

Page 1

Update of ESiWACE Application Software Framework
prepared for the demonstrators
Deliverable D3.2

This project has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme
under Grant Agreement No 675191

Page 2

About this document

Work package in charge: WP3 Usability
Actual delivery date for this deliverable: 5 March 2018
Dissemination level: PU (for public use)

Lead author:
Max Planck Institute for Meteorology (MPI‐M), Sergey Kosukhin, Reinhard Budich
Other contributing partners:
Barcelona Supercomputing Center (BSC), Kim Serradell, Oriol Mula‐Valls
The University of Reading (UREAD), Grenville Lister

Rewier:
German Climate Computing Center (DKRZ), Chiara Bearzotti

Contacts: esiwace@dkrz.de
Visit us on: www.esiwace.eu
Follow us on Twitter: @esiwace

Disclaimer: This material reflects only the authors’ view and the Commission is not responsible for any use that may be made of
the information it contains.

Page 3

Index

About this document ... 2

Index .. 3

1. Abstract ... 4

2. Conclusion and Results .. 4

3. Project objectives .. 5

4. Detailed report on the deliverable .. 5

5. References (Bibliography) .. 6

6. Dissemination and uptake .. 6
6.1 Dissemination ... 6

6.2 Uptake by the targeted audience ... 6

7. The delivery is delayed: Yes No .. 6

8. Changes made and/or difficulties encountered, if any ... 6

9. Sustainability ... 6
9.1. Lessons learnt: both positive and negative that can be drawn from the experiences of the work to
date ... 6

9.2 Links built with other deliverables, WPs, and synergies created with other projects 7

10. Dissemination activities .. 8

Page 4

1. Abstract

Software implementations of modern climate and numerical weather prediction models and their
execution workflows require many pieces of software to be correctly installed and configured. Various
mathematical, input/output, parallelisation and other software libraries are necessary to build and run
executables of the model; plotting, statistics, file format conversion and other packages are required for
post‐processing; scripting language interpreters and filesystem utilities are essential for controlling
different stages of the execution workflows and gluing them together. All these generate long lists of
software dependencies that have to be resolved and accounted for during the deployment of the
complete software stack required for numerical experimentation. This process is further complicated by
the fact that the models are research tools and hence are under continuous development. It is often the
case that introduction of changes in the model’s source code becomes an essential part of a research
workflow. Thus, the software environment for the research workflow does not have to only fulfil the
runtime requirements of the model execution workflow but also the requirements posed by software
development needs. On top of that, given the resource requirements of some scientific projects, a single
machine is not always enough to accommodate all required model runs. Thus, it becomes mandatory to
make the software stack portable to whatever supercomputing environment becomes available for the
numerical experiments.

This work aims to systematise requirements of a typical climate modelling workflow to the software
environment, to identify common problems on the way to meeting them, and attempts to remedy the
situation by providing recommendations on what solutions can be applied to make the preparations of
the software environment for Earth system modelling easier.

There are no indications that the requirements to the software environments of the upcoming extreme
scale HPC will decrease. On the contrary, the main challenges related to the increasing amount of input
and output data of the models, workload balancing, and fault tolerance (see ESiWACE deliverable D3.81),
will be exacerbated, requiring more and more sophisticated solutions, the implementation of which will
inevitably lead to the further complications of the already difficult problem of the software
dependencies resolution. At the same time, most experts assume that the basic concepts underlying the
existing approaches to the software deployment and maintenance will be inherited in the next
generation of HPC solutions. Thus, the investment into the development of the automatization tools for
software installations promises long term benefits for the whole HPC community.

2. Conclusion and Results

The main result of the deliverable is the publication of the second version of the White Paper:
“Application Software Framework: A White Paper”. The white paper is available on the ESiWACE website
https://www.esiwace.eu/results/misc/the‐application‐software‐framework/view
Please note that we do not consider this version as the final one and plan to develop it further until the
end of the project.

1 https://www.esiwace.eu/results/deliverables

Page 5

3. Project objectives

This deliverable contributes directly and indirectly to the achievement of all the macro‐objectives and
specific goals indicated in section 1.1 of the Description of the Action:

Macro‐objectives Contribution of this

deliverable?

Improve the efficiency and productivity of numerical weather and climate
simulation on high‐performance computing platforms

No

Support the end‐to‐end workflow of global Earth system modelling for
weather and climate simulation in high performance computing environments

Yes

The European weather and climate science community will drive the
governance structure that defines the services to be provided by ESiWACE

Yes

Foster the interaction between industry and the weather and climate
community on the exploitation of high‐end computing systems, application
codes and services.

Yes

Increase competitiveness and growth of the European HPC industry No

Specific goals in the workplan Contribution of this

deliverable?

Provide services to the user community that will impact beyond the
lifetime of the project.

Yes

Improve scalability and shorten the time‐to‐solution for climate and
operational weather forecasts at increased resolution and complexity to be
run on future extreme‐scale HPC systems.

Yes

Foster usability of the available tools, software, computing and data handling
infrastructures.

Yes

Pursue exploitability of climate and weather model results. No

Establish governance of common software management to avoid
unnecessary and redundant development and to deliver the best available
solutions to the user community.

Yes

Provide open access to research results and open source software at
international level.

Yes

Exploit synergies with other relevant activities and projects and also with
the global weather and climate community

Yes

4. Detailed report on the deliverable

The objective of this deliverable was to update and to refine the first version of the White Paper
delivered at the beginning of the project. Thus, our research was focused on further analysis and
systematisation of the requirements of Earth system modelling workflows, as well as identification of
common issues and limitations related to the deployment and maintenance of software stacks on large
supercomputing facilities. The main conclusion that we made based on the results of the second phase
of the research was that users, in order to be productive, have to share the responsibility for
completeness and usability of the software environment. To achieve that, they have to get a better
understanding of the main issues related to the software deployment and to learn about the existing

Page 6

approaches to its automatization. Thus, providing this information has also become one of the
objectives of the Whitepaper.

The updated version of the Whitepaper also takes into account the change in the project priorities
towards high‐resolution demonstrators. At the example of the models that were selected as
demonstrators, we have illuminated the relevance of the issues highlighted in the document, as well as
presented the applicability of the provided approaches to their solution.

5. References (Bibliography)

References can be found in the White Paper.

6. Dissemination and uptake

6.1 Dissemination

The White Paper is in Open Access and available here: https://www.esiwace.eu/results/misc/the‐
application‐software‐framework/view

6.2 Uptake by the targeted audience

As indicated in the Description of the Action, the audience for this deliverable is:

x The general public (PU)

 The project partners, including the Commission services (PP)

 A group specified by the consortium, including the Commission services (RE)

This reports is confidential, only for members of the consortium, including the Commission services
(CO)

This is how we are going to ensure the uptake of the deliverables by the targeted audience
The White Paper going to be made available in Zenodo for granting full access to communities beyond
the ESiWACE community. Information about revision and updates of the document is disseminated
through the regular channels: ESiWACE newsletter and mailing lists, project webpage, workshops and
citations.

7. The delivery is delayed: Yes No

8. Changes made and/or difficulties encountered, if any
None.

9. Sustainability

9.1. Lessons learnt: both positive and negative that can be drawn from the experiences of the
work to date

Supercomputer systems that are used for ambitious Earth system modelling show significant differences
in purpose and size, resulting in substantial qualitative differences in their design, architecture and
interfaces. While most of their complexity is hidden from the users by their clustering middleware – the

Page 7

software that allows treating an HPC as one large computing unit –, users still have to be aware of some
special aspects of distributed computing environments to be able to employ them effectively. To
achieve that, they have to get a better understanding of the main issues related to the software
deployment and to learn about the existing approaches to its automatization. Users educated this way
than have to interact with system administrators. Supporting Spack installations will benefit both groups
in the following way:

 Users will be able to easily customise the software environment on their own, thus being more
productive and reducing the workload put on system administrators.

 Spack ensures the completeness of descriptions of software dependencies and requirements,
thus mitigating possible communication problems between software developers, users, and
system administrators.

 Spack allows for formal description of the software stack available on a supercomputer, which
simplifies identification of the list of missing software dependencies of a modelling workflow.

 Spack helps system administrators to easily test various usage scenarios of the basic elements of
the software environments, such as compiler toolchains and MPI libraries.

All these aspects are especially important in solving the problem of providing a complete, well tested
and reproducible software environment for the demonstrators.

9.2 Links built with other deliverables, WPs, and synergies created with other projects

This deliverable reports on the update of the Whitepaper delivered as D3.1 in the WP3 “Usability”. The
update is mainly driven by the experience gained in the course of testing the deployment procedures
(D3.5) of the software stack required for the demonstrators (D3.7) on different supercomputers (D3.8).
This task implied close collaboration with the WP2 “Scalability” team, who provided us with a real use
case of the results of our research activity on one hand, and received our support in solving issues
related to the deployment and configuration of the software stack required for the demonstrators on
the other hand.

Ideas and methods set forth in the Whitepaper were well received by the ICON Community, who
decided to put the development and support of the automatized software deployment tools on the
roadmap of the infrastructure development of ICON model, one of the demonstrators.

The Earth Science department at Barcelona Supercomputing Center is also very much satisfied with the
described solutions and plans to apply them for the deployment of the models they work with (EC‐Earth,
also one of the demonstrators, and MONARCH), especially on “external” HPC facilities, which usually do
not provide the complete software stack required for their experiment workflows.

Page 8

10. Dissemination activities

Type of
dissemination
and
communication
activities

Numb
er

Details Total
funding
amount

Type of audience
reached
In the context of all
dissemination &
communication
activities

Estimated
number of
persons
reached

Participation
to a workshop

1 Presentation of S. Kosukhin,
Software stack deployment for ESM,
ESiWACE and IS‐ENES2 Joint final
workshop on IS‐ENES2 Workflow
Solutions in Earth System Modelling
and on Meta‐Data Generation
during Experiments, Costa da
Caparica, 27‐29 September 2016

See costs
declared in
form C of
MPI‐M

Scientific
community, Higher
education, Industry,

30

Participation
to a
conference

1 Presentation of K. Serradell (BSC) S.
Kosukhin (MPI‐M), Software stack
deployment for Earth System
Modelling using Spac k, PRACE Days
2017 Barcelona, 15‐18 May 2017

See costs
declared in
form C of
MPI‐M and
BSC

Scientific
community, Higher
education, Industry

20

Publication of
a report

1 Publication of the “Application
Software Framework: A White
Paper” on the website of the project
https://www.esiwace.eu/results/mi
sc/the‐application‐software‐
framework/view

See costs
declared in
form C of
partners
involved.

Scientific
community, Higher
education, Industry

Participation
to a workshop

1 Presentation of L. Kornblueh, S.
Kosukhin, Spack for ICON; ICON
Developers Meeting,
28.09.2017, Löwenstein

See costs
declared in
form C of
MPI‐M

Scientific
community, Higher
education, Industry

38

Participation
to a workshop

1 Presentation of S. Kosukhin, Spack
for ICON: Status Update, ICON
Infrastructure Meeting,
09.02.2018, Karlsruhe

See costs
declared in
form C of
MPI‐M

Scientific
community, Higher
education, Industry

14

Organisation
of a workshop
(planned)

1 We have also submitted (not
reviewed yet) an application to
organize a tutorial "HPC Software
Management with Spack" at ISC
High Performance 2018, 24‐28 June
2018, Frankfurt (https://www.isc‐
hpc.com/). Authors: M. Kuhn
(Universität Hamburg), S. Kosukhin
(Max Planck Institute for
Meteorology), G. Becker (Lawrence
Livermore National Laboratory), M.
Culpo (EPFL).

See costs
declared in
form C of
MPI‐M

Scientific
community, Higher
education, Industry

Intellectual property rights resulting from this deliverable
Not applicable.

ESiWACE
Application Software Framework:

A White Paper

March 2018

ESiWACE has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme
under Grant Agreement No 675191

2

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

Contents
Document change history .. 3

Table of abbreviations .. 4

Introduction .. 5
Motivation .. 6
Objectives ... 7

The software stack .. 8
Hardware Considerations ... 8
Software ... 9
Climate Modelling Workflow ... 9
The technical workflow .. 10

“Resolve software dependencies” ... 11
”Get the model source code” .. 13
“Configure and build the source code” ... 13
”Run the execution workflow” .. 14
“Prepare input data” and “get the results” .. 16
“Adapt the execution workflow” and “edit the source code” ... 16

Use cases (high-resolution demonstrators) ... 17
Demonstrators ... 17
Software dependencies .. 18
Installation .. 18

Conclusions ... 19

3

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

Document change history
Date Version Contributor Summary of changes

2018-03-02 2.2.3 Sergey Kosukhin Small edits
2018-03-01 2.2.1 Sergey Kosukhin Small edits
2018-03-01 2.2.RGB Reinhard Budich Typos, Re-ordering, Narrative
2018-03-01 2.2 Sergey Kosukhin Amendments
2018-02-28 2.1.RGB Reinhard Budich Typos, Re-ordering, Narrative
2018-02-28 2.1 Sergey Kosukhin Amendments
2018-02-27 0.13.RGB Reinhard Budich Comments, typos, flow
2018-02-15 0.13 Sergey Kosukhin Systematization of the text

2016-03-31 0.12 Reinhard Budich Added ToC, prepared for submission
to ESIWACE web site

2016-03-24 0.11 Sergey Kosukhin Added document change history
table

2016-03-24 0.10 See list of authors First public version

4

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

Table of abbreviations
Abbreviation Explanation

CMIP Climate Model Intercomparison Project(s)
DoW Description of Work

ESiWACE Centre of Excellence in Simulation of Weather and
Climate in Europe

ESM Earth System Model (Earth System Modelling)

IS-ENES2
The second phase project of the distributed e-

infrastructure of models, model data and metadata of
the European Network for Earth System Modelling

HPC High Performance Computer (Computing)
NWP Numerical Weather Prediction

OS Operating System
PRACE Partnership for Advanced Computing in Europe

SW Software
WF Workflow

5

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

Introduction
This white paper sets out to describe the software stack needed to run climate and
weather prediction models for research purposes1. In this context climate models are
the numerical realisation of models of the climate as they are used, for example, in
the context of the Climate Model Intercomparison Projects (CMIP)2. Such realisations
are expressed as source code: algorithmic translations of formulae into computer
readable form, engaging programming languages, which translate the formulas into
arithmetic expressions executable on processing elements of modern computers,
typically High Performance Computers (HPC).

Modern climate models and their workflows require many pieces of software to be
correctly installed: the Application Software Environment for multi-model
simulations. Various mathematical, input/output, parallelization and other software
libraries are necessary to build and run model executables; plotting, statistics, file
format conversion and other packages are required for pre- and post-processing3;
scripting language interpreters and filesystem utilities are essential for linking and
controlling different stages of the execution workflows. All these ingredients generate
a multitude of software dependencies that have to be resolved and accounted for
during the deployment of the software stack required to run a numerical experiment
(see Fig. 1).

Fig. 1. Software stack

The deployment process is further complicated by the fact that the models are
research tools and hence are under continuous development. It is often the case that
introduction of changes in the model’s source code becomes an essential part of a
research workflow. Thus, the software environment for the research workflow must

1 Where we talk of climate models on this text, we include NWP models for research purposes as default.
2 https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
3 We understand the term “post-processing” as a summary of processes that makes the model output easier to perceive, interpret,
store, transfer or use as an input for another post-processing procedure. „Pre-processing” here means the preparation of data as
input for the models. Not to be confused with preprocessing of the source code, as it is introduced later in this paper.

https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6

6

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

not only fulfil the runtime requirements of the model execution workflow but also
the requirements posed by software development needs. So, not only immediate
software dependencies of the models that were mentioned above, but also version
control systems, compilers, debuggers, performance tuning and other development
tools are also part of the software stack that is required to support the lifecycle of a
numerical experiment.

On top of that, given the resource requirements of some scientific projects, a single
machine is not always enough to accommodate all required model runs. Thus, it
becomes mandatory to make the software stack portable to whatever available
environment, varying from personal computers to PRACE4 supercomputers.
Therefore, cluster management tools and even the operating system need to be
viewed as part of the complete software stack.

The project ESiWACE5 (centre of Excellence in Simulation of Weather And Climate in
Europe) aims at a systematic study of the reasons for the deployment difficulties, and
attempts to remedy the situation by providing recommendations on what common
flaws in the design of the systems might be avoided, and what strategies and
methods best applied to make deployment easier, and such create better usability of
the model software packages.

Motivation
The Description of Work (DoW) of the Usability work package of the ESiWACE project
describes the motivation for the White paper in detail:

“Today, it is realized that sophisticated and flexible workflow solutions are
increasingly important in production environments. However, the emerging solutions
are still far from universal and currently rare in the research environment. IS-ENES2
has established a growing appetite for a step change in capability of workflow
solutions in the research environment and this proposal is able to capitalize on recent
investments at NIWA6, the MetO7, MPG8 and others aimed specifically at this user
base.

ESiWACE has the ambition to significantly improve the interaction between those with
deep computing knowledge and those with the best scientific ideas. This way we will
drive research in workflows solutions which offer a much greater potential for
performance optimization in the non-computer- architecture-minded sense, as does
the standard way of experiment design and execution. This will allow for considerable
advances in a number of areas:

Large difficulties exist to organize and carry out multi-model ensembles (see projects
like PRIMAVERA9, CRESCENDO10) ESIWACE will develop an environment to remedy this
situation, including education of young researchers.

4 http://www.prace-ri.eu
5 https://www.esiwace.eu
6 The National Institute of Water and Atmospheric Research, New Zealand
7 Met Office, United Kingdom
8 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. / Max-Planck-Institut für Meteorologie, Germany
9 https://www.primavera-h2020.eu
10 https://www.crescendoproject.eu

http://www.prace-ri.eu/
https://www.esiwace.eu/
https://www.primavera-h2020.eu/
https://www.crescendoproject.eu/

7

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

• The complete stack from the science application down across the complete
system and data handling software to the hardware is much more
heterogeneous than it is healthy for the communities involved. ESiWACE will
provide some counterbalance against the commoditization trend currently
observable in the computing industry by testing solutions, proposing and
proliferating standards, and educating young scientists in their use.

• Information about best practice and working examples is often missing.
ESiWACE will improve this with its dissemination methods.

• Involvement with solution providers is low. Providing a funded platform to
engage and exchange with industry, also directly with ETP4HPC11 by involving
an SME12 is a new approach. ESiWACE will gain the attention of the computing
industry via greater and better co-ordinated engagement for the ESM
community. With this activity ESiWACE will be very involved with the
milestones of ETP4HPC, “Programming Environment”, from 2016/17 on.

• Increased complexity of earth system model suites and the need to automate
more data pre- and post-processing means that there is the urgent need to
find tools to free the scientists from the increasing burden as HPC resources
grow. ESiWACE’ activity on meta-scheduling, like the provisioning of the Cylc13
workflow engine, suitable for research and production environments and
specifically developed for the climate and weather communities, provides the
opportunity to give step-change improvements in the management of complex
workflows.

• Dissimilar and disparate working environments and software stacks are a
hindrance not only for multi-site, multi-model high-resolution full complexity
Earth system model experiments, but also for the individual researcher
needing to be flexible in terms of the usage of his computational and storage
resources across different (topical or PRACE) sites, and for the software
engineer in need of benchmarking his model or tool across different platforms.
A huge potential lies in the provisioning of recommendations for shared
common environments and software stacks across sites and architectures in
terms of usability and maintainability.

• Rational scheduling of simulations based upon concrete parameters of the
according experiments has the potential to exploit machines and resources
much more elegantly than possible currently, and will be supported by
ESiWACE through training and services for provisioning of technical support.”

Objectives
The above considerations led to the following objectives14:

• Support scientific excellence through provision of effective HPC and big data
infrastructures by allowing scientists to more easily design and carry out
simulation campaigns that seamlessly exploit the existing multi-model
framework, including the inherent value of model diversity.

11 http://www.etp4hpc.eu
12 https://en.wikipedia.org/wiki/Small_and_medium-sized_enterprises
13 https://cylc.github.io/cylc
14 We do not include here the tasks dealing with scheduling and co-design.

http://www.etp4hpc.eu/
https://en.wikipedia.org/wiki/Small_and_medium-sized_enterprises
https://cylc.github.io/cylc

8

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

• Considerably improve the ease-of-use of the software, computing and data-
handling infrastructure for ESM scientists from the applications through the
software stack to the hardware.

• Reduce the skills gaps at individual centres by sharing best practice through
worked examples using use-cases derived from user-driven engagement, the
need to prepare the Extreme Scale Demonstrators15 (EsD), and governance.

The software stack
Most of the issues related to the software stack and its usability in HPC environments
are induced by their hardware structure. In the following we outline the aspects that
do not allow users to treat an HPC facility as a single computing unit.

Hardware Considerations
The main computational part of a climate modelling workflow typically implies the
use of a supercomputer. The majority of modern supercomputers are implemented as
clusters: loosely coupled parallel computing systems consisting of explicitly
distinguishable computing elements, i.e. nodes, connected with a high-speed
network. Nodes of a cluster have individual memory and instances of the operating
system, but usually share a file system.

Modern supercomputers, Tier-0 PRACE machines, for example, comprise thousands
of nodes. Such quantitative complexity inevitably leads to qualitative differences in
the structure and the interface of a system. The most visible one from the user
perspective is that nodes of a supercomputer are divided into groups, each having its
own function.

Login (or front-end) nodes serve as access points for users and provide an interface to
the computational resources of a cluster. They are not intended for resource-
demanding jobs but for “basic” tasks such as data uploading, file management, script
editing, software compilation, etc. Paradoxically enough, the most valuable resource
– the manpower – is spent on those “basic” tasks, which makes the usability of the
software environment of login nodes one of the most important factors for the
overall effectiveness of the system.

Computing (or compute, or back-end) nodes are the essence of a cluster.
Orchestrated by special software, clustering middleware, and communicating with
each other over a fast network connection, they jointly run resource-intensive jobs
submitted by the users from login nodes.

In general, computing nodes are identical to each other because this simplifies
workload balancing and increases maintainability. However, their hardware
characteristics often significantly differ from the characteristics of the login nodes.
Although there are obviously good reasons for this, since login and compute nodes
are designed for different purposes, such differences can decrease the usability of the
system by introducing non-transparent transition from the user to the code execution
environment. For example, the discrepancy between the instruction sets supported
by the processors of login and computing nodes might enforce users to take

15 See the Use Cases below

9

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

additional steps to ensure that the code they compile on a login node can be
executed on a computing node.

Depending on the characteristics of the workload of HPS systems, computing nodes
can be organized in partitions (or “islands”) of different architectures. Just to mention
the most obvious, there can be homogeneous (CPU only) or heterogeneous (GPUs,
FPGAs, HDA, and others, and their combination) layouts for nodes.

These HPC systems typically have many users, often from different scientific domains.
This makes it very challenging to fulfil all their special needs with respect to software
environments. Providing such different environments is further impeded by the
existence of a gap (see Fig. 2) between the areas of expertise and responsibilities of
the users on the one hand, and system administrators of the computing facilities on
the other.

Software

Fig. 2. Transition in the area of responsibilities of users and system administrators

Users are usually familiar only with the application layer of the software stack and are
not aware of all the aspects of its integration with the system software. System
administrators, in turn, have the knowledge required for software deployment but
cannot foresee all possible requirements and usage scenarios of the applications.

Climate Modelling Workflow
The typical climate modelling workflow is shown in Fig. 3. In this paper, we mainly
concentrate on the part in the green circle, the processing workflow; and here on the
process to “prepare model experiment”.

10

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

Fig.3: Cycle of Life of a workflow in weather and climate research

The following analysis of the technical part of a typical climate-modelling workflow
intends to reduce the gap by providing system administrators of HPC facilities with
information on common requirements of the ESM community to the software stack
on the one hand, and by familiarizing the users with objective limitations of the
software environments and the ways to adjust them to their needs on the other
hand.

The technical workflow
A typical research workflow comprises designing the experiment from the scientific
idea to the publication of the results, be it as papers, or, becoming more and more
important, as the resulting data. There are many steps in the research workflow that
imply direct interaction with the software environment in order to solve a particular
scientific and, thus, the resulting technical problem (see Fig. 4).

Fig 4. The technical part of the research workflow: bold elements represent the idealized case, in which
a user goes from left to right. But in the real cases has to make steps back to fix problems identified on

the later stages

In the idealized case the technical part of the research workflow is relatively simple
and straightforward: the researcher needs to get the source code of the model, build
it, prepare input data (model configuration files, initial and boundary conditions,

11

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

etc.), adapt the script of the execution workflow to the requirements of the
experiment, run the execution workflow, and handle the results (analyse, visualize,
etc.). It should be noted that a lot of efforts from scientific programmers and system
administrators are put into attempts to keep it this way. The real cases are often
more complex though. The first reason for that is the iterative nature of the process:
problems identified at each stage might introduce unexpected detours in the
progress and turn the ideal into a real case by fixing the problems in a less than
optimal way, to say the least. The second reason is that the software environment
often (and almost always in the case of a new environment that never hosted and
ESM experiment before) needs to be adapted to the requirements of the workflow:
missing software libraries and tools need to be installed, compiler toolchains need to
be tuned, job submission interface needs to be tested, etc. The last interactive stages
of the post-processing, such as custom-tailored visualization and analysis of the
simulation results, for example, might require very particular software. In such cases,
users often move to their personal computers, where they have almost full control
over the software environment and thus are able to have the exact tools they need to
be productive. There is a significant limiting factor for such transition between
machines though: the typically huge amount of data that need to be transferred
enforces users either to compromise between usability and performance or to take
actions to get the required software dependencies to be installed on the
supercomputer.

In the following, we will lead the reader through the technical part of the workflow
from Fig. 4, commenting on the activities involved.

“Resolve software dependencies”

It is unlikely that a climate modeller will encounter an operating system which is not
some flavour of Linux (RedHat, Centos, SUSE, Debian, Ubuntu, Mint, etc.) or Unix
(IBMs AIX, BSD/OS, Sun/Oracle Solaris, etc.). But there are many different
distributions, which may contain proprietary software and provide different levels of
support. Supercomputers may also run special operating systems on their compute
nodes – for example, Cray machines may run Compute Node Linux optimised for
stability, robustness, scalability, and performance.

Climate models from different institutions have different library dependencies.
Nevertheless, there are generalities which cover many modelling systems.
Maintenance of libraries is an essential component of an HPC service, where effort is
devoted to ensuring that libraries are consistent with updates in system software.
Determining the set of dependencies required for a climate model mostly is not a
simple task and ensuring that the dependencies are satisfied on a given platform may
also present difficulty. Immediate software dependencies of the climate models can
be divided into the following categories, where this is probably not a comprehensive
list:

• Parallelisation: climate models require an implementation of MPI16; several
are in common use, including MPICH17 and Open MPI18; some of the models

16 https://en.wikipedia.org/wiki/Message_Passing_Interface
17 https://www.mpich.org
18 https://www.open-mpi.org

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.mpich.org/
https://www.open-mpi.org/

12

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

or post-processing tools might also require OpenMP support, which however
is usually provided by compiler toolchains by default.

• Input/output (I/O): the most commonly used binary formats that are used for
input and output data storage are: NetCDF19 (the modern version of the
standard is a particular case of HDF520) and GRIB (both the first and the
second versions)21 (GRIB API22, which later evolved into ecCodes23); climate
models generally create vast amounts of data. Modern climate software
generally uses asynchronous I/O (like XIOS, CDI-PIO) which can be configured
to have minimal impact upon computation time

• Scientific libraries like fast Fourier transforms (FFTs), parallel random number
generators, linear algebra routines (LAPACK, BLAS) or spectral decomposition
are heavily used by models, and often are neither bug-free in their interplay,
nor are they free of side-effects.

• External model components and couplers like e.g. OASIS or YAXT can result in
problems, too.

System administrators often provide common software to the users, usually by
means of tools that let users select among multiple versions of software installed on a
system: Environment Modules24, Lmod25 are just two such systems. Unfortunately,
the provided software is not always enough: either a library (see Fig. 5) or its
particular version is often missing.

Fig 5. Software dependency tree of ICON model

One way for the users to solve the problem of dependencies is to ask system
administrators to install the necessary piece of software. But both the usually
excessively high workload of system administrators, and the fact that the
requirements to the software environment change unexpectedly often due to the
mentioned iterative nature of the workflow, lead to delays before the environment

19 http://www.unidata.ucar.edu/software/netcdf
20 https://support.hdfgroup.org/HDF5
21 https://en.wikipedia.org/wiki/GRIB
22 https://software.ecmwf.int/wiki/display/GRIB/Home
23 https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home
24 http://modules.sourceforge.net
25 https://lmod.readthedocs.io

http://www.unidata.ucar.edu/software/netcdf
https://support.hdfgroup.org/HDF5
https://en.wikipedia.org/wiki/GRIB
https://software.ecmwf.int/wiki/display/GRIB/Home
https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home
http://modules.sourceforge.net/
https://lmod.readthedocs.io/

13

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

can be used productively, often for an unacceptably long period. In such situations
users attempt to install the software they need by themselves, which quite often fails
for missing access rights due to security considerations. A good approach to
overcome these difficulties is to employ a package manager. The most notable ones
are EasyBuilds26 and Spack27. The latter has received support from the ESiWACE
project (see the Handbook28) and currently is at the state that allows it to install most
of the software used by the ESM community automatically.

”Get the model source code”

The source code of the models is often distributed via version control systems.
Although Git becomes more popular in the climate community, Apache Subversion
(SVN) is still heavily used. Thus, availability of the up-to-date versions of client
programs of both of the systems we consider to be very important.

“Configure and build the source code”

Software that requires performance as climate models do is normally written in
compiled languages (Fortran, C, C++). The translation of source code into binary code
is usually performed in the following sequence of steps: configuration, (source code)
preprocessing29, compilation, and linking. The latter three are usually implicit for
users and from their perspective are performed at once during the building phase.

The goal of the configuration phase is to gather information required for the building
phase. This information includes paths to external libraries, arguments and flags to be
passed to a compiler toolchain (preprocessor, compiler, linker), which features and
components of the software being built must be enabled or disabled, and so on. The
configuration phase is usually automatized by means of a script, an integral part of
the source code, associated with a build script generator, a program that generates
(one or more) files to be used at the building phase by a build automation tool30.

Build automation software:
The most notable build script generation tool, at least in Unix/Linux environments,
are Autotools31 and CMake32. Both of them implement means to explore software
environment and to generate instructions for the building phase. The wide variety of
compilers and environments made it inevitable for both of the systems to have
extensive databases of heuristics that enable them to guess the necessary
information. Although they work pretty well for the GNU Compiler Collection33 (GCC)
and standard Unix/Linux environments, their methods are not always good enough to
handle the cases of more complex environments of supercomputers. The main
difference is that the software and hardware environment in which the software is
built (development environment) is often not the same as the environment in which
the software runs (runtime environment). This is due to the already mentioned
hardware and software differences between login and computing nodes.

26 http://easybuilders.github.io/easybuild
27 https://spack.io
28 https://www.esiwace.eu/results/misc/handbook-for-system-administrators/view
29 Should not be confused with the process of generation of input files for the models, see above
30 https://en.wikipedia.org/wiki/List_of_build_automation_software
31 https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
32 https://cmake.org
33 https://gcc.gnu.org

http://easybuilders.github.io/easybuild
https://spack.io/
https://www.esiwace.eu/results/misc/handbook-for-system-administrators/view
https://en.wikipedia.org/wiki/List_of_build_automation_software
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://cmake.org/
https://gcc.gnu.org/

14

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

Another reason for better support of the GCC and standard Linux environments by
the build script generators is a much larger user community that contributes to their
development. The HPC community is smaller, often has to use proprietary solutions,
and thus strongly depends on the vendors. The only way to remedy the situation is to
draw vendor’s attention to this issue.

The result of the configuration phase is a concrete set of instruction for the compiler
toolchain, often in the format of so-called Makefiles. At the building stage, the
Makefiles are processed by a special program (GNU Make34 is the one used most) in
order to generate the binaries and/or libraries. Among other things, the Makefiles
contain either information on the order in which the source file must be compiled, or
instructions on how to identify the order. This is another issue that requires special
attention. Most of the code developed by ESM community is written in FORTRAN.
The problem is that the compilation order is based on the intra-dependency of the
source files (e.g. source code in file A uses functionality implemented in file B). In the
case of FORTRAN, identification of such dependencies requires an additional code
preprocessing stage. Although the modern version of CMake can partially handle this
task, a significant part of the ESM code had been developed before its mature enough
versions became available. This leads to the emergence of a wide variety of custom
solutions, each having its own software requirements. The general approach to
meeting most of the requirements is to ensure the availability of the up-to-date
versions (the custom solution are still developed and maintained) of the most popular
script language interpreters: Perl, Python, Bash.

Compilers
Most models require FORTRAN and C compliers appropriate for the hardware on
which the model will run, but will not run efficiently without having undertaken the
effort to tune compiler flags. Some models simply will not run without a particular
compiler. In addition, to achieve reproducibility of the results one has to be careful
with the selection of compiler flags.

”Run the execution workflow”

We define execution workflow as a sequence of automated steps that initialize the
runtime software environment, perform model runs and run post-processing
operations.

Script interpreters
Up-to-date versions of the script interpreters (Python, Perl, Bash) are essential not
only for the building stage. Scripts are also heavily used for the workflow coordination
and post-processing. The latter often requires extensions of the frameworks that
come along with the interpreters. The list of such extensions is provided in the
Handbook.

Job scheduling systems
The nature of the climate run and the HPC resource on which the run is performed
inevitably leads to the need for a batch job submission system, whereby jobs
prepared for submission are managed by the scheduler in order to ensure efficient

34 https://www.gnu.org/software/make

https://www.gnu.org/software/make

15

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

usage of the shared HPC resource. While all performing similar roles, the details of
each differ; typically, an HPC service will support only one scheduler. Schedulers used
at many sites include PBS, Loadleveller (IBM), SLURM, Oracle Grid Engine, TORQUE.

Meta-schedulers
Ever increasingly complex workflows call for the use of management software to
schedule tasks according to rules determined to ensure the correct ordering and
triggering of events. A climate-suite workflow might include data acquisition, data
preparation, code extraction, code compilation, mirroring of data and binaries,
running the integration, and processing the data generated (data manipulation and
transfer). The system must manage workflow on several machines, handle failures
and restarts gracefully, and be relatively simple to configure and run. The meta-
scheduler may run on the HPC where climate integrations take place or it may run
remotely. Several meta-schedulers are in use of which we describe three here:

Autosubmit is a solution created at IC3’s Climate Forecasting Unit (CFU) to manage
and run the group’s experiments. Lack of in house HPC facilities has lead to a
software design with very minimal requirements on the HPC that will run the jobs. It
is capable to run experiments in clusters or supercomputers with PBS, Slurm, SGE or
LSF schedulers. It also can run jobs on any Linux machine that can receive SSH
connections.

Prior to version 3, Autosubmit had a fixed workflow matching the one used at IC3 to
run EC-Earth experiments. On the new version this limitation has been removed and
now it has a limited workflow definition capacity that allows running other models
such as WRF or NMMB. Autosubmit is currently being developed at BSC
Computational Earth Sciences group.

Cylc suite engine is a workflow engine and meta-scheduler. It specializes in cycling
workflows such as those used in weather forecasting and climate modelling, but it
can also be used for non-cycling suites. It was created by NIWA and currently is
developed by NIWA and UK Met Office.

ecFlow is a workflow package that enables users to run a large number of programs
(with dependencies on each other and on time) in a controlled environment. It
provides reasonable tolerance for hardware and software failures, combined with
good restart capabilities. It is developed and used at ECMWF to manage around half
their operational suites across a range of platforms.

ecFlow submits tasks (jobs) and receives acknowledgements from tasks when they
change status and when they send events. It does this using commands embedded in
the scripts. ecFlow stores the relationship between tasks and is able to submit tasks
dependent on triggers.

Criteria Autosubmit Cylc ecFlow

Seniority 2011 2010 2011

Original
authors/sponsors

IC3, BSC NIWA, MetOffice ECMWF

License GNU GPL v3 GNU GPL v3 Apache License v2.0

16

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

“Prepare input data” and “get the results”

In the typical climate modelling workflow as depicted in Fig. 3 this part is typically
located more in the data “bubble”, but obviously also part of the “prepare model
experiment” step. Huge datasets (especially in the case of the high-resolution
demonstrators) that are passed through the workflow enforce the practice of
processing data close to its storage location. For the pre-processing stage this means
that the input data for the experiments will be prepared close to the original raw data
and then uploaded to a supercomputer. For the post-processing stage this means that
the output data of the models need to be processed on the same machine, which was
used for computations. The latter requires the availability of analysis and visualisation
tools.

Analysis and visualization
Users have their preferred analysis tools and there is a distinction between those
commonly used in weather and climate communities. Analysis software should
include: IDL, Matlab, Python, R, CF-Python, grib_api, CDO, NCO, IRIS, SciPy,
Matplotlib. Some require licences (IDL, Matlab) and specific features may be version
dependent or require extra licenses.

“Adapt the execution workflow” and “edit the source code”

On one hand, the major part of the model development is performed in well-known
and customized software environments (e.g. user workstations). On the other hand,
the code often needs to be changed “in the field”, on a supercomputer to be used for
computations: adaptation of execution scripts, optimizations, finding bugs in a
particular environment, etc. Even simple text editors with code highlighting are not
always available out-of-the-box.

From the software perspective it is important to have at least some knowledge of
different programming languages and scripting. Whereas the climate and NWP
models are written in programming languages, the steering of the simulations with
the models is performed by scripts. These scripts do not only invoke the execution of
the simulations with the compiled models, they also invoke custom-made or off-the-
shelf tools for the preparation and the post-processing of the simulations.

Users need to be aware of the two main programming language types: compiled
languages and interpreted languages. These two families have different
characteristics and are targeted to different types of applications. It is important that
the user knows that they require different knowledge and handling, and that they will
need both of the language types.

Debugging and optimization
Software as complex and configurable as climate models will fail on occasion and for
efficient diagnosis and bug fixing, a modern parallel debugging facility is essential.
Each utility (e.g. DDT, TotalView) has its own requirements. However, these tools
tend to have a quite expensive price that depend on the number of processors used
to run the code.

While there are climate modellers who may have little interest in or need to optimize
the HPC performance of their integrations, doing so is increasingly important as

17

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

models run at ever higher resolution and fidelity. Performance-analysis tools
(CrayPat, Vampir, Scalasca, BSC Performance Tools, Intel tools, etc.) greatly enhance
the opportunities to detect poorly performing code and assist in resolving bottlenecks
in communications, computation and I/O.

Performance measurement tools
Tools like Extrae and Paraver are used to analyse the performance and the behaviours
of the selected codes on HPC clusters. Extrae is the package devoted to generate
Paraver trace-files for a post-mortem analysis. Extrae is a tool that uses different
interposition mechanisms to inject probes into the target application so as to gather
information regarding the application performance. Paraver is a very flexible data
browser for trace files generated by Extrae. Paraver was developed to respond to the
need to have a qualitative global perception of the application behaviour by visual
inspection and then to be able to focus on the detailed quantitative analysis of the
problems.

Use cases (high-resolution demonstrators)
One of the key objectives of the ESiWACE project is “…the establishment of so-called
demonstrators of atmosphere-only, ocean-only and coupled ocean-atmosphere
simulations, which will be run at the highest affordable resolutions (target 1 km) to
estimate the computability of configurations that will be sufficient to address key
scientific challenges in weather and climate prediction.” At the example of the
demonstrators we will, in the following, illuminate the “common part strategy” we
follow, see table. The software stack necessary to deploy and run the demonstrators
comprise the specific modelling software – which we will not comment – and a large
number of common tools – which we comment – and which can be rolled out to the
target HPC systems as part of our common strategy engaging Spack.

Demonstrators
The following models have been selected as demonstrators:

1. Very high resolution atmosphere-only and ocean-only demonstrators
o IFS: Integrated Forecast System (developed by ECMWF)
o ICON: Icosahedral non-hydrostatic general circulation model

(developed by DWD, MPI-M and DKRZ)
o NEMO: Nucleus for European Modelling of the Ocean (developed by

IPSL)
2. High resolution coupled atmosphere-ocean demonstrators

o EC-Earth: European consortium developing a coupled climate model.
The configuration analysed uses IFS for atmosphere, NEMO for ocean
and OASIS for coupling.

o ICON-ESM: as coupled climate model using its own ocean component
ICON-OCE and the YAC coupler.

18

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

Software dependencies
The model source code is, as explained before, obviously model specific – currently:
This might change with the introduction of common physics libraries like those
developed in ISENES2 for radiation. Also, other configurations of coupled models
could comprise e.g. different atmosphere, but the same ocean models.

The common tools include:

Bash: All the models presented in this document are using bash or scripting related
languages in different stages of the execution. We consider such tools as standard on
Unix/Linux systems and cover any specificities with Spack.

Python and Perl: These two tools are required also in many steps of the models’
workflows. The models’ workflow scripts are implemented using these two
languages, therefore the corresponding interpreters are required to run them. The
interpreters are available under names Python and Perl in the Spack repository, which
also contains a collection of packages that extend their basic functionality.

Fortran and C compilers: Many Linux/Unix systems come with gfortran/gcc by
default, which work well for the models. High Performance Computing facilities may
provide other compilers to achieve better performance. The Fortran compiler must
support an auto-double (e.g. -r8) capability as some source code files are in fixed
format Fortran. OpenMP parallelism depends upon each model. Spack specifications
are available for some of the components of the demonstrator models.

MPI implementation: Must be available on the system of choice. It can either be
vendor supplied or one of the freely available versions, such as MPICH or OpenMPI.
The compatibility of each MPI implementation with the model should be checked
with the model developers. Spack can take care of the respective dependencies.

Performance measurement tools: Extrae and Paraver are not required to run the
models, but are important in the contest of the work related to the demonstrators;
we recommend their use.

Installation
Most of the software packages used can be installed using Spack, work is in progress
for the others. This reduces the complexity of the installation task. Spack manages
the dependencies, compilers and modules.

Software dependencies of the demonstrators and their execution workflows

Tool/
Library

EC-
Earth

ICON-
ESM Website Package in Spack

repository
BLAS ✔ ✔ http://www.netlib.org/blas/ openblas

CDO ✔ ✔ https://code.mpimet.mpg.de/
projects/cdo cdo

FCM ✔ http://metomi.github.io/
fcm/doc/ N/A

GRIB-API ✔ ✔
https://software.ecmwf.int/

wiki/display/GRIB/Home grib-api

HDF5 ✔ ✔ https://support.hdfgroup.org/
HDF5/ hdf5

http://www.netlib.org/blas/
https://code.mpimet.mpg.de/projects/cdo
https://code.mpimet.mpg.de/projects/cdo
http://metomi.github.io/fcm/doc/
http://metomi.github.io/fcm/doc/
https://software.ecmwf.int/wiki/display/GRIB/Home
https://software.ecmwf.int/wiki/display/GRIB/Home
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/

19

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

Tool/
Library

EC-
Earth

ICON-
ESM Website Package in Spack

repository
LAPACK ✔ ✔ http://www.netlib.org/lapack/ openblas
LIBXML2 ✔ http://xmlsoft.org libxml2

NETCDF ✔ ✔ http://www.unidata.ucar.edu/
software/netcdf

netcdf
netcdf-fortran

OASIS ✔ https://verc.enes.org/oasis N/A

SZIP ✔ ✔
https://www.hdfgroup.org/

doc_resource/SZIP/ szip

XIOS ✔ http://forge.ipsl.jussieu.fr/
ioserver/ N/A

YAC ✔ provided with the ICON model N/A
ZLIB ✔ ✔ http://zlib.net zlib

Conclusions
Supercomputer systems have to be used for ambitious Earth system modelling. They
show significant differences in purpose and size, resulting in substantial qualitative
differences in their design, architecture and interfaces. While most of their
complexity is hidden from the users by their clustering middleware – the software
that allows treating an HPC as one large computing unit –, users still have to be aware
of some special aspects of distributed computing environments to be able to employ
them effectively.

In this paper we use earlier findings in terms of the specification of an Application
Software Environment for Multi-Model Simulations (D3.1) and ESM System Software
Stack Recommendations (D3.2 to D3.5) and describe the process in more details, that
is necessary to establish and deploy such environments in a way they are useable for
both development and experimentation.

Our research was focused on further analysis and systematisation of the
requirements of Earth system modelling workflows, as well as identification of
common issues and limitations related to the deployment and maintenance of
software stacks on large supercomputing facilities. The main conclusion we can draw
based on the results of the second phase of the research is that users, in order to be
productive, have to share with system administrators the responsibility for
completeness and usability of the software environment. To achieve that, they have
to get a better understanding of the main issues related to the software deployment
and to learn about the existing approaches to its automatisation. Thus, providing this
information to developers and experimenters has become one of the major
objectives of the Whitepaper.

Users educated this way than have to interact with system administrators. Supporting
Spack installations will benefit both groups in the following way:

• Users will be able to easily customise the software environment on their own,
thus being more productive and reducing the workload put on system
administrators.

• Spack allows for formal description of the software stack available on a
supercomputer, which simplifies identification of the list of missing software
dependencies of a modelling workflow.

http://www.netlib.org/lapack/
http://xmlsoft.org/
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
https://verc.enes.org/oasis
https://www.hdfgroup.org/doc_resource/SZIP/
https://www.hdfgroup.org/doc_resource/SZIP/
http://forge.ipsl.jussieu.fr/ioserver/
http://forge.ipsl.jussieu.fr/ioserver/
http://zlib.net/

20

Created on 02/03/2018 16:39:00, WP_Application_Software_Framework_v2.2.3

• Spack can also help system administrators to easily test various usage
scenarios of the basic elements of the software environments, such as
compiler toolchains and MPI libraries.

Based on our current view and developments, the Spack approach seems to be valid
and useful for the ESiWACE demonstrators and future high-resolution modelling.

	WhitePaper-March2018_SSK.pdf
	Document change history
	Table of abbreviations
	Introduction
	Motivation
	Objectives

	The software stack
	Hardware Considerations
	Software
	Climate Modelling Workflow
	The technical workflow
	“Resolve software dependencies”
	”Get the model source code”
	“Configure and build the source code”
	Build automation software:
	Compilers

	”Run the execution workflow”
	Script interpreters
	Job scheduling systems
	Meta-schedulers

	“Prepare input data” and “get the results”
	Analysis and visualization

	“Adapt the execution workflow” and “edit the source code”
	Debugging and optimization
	Performance measurement tools

	Use cases (high-resolution demonstrators)
	Demonstrators
	Software dependencies
	Installation

	Conclusions

