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ABSTRACT 

A covering is a graph map 4: G + H that is an isomorphism when re- 
stricted to the star of any vertex of G. If H is connected then I ~ - ’ ( u ) /  is 
constant. This constant is called the fold number. In this paper we prove 
that if G is a planar graph that covers a nonplanar H, then the fold num- 
ber must be even. 

In this paper we consider only finite graphs. All graphs are connected unless 
specifically stated otherwise. For notational convenience we do not allow loops 
or multiple adjacencies, although the results of this paper extend easily to in- 
clude these cases. A graph map is a function of +: V ( G )  + V ( H )  such that for 
each edge uu in G, +(u)+(u) is an edge in H .  Since our graphs are simple, a 
graph map induces a mapping from the edges of G to the edges of H, and we 
will consider 4 as a function on the edges as well. Let st(u) denote the sub- 
graph induced by the edges incident with u. A covering is a graph map that in- 
duces an isomorphism from st(u) to st(+(u)) for each u € V(G) .  We call G a 
cover of H .  Observe that if the graphs are endowed with the usual topology, 
then a covering is a topological covering map. Figure 1 shows a covering of K, 
by a planar graph G .  Here, as elsewhere, we can define the map + by labeling 
the vertices of G with their image +(u). 

FIGURE 1 
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Several observations about coverings are immediate. For example, coverings 
preserve degrees, that is, deg,(u) = deg,(+(u)). Also, if e = uu is an edge of 
H, then + - ' ( e )  gives a bijection between l+-'(u)l and l+-'(u)l.  Since H is con- 
nected, it follows that (+-'(u)I is constant, say n.  We call this constant thefold 
number of the covering, and say that 4 is an n-fold covering. The main result 
of this paper is 

Theorem 1. 
even. 

If  G is a rt-fold planar cover of a nonplanar graph H, then n is 

An n-fold covering where n is odd will be called an odd-fold covering. Thus 
Theorem 1 states that a nonplanar graph does not have an odd-fold cover. 

Negami [ 5 ]  conjectures that a graph has a planar cover if and only if the 
graph embeds in the real projective plane. He has proven this in the special 
case of regular planar covers 151. Using techniques similar to those in our 
Lemma 3, it suffices to show that the 35 minor minimal graphs that do not em- 
bed in the projective plane [ 1)  have no planar covers. Using the techniques of 
our Lemma 4. this set of 35 reduces to a set of 1 1 .  Of this set of eleven, 9 have 
been proven to have no pianar cover. Thus, to prove Negami's conjecture, it 
suffices to prove that K.,4 - K2 and K, - 3Kz have no planar cover (these are 
the two remaining cases). Theorem 1 offers some evidence of the verity of 
Negami's conjecture. 

The proof of Theorem 1 is broken into two parts. In Section 1 we show that 
Theorem 1 reduces to showing that H = K, has no odd-fold planar covering. In 
Section 2 we prove this special case. In Section 3 we give some concluding re- 
marks. We proceed with the proofs. 

1. THE REDUCTION TO H = K5 

i n  this section we reduce the proof of Theorem 1 to the case where H = K, .  
We will first show that we may reduce to the case where H is either K,., or K, .  
Recall that a graph H is a minor of G if we can form H from G by a sequence 
of edge deletions, edge contractions, and deletion of isolated vertices. 

Lemma 2. 
bly disconnected) minor of G with the same fold number. 

If G is a cover of H, then any minor of H is covered by a (possi- 

Proof. We shall show that the lemma is true for a single edge deletion, a 
single edge contraction, and the deletion of a single vertex. The lemma will fol- 
low by induction. Observe that by performing all edge deletions prior to per- 
forming edge contractions the graphs in the intermediate steps have no loops 
nor parallel edges. 

We first observe that G - 4 - ' ( e )  is a (possibly disconnected) cover of 
H - e .  Since G - c#-'(e) is a minor of G,  the lemma is true for edge dele- 
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tions. Similarily, let H / e  denote the graph obtained from H by contracting 
the edge e to a point, and let G / $ - ' ( e )  denote the graph obtained from G 
by contracting (one at a time) the edges in +- ' ( e ) .  Since G/qY'(e) is a cover- 
ing of H / e ,  the lemma is true for edge contractions. The lemma is easily 
seen to be true for the deletion of an isolated vertex. Thus it is true for arbi- 
trary minors. I 

Lemma 3. 
K3,3 or K ,  has a (connected) odd-fold planar cover. 

If a nonplanar graph H has an odd-fold planar cover, then either 

Proof. By Kuratowski's Theorem, a nonplanar H must contain a subgraph 
homeomorphic to either K3.3 or to K,.  Equivalently, every nonplanar graph con- 
tains K3,3 or K, as a minor. By Lemma 2, the planar cover G has a (possibly 
disconnected) minor G ' that covers the iY3,3 or K ,  with the same fold number as 
G covers H .  This G'  is a minor of a planar graph, so it is also planar. If G' is 
disconnected, then each component is a planar cover of a Kuratowski graph. 
Since the total fold number is odd, at least one of these components has an odd 
fold number, which satisfies the lemma. 

We will show that if K3,, has as n-fold planar cover, then so does K, .  Let u 
be a cubic vertex of a graph H that is not in a triangle. Let H ' be the graph 
formed from H by deleting u and its three incident edges, and adding three 
edges joining pairwise the three vertices adjacent with u (see Figure 2). We call 
H '  a YA-transformation of H at u. 

Let G be a graph covering H ,  and let H ' be a YA-transformation of H at 
u .  Let G '  be the graph formed from G by performing a YA-transformation 
at each vertex in c#-'(u) .  Note that G '  covers H ' ,  and this covering has 
the same fold number as the original covering. Also note that if G is planar, 
then so is G '. Thus the property of having an n-fold planar cover is closed 
under YA-transformations. 

I 

Lemma 4. 
cover. 

If K3,3 has an n-fold planar cover, then K ,  has an n-fold planar 

Proof. Let G be a n-fold planar cover of H = K3,, ,  and let uu be an edge 
of H .  Form H '  from H by replacing the edge u u  by a path of length 2. Simi- 
larly form G '  from G by replacing each edge in $ - ' ( u u )  by a path of length 2 .  
Note that G ' is a planar cover of H '. We now create K ,  from H ' by performing 
a YA-transformation at both u and u. The graph resulting from performing the 
corresponding YA-transformations on G '  is an n-fold planar cover of K, .  I 

C 

FIGURE 2 
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2. THE PROOF WHEN H = K5 

In this section we will show that if K ,  has an n-fold planar cover, then n 
is even. Let G be an n-fold planar cover of K , ,  and label the vertices of G 
with their image &u). Thus the four edges incident with a vertex labeled u are 
also incident with vertices receiving the other four labels. In the (oriented) pla- 
nar embedding of G, these edges appear in one of six possible cyclic permuta- 
tions, called the rorution at this vertex. The six possible rotations fall into three 
sets when we pair a rotation p with the rotation p - I .  We will show that in 
$- ' (u )  C V ( G ) ,  vertices with rotation p occur precisely as often as those with 
rotation p - ' .  As a result, we can conclude 

Lemma 5. If G is an n-fold planar cover of K 5 .  then tz is even. 

Proof. As above, it suffices to show that a rotation p occurs equally often 
with its inverse rotation p- l .  Label the vertices of K ,  by I ,  . . . , 5 .  Without loss 
of generality. let u = I .  p = (2345). and p - '  = (2543). Let T be the triangle 
(124). Then + - ' ( T )  is a 2-regular subgraph of G. and hence is the disjoint 
union of simple cycles. Let S be one of these cycles. By the Jordan Curve 
Theorem, S separates the plane into two components, an inside and an outside. 
Let A be the set of vertices u E I )  where both of the edges labeled 13 and 
15 incident with u lie inside of S. Note that A contains every vertex of $-I( 1) 
that lies inside S. as well as possibly some of the vertices on S. Define B as 
those vertices in + ' ( I )  incident with an edge 13 lying inside of S and with an 
edge 15 lying outside of S. Similarly, define C as those vertices in + - ' ( I )  
where 13 lies outside of S and 15 lies inside of S. Note that the sets B and C are 
precisely the vertices in S f l  & - ' ( I )  that receive rotations p and p-I. Thus to 
prove the claim, it suffices to prove that IBl = ICI. 

The edges in + - ' ( 3 5 )  give a bijection between the number of vertices 
in +-'(3) that lie inside of S and the number of vertices in r# - ' (5 )  inside of S.  
The edges in &-'(13) that lie inside of S give a bijection between the vertices 
inside of S labeled 3 and the vertices in A U B .  Similarly, the edges in 4-'( 15) 
inside of S give a bijection between the vertices labeled 5 inside of S and the 
vertices in  A U C. It follows that (A U BI = (A U C ( ,  and hence that (BI = (CI, 
as desired. I 

3. CONCLUDING REMARKS 

In Lemma 3 we showed that if a nonplanar graph H has an odd-fold planar 
cover G, then so does either K3,? or K,. In Lemma 4 we showed that, in fact, K, 
must have an odd-fold planar cover. Having shown in Lemma 5 that no such 
cover exists, the proof of Theorem 1 is complete. 

The hypothesis that H is nonplanar is necessary in  Theorem 1. Let c$,, be the 
map from the plane to itself described in polar coordinates by ( p ,  0) + ( p ,  no). 
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1 -f-. 
FIGURE 3 

Provided that the origin is in the interior of a noninfinite face, G, = + i ' ( H )  is 
a connected planar n-fold cover of H for all n. Furthermore, if H embeds in the 
projective plane, then the 2-fold covering of the projective plane by the sphere 
yields a planar 2-fold covering of H. The preceding construction then gives an 
n-fold planar covering of H for all even n. 

Kleitman [4] has shown that any drawing of K5 in the plane has an odd number 
of nonadjacent edge crossings (see [3] for an introduction to crossing numbers). 
The following proposition generalizes both Lemma 5 and Kleitman's result. 

Proposition 6. 
of crossings of G plus the fold number of the covering is even. 

In any drawing of any cover G of K5 in the plane, the number 

Proof. The proof proceeds by induction on the number of crossings. The 
start of the induction is provided by Theorem 1, where the number of crossings 
is zero. Let G be a cover of K,  drawn in the plane with an edge crossing as 
show in the left half of Figure 3. Replace the crossing edges with the subgraph 
shown in the right half of Figure 3.  The G' thus formed has one fewer crossing 
than does G, but the fold number is increased by one. By induction, the sum of 
these parameters for G' is even and the proposition follows. 

The authors would find it interesting to further pursue the relationship 
between the genus of a graph and the minimum genus of its covering graphs. 
For example, consider a graph that embeds in the projective plane but that 
has large orientable genus (such graphs are known to exist by a result of 
Auslander et al. [2]). Using the 2-fold cover of the projective plane by the 
sphere, we obtain a planar 2-fold covering of a graph with arbitrarily large 
orientable genus. By slightly modifying the embeddings we can construct, for 
example, a toroidal covering of a nontoroidal graph. However, a construction 
of this type yields only even-fold coverings. It is unknown, for example, if 
there is an odd-fold toroidal covering of a nontoroidal graph. 

I 
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