- 
strated the efficacy of this a p p r o a ~ h . ~ ~ . ~ ~  Our cur- 
rent surface representation provides sparse sets of 
interest points on the molecular surfaces for the use 
of the Geometric Hashing technique. 

The idea behind the Geometric Hashing approach 
is to represent the 3-D points in a rotation and trans- 
lation invariant manner. Each point is assigned a 
rotation and translation invariant signature (a 
“geometric color”). The signatures are efficiently 
compared via a lookup table (hash-table). The 
signatures are geometric characteristics generated 
in a reference frame defined by three points. All 
other points are represented by their coordinates in 
this frame.lg In order to deal with partial matching 
the points are represented in all triplet-based 
frames. 

There are several major advantages of bundling a 

Geometric Hashing-based docking algorithm with 
our new, sparse surface representation of caps, pits, 
and belts as the interestpoints. First, it enables us to 
enhance the Geometric Hashing approach by incor- 
porating the normal information. Geometrically, 
two points with their normals suffice to define a 3-D 
reference frame. This reduces the complexity of the 
algorithm by an order of magnitude. Also, under the 
current representation the signature of a point is not 
only its coordinates but also its normal direction. 
This increases significantly the method‘s discrimi- 
nation power, leaving us with considerably fewer 
potential “false positives.” Second, the new repre- 
sentation makes the use of Geometric Hashing a fea- 
sible and highly efficient approach for protein-pro- 
tein recognition. Although the Geometric Hashing is 
among the most efficient methods for 3-D point set 
matching, it is still time consuming for very large 
point sets. The ideal number of interestpoints for the 
method to be efficient without loosing its discrimi- 
natory power is in the low hundreds. The sparse sur- 
face representation described here is ideally suited 
for this task, since the number of points that it pro- 
duces is of the order of the number of atoms on the 
surface. This enables completely automated match- 
ing of entire proteins. There is no need to initially 
focus on the active site, as most other docking tech- 
niques do. 

The experiments started with separating the mol- 
ecules of known complexes and randomly rotating 
and translating the ligands (the smaller molecule) 
with respect to the receptor. Critical points were 
then generated for each of the molecules, and 
pruned if necessary to reduce their number to lower 
hundreds as described before. The points were sub- 
sequently submitted for docking to find all transfor- 
mations that resulted in local-area shape match. 

The computations were performed on an SGI In- 
digo XS24 workstation. The computations include 
generating the critical points, pruning the points to 
a subset and docking (finding all shape matches in 
local areas). The CPU times consumed for point gen- 
eration and docking are listed in Table I. The prun- 
ing spent negligible CPU time (seconds) and thus is 
not reported in the table. Generating the critical 
points took at most - 2.1 min for the examples. 
Docking was timed when the whole search was com- 
pleted, regardless of when the best solution 
emerged. For all examples, including protein-pro- 
tein matching, docking was completed within 2.0 
min. 

Accuracy of docking is measured by the root- 
mean-squared deviation (RMS) between the crystal- 
lographic positions of the ligand (the smaller mole- 
cule) atoms and those obtained by docking the 
detached ligand back to the receptor (the larger mol- 
ecule). The results with the lowest RMS are entered 
in Table I. They are clearly a t  remarkably high ac- 
curacy: for all examples the RMS is around or below 
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TABLE I. Results of Docking Protein-Protein and Protein-Small Molecule Complexes, Obtained by Our 
Docking Method Using This Representation* 

Receptor Ligand 
critical critical 

#Match- point point 
ing genera- genera- Dock- Receptor Ligand 

#Critical #Surface Critical Surface point tion tion ina 
points atoms points atoms pairs RMS time time time 

PDB Receptor Ligand (n) (n) (n) (n) (n) (A> (min) (min) (min) 
4mbn Myoglobin Heme 208 588 59 44 24 0.33 1.16 0.06 0.28 
3dfr Dihydrofolate Methotrexate 582 580 43 32 36 0.58 1.65 0.04 1.72 

2mhb Hemoglobin Hemoglobin 263 477 245 428 20 0.99 1.47 1.40 1.42 

2ptc p-Trypsin Pancreatic 365 586 250 235 31 0.24 1.98 0.57 1.74 

reductase 

P-subunit a-subunit 

trypsin 
inhibitor 

3rd domain 
lcho a-Chymotrypsin Ovomucoid 343 636 237 227 24 0.38' 2.12 0.51 1.89 

*Columns: (1) the Brookhaven Protein Data Bank code of the molecular complex; (2) the name of the receptor (the larger molecule) 
of the complex; (3) the name of the ligand (the smaller molecule) of the complex; (4) the number of critical points on the whole receptor 
surface, after pruning; (5 )  the number of surface atoms of the receptor; (6) the number of critical points on the whole ligand surface, 
after pruning; (7) the number of surface atoms of the ligand (8) the number of the pairs of critical points from the ligand and the 
receptor which are away from each other within 2.0 A in the crystallographic complex; (9) the lowest root-mean-squared deviation 
found among docking solutions, between the atomic positions of the ligand in the crystallographic data and the ones calculated from 
the transformation that brought the separated ligand back to the receptor; (10) the CPU time for generating the critical points of the 
receptor; (11) the CPU time for generating the critical points of the ligand (12) the CPU time for the docking to complete all the 
searching, regardless of when the best solution emerged. 

1.0 A (to compare with some of the best protein- 
protein docking  result^).^ 

This table demonstrates why the representation 
allows efficient and accurate docking. Only a modest 
number of points serve as the input to the docking 
algorithm: only half to one points per surface atom. 
With these points the representation still finds 20 to 
more than 30 point-to-point matches at  the ligand- 
receptor interface of the crystallographic complexes. 
The abundance of matches indicates that the con- 
cise, reduced representation preserves the shape of 
the surfaces to a satisfactory extent. For each indi- 
vidual molecule, the points involved in the original 
matches collectively describe the local surface shape 
in that area, regardless of how the ligand is sepa- 
rated and transformed. Successful docking occurs 
when the docking scheme is able to identify such 
clusters in the separated molecules and is able to 
take advantage of their spatial and directional com- 
plementarities. One of the examples, the myoglobin 
and the heme (4mbn), is illustrated in Figure 2. One 
can visually examine Figure 2d and perceive how 
the spatially matched points and their aligned nor- 
mals allow one to bring the two molecules back to 
the docked complex structure after they are sepa- 
rated. 

In summary, we have good reasons to expect that 
the representation presented here will find numer- 
ous applications besides biomolecular recognition 
and docking. To name a few, the representation can 
be useful for similarity comparisons between the 

surfaces of objects, and for the identification and 
classification of surface motifs.23 As a byproduct of 
the surface representation, another complementar- 
ity has been found to exist between two sets of non- 
surface points in a complex, namely, the centers of 
the rolling probe sphere corresponding to the critical 
points of one molecule, and the atomic centers of the 
second. These can serve as an additional tool for mo- 
lecular recognition and rational molecular design. 
Finally, our representation gives molecular graph- 
ics and visualization a new and powerful tool that 
can be used in many different applications of com- 
puter-aided molecular design. 
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