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A new Reverse Monte Carlo (RMC) package “fullrmc” for atomic

or rigid body and molecular, amorphous, or crystalline materials

is presented. fullrmc main purpose is to provide a fully modular,

fast and flexible software, thoroughly documented, complex

molecules enabled, written in a modern programming language

(python, cython, C and C11 when performance is needed) and

complying to modern programming practices. fullrmc approach

in solving an atomic or molecular structure is different from

existing RMC algorithms and software. In a nutshell, traditional

RMC methods and software randomly adjust atom positions

until the whole system has the greatest consistency with a set

of experimental data. In contrast, fullrmc applies smart moves

endorsed with reinforcement machine learning to groups of

atoms. While fullrmc allows running traditional RMC modeling,

the uniqueness of this approach resides in its ability to custom-

ize grouping atoms in any convenient way with no additional

programming efforts and to apply smart and more physically

meaningful moves to the defined groups of atoms. In addition,

fullrmc provides a unique way with almost no additional com-

putational cost to recur a group’s selection, allowing the system

to go out of local minimas by refining a group’s position or

exploring through and beyond not allowed positions and

energy barriers the unrestricted three dimensional space around

a group. VC 2016 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24304

Introduction

RMC as a modeling technique, based on the standard Monte

Carlo simulation method with Markov chain sampling,[1] is a

variation of the standard Metropolis Monte Carlo (MMC)

method.[2] A molecular model designated by a set of three

dimensional atomic coordinates is refined by randomly moving

its atom positions until they are consistent and agree within a

certain total error with a set of experimentally measured

observables. Inherently, RMC molecular systems solved struc-

tures suffer from uniqueness and therefore a RMC solution

cannot be considered as correct per say.[3] However, RMC

models are very useful for understanding static structural rela-

tionships devoid of any dynamical properties of the studied

materials. Traditional RMC does not require interatomic and

intra-molecular potentials, however physical constraints such

as a system’s density, interatomic distances cutoff, etc. are

used in order to generate plausible solutions. In general, struc-

tural quantities such as Pair Distribution Function (PDF), Struc-

ture Factor (SF), etc. are commonly used in materials modeling

and unraveling correlations from low to high ranges. Originally,

RMC modeling was developed to derive structural models for

atomic liquids and glasses based on experimental data.

In early 1990’s, RMC modeling method was doubted and

criticized shortly after it was published simply because one

can always argue whether the produced model is correct or

not. While the model uniqueness assumption will always hold

true, it is worth to note the following. Experimental data are

never complete or correct, but they are convoluted, distorted

by nature and contain a non-negligible signal to noise ratio.

Therefore, making a so called “unique” model from experimen-

tal data or deriving and solving the structure using any model-

ing technique does not mean that the solution is correct. In

this respect RMC, modeling is not different. Besides, it is

impossible to know the true structure and the exact positions

of all atoms of any material simply because atomic structures

and positions are not static and there is a difference between

time average and exact atomic positions. In this regard, RMC

modeling is advantageous and allows one to explore different

plausible results by imposing different constraints and differ-

ent initial configurations. Nowadays, RMC modeling techniques

are commonly used because of their great success in produc-

ing three-dimensional structural models of ordered and disor-

dered materials. Besides RMC are very useful for their

importance in the understanding of some particular physical

properties and to speculate on further experiments and likely

structures and other relevant insights into materials. RMC

modeling is becoming more popular as a complementary

technique to other computational and analytical methods

such as Monte Carlo or Molecular Dynamics. While other mod-

eling methods may provide more reliable results in some par-

ticular cases, the main strength of RMC modeling resides in its

general application to a wide variety of types of structures in

numerous research areas such as in liquids and solids, crystal-

line materials,[4] disordered crystals where long-range average

structure is very often different from short-range one[5] and
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disordered structures.[6] Also, RMC is not limited to modeling

PDF data inputs, Gurman and McGreevy described the applica-

tion of RMC technique to the analysis of EXAFS data[7] using

no input information other than the density and the chemical

composition of the sample. Keen and McGreevy[8] also de-

scribed how RMC modeling may be used to analyze neutron

diffraction data from a disordered magnetic material. They

determined both atomic structure and magnetic structure and

reproduced the diffraction data of DyNi3 binary alloy.

Not many implementations of the RMC method are publicly

available. RMC11[9,10] written in native C11, is among the

known implementations of RMC method. It is designed to spe-

cifically study liquids and amorphous materials using con-

straints and experimental data such as PDF, total scattering

and EXAFS. RMCProfile[11,12] is another implementation of the

original RMC code mainly written in Fortran 95. RMCProfile is

mostly known for its capability of modeling crystalline materi-

als by explicitly using the information contained within the

Bragg diffraction data. Besides, RMCProfile is adept to model-

ing magnetic materials, using the magnetic component of

total scattering data. HRMC,[13,14] which stands for Hybrid

Reverse Monte Carlo (RMC), is a combination of traditional

RMC and energy minimization MMC code written in Fortran

90. HRMC is capable of fitting simultaneously electron, X-ray

and neutron diffraction and EXAFS experimental data and

porosity information while minimizing the system’s empirical

interatomic energy potential.

As a reverse modeling method, the traditional RMC algorithm

evolves by repeatedly sampling and modifying the three dimen-

sional atomic coordinates model (configuration) upon minimiz-

ing the so called chi square (v2) as described in eq. (1). v2 is

computed as the sum of all squared deviations of the model

Mij from each used experimental data Eij normalized by the

data variance Vi. Although any experimental data that can be

computed directly from an atom coordinates may be used in

RMC modeling, very often RMC refers to modeling the experi-

mental diffraction SF S(Q) and PDF G(r) as defined in eq. (2):
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where Q is the momentum transfer and r the real distance

between two atoms, q rð Þ is the spherical average defined asÐ
n r’ð Þ:n r2r’ð Þdr and q0 is the average number density of the

samples. R rð Þ is the radial distribution function, N the total

number of atoms, bi is the scattering length for atom denoted

as i and ri;j the distance between i and j atoms.

As described by Evrard and Pusztai[9] Fig. 2, the flowchart of

a traditional RMC algorithm runs as the following. A configura-

tion simulation box of defined size and volume, containing a

fixed number of atoms hence a fixed density is used as a

model starter. The radial distribution histograms are initialized

and computed for all atoms in the system. The experimental

diffraction data, the SF and the PDF are computed and hence

the initial model’s v2 is calculated. Then, RMC main simulation

loop starts. In every loop step, a random atom is selected and

a random translation is applied to it. The total radial distribu-

tion function and the PDF and SF are updated and the new v2

value is computed and compared to the old one. If the value

of v2 decreases, the new atom position is accepted. If v2 value

increases, the atom new position is only accepted with a likeli-

hood of e-Dv2
. As a result, if the later loop step is repeated

enough number of times, v2 decreases and consequently the

model fits better to experimental data as the sum of the total

computed squared deviations of the model from the experi-

mental data gets smaller.

Methods

fullrmc is especially designed with the highest maneuverability

for modeling complex molecular systems. A thorough class

definitions inheritance diagram of fullrmc package is shown in

Fig. 1. Firstly, fullrmc Engine is the main class definition that

contains all the methods needed to perform the modeling by

managing all the configuration’s data and all other definitions

and modeling parameters. fullrmc adopts protein data bank

(pdb) file format[15] as the configuration file with the addition

of a few header lines like the boundary conditions information

for instance (example provided in supporting information).

Unlike traditional RMC, fullrmc models a system’s configuration

by applying moves upon defined groups rather than atoms. A

group is a list of atom indexes used to group atoms to rigid

or quasi-rigid bodies in any random or desired and convenient

way (e.g., functional group, fragment, residual, molecule, etc.)

to modeling a system.

The first difference between fullrmc and a traditional RMC

software is the concept of GroupSelector that is basically

responsible for selecting a single group by its index at every

RMC step. Two main branches, the random selectors and the

defined order selectors bifurcate from GroupSelector the par-

ent class definition of all defined selectors. The random selec-

tors are composed of sequentially three subclass selectors, the

RandomSelector, the WeightedRandomSelector, and the Smar-

tRandomSelector. As its name indicates, a RandomSelector is

merely a GroupSelector with its selections being totally ran-

dom and unpredictable where all groups are selected with the

same likelihood. WeightedRandomSelector is also a RandomSe-

lector but unlike RandomSelector, it supports a static selection

probability scheme that can be biased and not evenly

weighted. Finally, a SmartRandomSelector is another Weighte-

dRandomSelector with its selection scheme being imple-

mented with machine learning algorithms, dynamically

changing by automatically biasing and unbiasing the selector’s

probability scheme to selecting the groups that are more likely
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to achieve a successful move enhancing the total configura-

tion structure, hence in some cases increasing substantially the

total number of accepted moves. However, defined order

selectors are those with no randomness in the selection but

with a predefined order of selection. DefinedOrderSelector and

DirectionalOrderSelector are the two defined subclasses of this

branch of selectors. A DefinedOrderSelector is simply a Group-

Selector with the order of selection being stored in advance

and the groups being pulled or selected one after the other

according to the selection order. A DirectionalOrderSelector is

another DefinedOrderSelector, but with the only difference

being that the order of selection is sorted automatically at

Engine’s runtime, then such groups are pulled according to

their distance from a center point in space. DirectionalOrderSe-

lector becomes very useful when modeling expanding or con-

tracting systems allowing groups and therefore the atoms

position to be refined in layers.

The use of constraints is a similarity between fullrmc and

traditional RMC. Constraints play the role of a referee during

the modeling process. They are what reflect our knowledge

about the system being modeled, therefore in fullrmc, experi-

mental data along with physical constraints are all defined as

constraints. Three main branches, the singular constraints, the

rigid constraints, and the experimental constraints derive from

Constraint, the parent class definition of all defined constraints.

SingularConstraint classes are all constraints that are not

allowed to have multiple instances in the same engine. Basi-

cally, all constraints that require a definition input from the

user (e.g., bonds) are defined as singular to avoid conflicts in

cross definitions (e.g., same atom types different bond length).

RigidConstraint classes are constraints that must always be sat-

isfied for a RMC step to be accepted. Even if the total system’s

v2 value decreases upon a RMC group move, if any RigidCon-

straint total squared deviations increases, the move is rejected

and therefore the step is not accepted. ExperimentalConstraint

is the parent class definition of all constraints based on experi-

mental data inputs. To avoid constraints cross definitions con-

flict, all physical constraints are defined as singular and rigid.

Figure 1. fullrmc inheritance diagram. Five main base classes with their most important derived classes are visualized.
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In very few words, we will herein describe all existing con-

straints, for more details, readers are encouraged to refer to

the online documentation.[16] Lennard Jones [eq. (3) like con-

straints such as distance constraints can be modeled with

mere cutoff distances that can be roughly approximated equal

to r (Fig. 3).

V rð Þ54e
r
r

� �12

2
r
r

� �6
� �

(3)

InterMolecularDistanceConstraint governs the intermolecular

atomic distances by setting a cutoff to the minimum allowed

value of the distance separating two atoms. In the same way,

IntraMolecularDistanceConstraint governs only intramolecular

atomic distances instead of intermolecular ones. On the other

hand quasi-harmonic constraints generally computed as a pure

harmonic of the form U rð Þ5KðX2X0Þ2 can be modeled simplis-

tically with lower and upper limit cutoffs (Fig. 2d). BondCon-

straint is a purely intramolecular quasi-harmonic constraint that

controls molecular covalent bonds between two atoms in a

molecule. In this case the lower and upper bond’s distance limit

cutoffs are defined between intramolecular atoms thus imitating

a rigid bond (Fig. 2a). BondsAngleConstraint is another quasi-

harmonic purely intramolecular constraint that coerces the

angle between three intramolecular atoms by also using lower

and upper angle value limits (Fig. 2b). ImproperAngleConstraint

is the last so far defined quasi-harmonic intramolecular con-

straint. It is used to force an atom to stay within lower and

upper angle value limits formed between the atom and a plane

of three independent atoms (Fig. 2c).

The second main difference between fullrmc and a tradi-

tional RMC software is the concept of move generator that is

basically responsible for moving a group by applying a trans-

formation matrix to its atoms coordinates. By definition, every

group has its own move generator. Generators derived from

MoveGenerator base class definition are classified into geomet-

rical subgenerators.

TranslationGenerator is a move generator that performs ran-

dom translations upon a group of atoms. TranslationAlong-

AxisGenerator is another translation generator with random

translations being performed along a user predefined axis.

TranslationAlongSymmetryAxisGenerator is also a translation

generator where translation vectors are computed along one of

the symmetry axes of the group. TranslationGeneratorsTowards

is another branch of translation generators where translation

moves are computed towards a certain point or along a certain

axis within an angle of tolerance. TranslationTowardsCenterGen-

erator is a translation towards generator that generates transla-

tion moves upon a group towards a center point. The point

can be given as fixed coordinates or computed on the fly as

the geometrical center of a set of atoms. TranslationTowardsAx-

isGenerator is another towards generator that generates moves

towards a predefined axis. TranslationTowardsSymmetryAxisGen-

erator is also a translation towards generator where translations

are computed towards one of the symmetry axes of the group.

RotationGenerator is another class of move generators that

performs random rotations upon a group of a minimum of

two atoms or more. RotationAboutAxisGenerator is a rotation

generator where the rotation axis is predefined. RotationA-

boutSymmetryAxisGenerator is also a rotation generator where

the rotation axis is one of the symmetry axes of the group

computed on the fly at engine runtime.

Agitation generators form another branch of generators that

agitate or shake a group about a certain equilibrium point.

DistanceAgitationGenerator generates random agitations to

two atoms by applying translation moves to any or each of

them along the direction axis separating them. Hence, short-

ening or enlarging the distance between the two atoms. This

is mainly used to adjust bond lengths in a molecular structure.

AngleAgitationGenerator is another agitation generator that

agitates the angle defined between three atoms. Move will be

performed by translating any or all of the atoms to increasing

or decreasing the angle. This is mainly used to adjust bonded

atoms angles in a molecular structure.

Figure 2. Intramolecular bonds and angles constraints. a) Bond constraint

lower and upper bond distance limits. b) Bonded atoms angle constraint

with lower and upper angle limits. c) Improper angle constraint used to

coerce an atom to stay within lower and upper angle limits with a plane.

d) Harmonic potential approximated with lower and upper limits as used

in fullrmc.

Figure 3. The lennard Jones potential approximated with a hard cutoff

limit as used in fullrmc.
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The last so far defined generators branch is the so called

path generators. Path generators store a list of moves in

advance and pull them one move after another. TranslationA-

longSymmetryAxisPath and RotationAboutSymmetryAxisPath

are respectively path generators where the translation and

rotation amplitudes are pre-stored in advance and pulled one

after the other every time the generator is called.

Although not shown in the inheritance diagram (Fig. 1), a

group can have a collection or a combination of move genera-

tors through respectively MoveGeneratorCollector and Move-

GeneratorCombinator. A MoveGeneratorCollector is basically a

list of move generators from which a generator will be ran-

domly used during engine runtime. A MoveGeneratorCombina-

tor, however, is a list of move generators but at every runtime

step, the generated move is a serial combination or a convolu-

tion of all the generators moved. Therefore, more complex

moves such as translation combined with a rotation can be

performed by simply combining different generators.

Implementation

fullrmc is another reverse modeling package but it is more

than a traditional RMC. Python 2.7[17] is the programming lan-

guage chosen to write fullrmc merely because it has a human

readable syntax and it is among the simplest and most versa-

tile programming languages with a very active community of

developers. The way fullrmc is programmed, complies with all

modern programming practices. The programming approach

is fully object oriented and structured with templates and

inheritance. The same coding conventions are used in all the

modules and the code is thoroughly commented and docu-

mented.[16]. The core modules are continuously tested with

automated tests to cut down the number of possible bugs

during the development and the addition of features by

potential users. As in traditional RMC codes, the main model-

ing loop is only parallelizable at the expense of accuracy, by

adding some long distances precision errors and substantial

complex overhead to the code by partitioning the model into

lists of neighbors or splitting the whole space into a grid of

small domains. However, in fullrmc the main loop is always

executed in serial, one step following another, but by decom-

posing each step into parallel tasks when it is possible. Also,

all time consuming tasks like histogram computations for

instance are smartly optimized and only computed when nec-

essary. Vectorization with numpy[18] is applied all over the

code and where speed and computation performance are

needed, C and C11 compiled Cython[19,20] is used and called

transparently in fullrmc main code.

A simplified flowchart of fullrmc is shown in Fig. 4 decom-

posing the code into its main blocks of computation. Atomic

and molecular three dimensional configuration with any shape

of periodic boundary conditions is used as an initial model.

Nonperiodic boundary conditions are not implemented in the

current version of fullrmc but they are going to be included in

the coming distributions. As one can see, groups or rigid

bodies are represented with red dashed domains in the

Figure 4. fullrmc algorithm flow chart. Including a configuration sketch and all fullrmc main algorithm flows including the reinforcement machine learning

ones.
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configuration representation (Fig. 4). Atoms can be part of dif-

ferent groups at the same time and can also be left outside of

any group which is equivalent to fixed atoms in traditional

RMC. Grouping atoms into clusters does not require any

molecular information as groups are merely lists of atom

indexes. However, every group has its own customizable move

generator and can be composed of a whole molecule’s atom

indexes, a subset of a molecule atom indexes or even a mix-

ture of atom indexes between different molecules. The flow-

chart is read through the gray arrow path, which can change

color sometimes according to different paths the algorithm

might take. During fullrmc engine runtime, the group selector

selects a group from the defined list of groups, updates its

atom’s coordinates to the last accepted ones from the current

configuration state. A move gets computed and applied to the

group’s atoms then the resulting structure is passed to the

constraints box.

First, rigid constraints are computed and checked sequen-

tially one after the other. If any of the rigid constraints rejects

the move, the step gets rejected automatically, otherwise the

new structure proceeds to computing all the rest of non-rigid

constraints and the new total after move. At this stage, only

three possible outcomes from the constraints box are likely to

happen. The move is either accepted or rejected after comput-

ing the new v2; or the move is rejected prematurely upon

encountering an unsatisfied rigid constraint before computing

the new v2. In all of the later three cases, an accepted move

(blue arrow), rejected or prematurely rejected move (orange

arrow) feedback is sent to the group selector and the move

generator respectively updating the machine learning selec-

tion and move generation schemes. At the very output of the

constraints box, the configuration’s atoms coordinates get

updated only if the step is accepted and then the engine pro-

ceeds to the modeling modes box.

Unlike traditional RMC, fullrmc concedes different modeling

and fitting modes. The no-recurrence mode is equivalent to a tra-

ditional RMC where at every step a new group of atoms is

selected by looping back to the group selector. Group selection

recurrence is allowed in fullrmc, the same group will be selected

a recur number of times before a new group gets selected. The

three different types of recurrence modes are “recurring,”

“refining,” and “exploring.” For recurrence modes, it is noteworthy

to differentiate between group atoms position and the configura-

tion position of the same atoms. It becomes important to clarify

that the way fullrmc works is that when a group is selected its

atoms positions are the same as the configuration’s positions. In

addition, move generator applies its moves upon the selected

group atoms position and changes their state, but the configura-

tion’s position of the same atoms is not updated and modified to

the after move positions until the move is accepted.

The first recurrence mode is the so called “recurring” mode.

It is the simplest and most straightforward among all recur-

rence modes. During “recurring” mode, no new group is

selected and both configuration and group’s atoms position

are updated when a move gets accepted. Hence, the move

generator will always apply moves upon the last accepted

group’s atoms positions.

The second recurrence mode is the “refining” mode that is

used to refine the position of a group of atoms. During

“refining”’ mode, configuration’s atoms will be updated to the

last accepted move but the group’s atoms will always be reset

to their initial position. Therefore, move generator will always

apply its moves upon the same atoms position, which are those

of when the group was selected. This way ‘refining’ allows a

group to refine its atoms position by finally accepting the best

generated move starting from the same position of atoms.

The last recurrence mode is “exploring.” This mode is a very

important mode in fullrmc modeling because it allows a group

of atoms to explore the space around it and go out of local

minima and beyond energy barriers to finding the global mini-

mum. Like in all other modes, configuration’s atoms will be

updated to the last accepted move. However, in “exploring”

mode, group’s atoms position will always be updated to the

last generated move whether it is accepted or rejected with

the exception of rigid constraint rejection. Therefore, during

“exploring” mode, the group wanders in the allowed three

dimensional space and the configuration’s atoms position gets

updated only when a better position is found.

Insight into Machine Learning in fullrmc

Machine learning as known nowadays, has been given many

definitions covering a wide range of applications. In fullrmc, we

will be using machine learning for optimization reasons only.

Therefore, we would like to give our own definition of machine

learning and artificial intelligence as computationally applied

statistics and learning over time, based on experience and

exploitation. Machine learning can be generally categorized into

three main types. The supervised machine learning[21] where

learning is a function induction or approximation that reprodu-

ces up to a certain level of accuracy a set of so called training

data. The second type is the unsupervised learning,[22] which is

more about describing the data. Unsupervised learning is gen-

erally used in classification and identification problems. The

Figure 5. fullrmc percentage of accepted moves percentage. Smart selector

implemented with reinforcement machine learning compared to traditional

RMC selection. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2016, 37, 1102–1111 1107

http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


third type is called reinforcement machine learning[23] and is

the one used in fullrmc. Reinforcement machine learning is a

trial and error learning which fundamentally reminds RMC mod-

eling. In contrast with supervised and unsupervised learning

where the machine is taught explicitly by creating a model or a

classifier from a set of data, in reinforcement learning the

machine is taught from the consequences of its actions and

interaction with the data and past experience or exploitation.

Therefore, a RMC simulation is a reinforcement machine learn-

ing problem by definition and construction. As described earlier,

the whole mechanism of a RMC simulation step can be sum-

marized to, applying a coordinates’ transformation upon certain

selected atoms, and then accepting or rejecting the step by ver-

ifying whether it enhances or not the whole system agreement

with a set of constraints and experimental data. In traditional

RMC, randomly selecting atoms and moves, without reference

to an estimated probability distribution, is known to give rise to

very poor performance in accepted to generated moves ratio.

Thanks to the reinforcement machine learning implementation

at the level of the group selection and move generation in

fullrmc, the number of accepted to generated moves can be

considerably improved in comparison to traditional RMC. The

method used in fullrmc consists in biasing and unbiasing the

group selector and later the move generator towards selecting

a group that most likely needs to be refined by having its

atoms moved. In Fig. 5, we show a comparative example

between traditional RMC random selection and fullrmc Smar-

tRandomSelector implemented with reinforcement machine

learning dynamic selection probability distribution scheme. In

this example, a random molecular system is created with 80%

of its groups’ move generators set to perform unrealistic moves

leading inevitably to rejection. Clearly in the graph, after few

thousand steps, the ratio of accepted to generated moves in

the traditional RMC approach saturates around 5%. However,

using fullrmc SmartRandomSelector, the ratio of accepted to

generated moves almost doubles and saturates around 9%.

As one can see, using machine learning can be very benefi-

cial especially after a certain amount of generated selections

and moves. Like in any machine learning problem, there is a

learning curve which can be slow sometimes or fast other

times depending on the system, but in general the selector

needs to gather enough experience to start gaining in the

ratio of accepted moves. In this particular example, below a

couple of thousands moves, traditional RMC selection seems

to be more effective than the machine learning implementa-

tion one in fullrmc, this is called the warming up time or

number of selection. We can conclude that if the simulation

is not meant to run more than the warming up time, the

approach becomes ineffective and it is better to run tradi-

tional RMC selection.

Tetrahydrofuran (THF) Simulation Example

fullrmc is an easy scripting package where everything is com-

prehensive and self-explanatory. The herein code is a small

THF liquid molecular simulation. Thanks to the Joint Center for

Energy Storage Research (JCESR) efforts, we obtained the THF

X-ray diffraction PDF pattern collected at 11-ID-B beamline at

the Advanced Photon Source of Argonne National Laborato-

ries. THF based solvents have been lately heavily investigated

as potential candidates for multi-valence batteries electro-

lyte.[24] More complete and elaborate examples are delivered

with fullrmc distribution and thoroughly explained in fullrmc

online documentation.[16] For the sake of the discussion we

will here explain in details every step in the following simula-

tion script.

# SECTION: DEFINITIONS IMPORTATION

from fullrmc.Engine import Engine

from fullrmc.Constraints.PairDistributionConstraints import PairDistributionConstraint

from fullrmc.Constraints.DistanceConstraints import InterMolecularDistanceConstraint

from fullrmc.Constraints.BondConstraints import BondConstraint

from fullrmc.Constraints.AngleConstraints import BondsAngleConstraint

from fullrmc.Constraints.ImproperAngleConstraints import ImproperAngleConstraint

from fullrmc.Core.MoveGenerator import MoveGeneratorCollector

from fullrmc.Generators.Translations import TranslationGenerator

from fullrmc.Generators.Rotations import RotationGenerator

# SECTION: CREATING ENGINE

ENGINE 5 Engine(pdb5“thf_conf.pdb”, constraints5None)

# create constraints

PDF 5 PairDistributionConstraint(engine5None, experimentalData5“thf_pdf.dat”, weighting5“atomicNumber”)

EMD 5 InterMolecularDistanceConstraint(engine5None)

BON 5 BondConstraint(engine5None)

BAN 5 BondsAngleConstraint(engine5None)

IAN 5 ImproperAngleConstraint(engine5None)

# add constraints to engine

ENGINE.add_constraints([PDF, EMD, BON, BAN, IAN])

# create constraints definitions

FULL PAPER WWW.C-CHEM.ORG

1108 Journal of Computational Chemistry 2016, 37, 1102–1111 WWW.CHEMISTRYVIEWS.COM



BON.create_bonds_by_definition (bondsDefinition5{“THF”: [(’O’, ’C1’, 1.20, 1.70),

(’O’, ’C4’, 1.20, 1.70), . . .]})

BAN.create_angles_by_definition (anglesDefinition5{“THF”: [(’O’, ’C1’, ’C4’, 105, 125),

(’C1’, ’O’, ’C2’, 100, 120), . . .]})

IAN.create_angles_by_definition (anglesDefinition5{“THF”: [(’C2’,’O’,’C1’,’C4’, -15, 15),

(’C3’,’O’,’C1’,’C4’, -15, 15), . . .]})

# SECTION: RUNNING ATOMIC RMC

ENGINE.set_groups_as_atoms()

ENGINE.run(numberOfSteps510e6, saveFrequency510e3, savePath5“thf_engine.rmc”)

# SECTION: RUNNING MOLECULAR RMC

ENGINE.set_groups_as_molecules()

for g in ENGINE.groups:

TG 5 TranslationGenerator(amplitude50.2)

RG 5 RotationGenerator(amplitude52)

GC 5 MoveGeneratorCollector(collection5[TG, RG], randomize5True))

g.set_move_generator(GC)

ENGINE.run(numberOfSteps510e6, saveFrequency510e3, savePath5“thf_engine.rmc”)

As in any python script the needed packages and modules

have to be imported prior to any initialization. Hence, all the

needed definitions from fullrmc and other needed python

modules and packages are imported in the beginning of the

script in the section “definitions importation.” The very next

section “creating engine” is for initializing fullrmc RMC simula-

tion engine and to adding all the configuration attributes and

known information about the structure such as experimental

and molecular constraints.

The engine is initialized with the initial pdb configuration

and no constraints. Next all the constraints are initialized one

after the other and added to the engine using the engine’s

method “add_constraints.” Then all constraints definitions are

created, all the bonds and bond angles in the THF molecule as

well as the improper angles definition to keeping the molecule

more or less planar within 6158.

In the next “running atomic rmc” section, the groups are

created using the automatic creation method “set_groups_as_

atoms,” which will automatically go through all the configura-

tion atoms and create single atom groups for all and each

atom in the system. Upon creating a group, fullrmc insures

that the group has its own move generator instance and for

keeping the generality of the approach the simple Translation-

Generator is attributed automatically. Because in this section

all groups contain one single atom, therefore only random

translation moves make sense and therefore no further modifi-

cations are needed. Since now everything is well set, an

engine run is performed in the next line using the engine’s

method “run.” It is important to note that “run” method can

take multiple arguments. Among others “numberOfSteps”

argument is used to specify the number of steps to perform.

“saveFrequency” and “savePath” are used to indicate the fre-

quency of saving the engine to the disk and the absolute path

of the file where to save it.

After finishing this section, the script will proceed to the next

section, which is “running molecular rmc.” In this section, we

intend to show how easy is to perform a molecular RMC with

fullrmc. By calling the engine method “set_groups_as_ mole-

cules”’ all the existing defined groups will be deleted and new

groups of rigid bodies THF molecules will be created. The way

fullrmc knows a molecule is by parsing the pdb file contents

and more precisely all of the following attributes “Residue

name,” “Sequence number,” and “Segment identifier” of every

and each record in the pdb file. pdb files are widely known and

very common molecular files mainly used to describe proteins

and big molecules. For more information about pdb files readers

are encouraged to look at the online documentation of pdb

coordinate files format.[15] Now that all the groups are set to

molecules, it’s time to set the move generator of every group.

Therefore, a loop of all the defined engine’s groups is created. In

every step of this loop and for the sake of this example, we

chose to simply attribute to every group the same type of move

generator, which is a MoveGeneratorCollector of a random

translation through TranslationGenerator and a random rotation

through RotationGenerator. We must note that the attributes

amplitude in the instantiation of TranslationGenerator sets the

maximum allowed translation vector amplitude in Angstrom

and in RotationGenerator it sets the maximum allowed rotation

angle in degrees. Finally, the same engine’s “run” method is

called to continue the modeling of the same system but this

time with molecular groups instead of atomic.

Although the purpose of this article is not to discuss about

the solved structure but in Fig. 6 we show in short the simula-

tion progress and resulting structure. The initial PDF compari-

son with experimental XRD data is shown in Fig. 6a. Running

the simulation on groups of single atoms, was enough to

model the intramolecular atoms distances (<3 Å) as shown in

Fig. 6b. The range of long distances (>3 Å) predominantly

coming from the inter-molecular correlations is very poorly fit-

ted even after 1,000,000 steps of atomic RMC simulation. In

Fig. 6c, we show the final result of the simulation after ena-

bling the molecular and rigid body moves upon groups of

THF molecules. Free rotations and rotations about symmetry

axes as well as free translation and translations along symme-

try axes of THF molecules were needed in order to reproduce

the inter-molecular peaks at �5, 10, and 15 Å.
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Benchmark

In this section, some of fullrmc components and functionalities

performance benchmarks is discussed. In Fig. 7a, the mean

time per single RMC step is computed as a function of group’s

number of atoms for all of PDF constraint (pdf ), intermolecular

distance constraint (vdw), bond constraint (bond), bonded

atoms angle constraint (angle), improper angle constraint

(improper) as well as all and none of the later constraints.

In every benchmark experiment, 100,000 RMC steps are per-

formed on the same initial THF molecular system. This study

clearly shows where most of RMC computation time is spent.

Firstly, as one can see, each and every constraints’ computa-

tion time is linearly dependent to the number of atoms per

Figure 6. THF fullrmc modeling PDF. a) Initial configuration. b) Atomic refinement with no molecular moves. c) Molecular and atomic refinement. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 7. fullrmc mean time per step benchmark. a) Benchmarking constraints’ mean time per step as a function of the number of atoms per group. The

legend is formatted as the following: “constraint (mean accepted moves number).” The used constraints are “none” for no constraints, “pdf” for PairDistri-

butionFunction, “vdw” for InterMolecularDistanceConstraint, “bond” for BondConstraint, “angle” for BondsAngleConstraint, “improper” for ImproperAngle-

Constraint and finally “all” for using all the above constraints. b) Benchmarking the time per step as a function of the total number of steps for 13 atoms

group size. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FULL PAPER WWW.C-CHEM.ORG

1110 Journal of Computational Chemistry 2016, 37, 1102–1111 WWW.CHEMISTRYVIEWS.COM

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


group. Secondly, all of intra-molecular constraints such as

BondConstraint, BondsAngleConstraint, ImproperAngleCon-

straint involve relatively small amount of atoms at every move

and therefore require less of computation time in comparison

to intermolecular constraints. PairDistributionFunction and

InterMolecularDistanceConstraint because they involve the

whole system’s atom pairs distance computation at every RMC

step, are mostly the constraints that cause the damage to the

performance. All constraints benchmark shows that as the

number of atoms per group increases, the mean time spent

per step increases linearly except for groups of single THF

molecule equal to 13 atoms or double THF molecules equal to

26 atoms. At those particular numbers, the ratio of Tried/Gen-

erated moves as well as Accepted/Generated moves increase

drastically and therefore the mean time spent per step takes

higher values accordingly. In addition, fullrmc engine is smartly

optimized to reducing the mean total computation time per

step when multiple constraints are used. Even though “all”

constraints benchmark computation contains “vdw” and “pdf”

constraints, the mean time per step of ‘all’ constraints is

smaller than the sum of both “vdw” and “pdf” benchmarks.

The second benchmarking is done over the total number of

steps per simulation (Fig. 7b). In this benchmark experiment,

THF molecular groups are used and all constraints are applied

to the system. As one can see, the mean time per step slightly

decreases by increasing the number of steps. The reason why

is because the number of tried and accepted moves decreases

with the number of total performed steps. Therefore, the com-

putation performance artificially gets better when the system’s

evolution slows down.

Conclusion

This article describes fullrmc, a new RMC package for refining an

atomic or molecular system by reverse modeling a set of experi-

mental data and constraints. fullrmc computation core is written

in Cython, compiled in C and C11 and totally interfaced with

python. The package provides a wide set of definitions and

allows to easily setup almost any kind of refining engine for all

kinds of applications. A particular advantage of fullrmc in com-

parison to other RMC solutions is the usage of reinforcement

machine learning that substantially increases the refinement

speed and accuracy in some cases. fullrmc class hierarchy and

implementation are quite innovative and concepts such as

Group, GroupSelector and MoveGenerator and RMC modeling

modes (recurring, refining and exploring) stand out from all

other RMC software.fullrmc has already been used in multiple

projects including molecular liquids, crystalline materials, alloy

phase transformation, and nanoparticles in solution. The code is

being continuously developed. Functionalities and constraints

are being added along with every new scientific challenge.

Future developments of the code will include the addition

of molecule recognition and reconstruction during the fitting

process.
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