
A PDF Test-Set for Well-Formedness Validation in JHOVE - The
Good, the Bad and the Ugly

Michelle Lindlar
TIB - Leibniz Information Centre of

Science and Technology
Welfengarten 1B

Hannover, Germany 30167
michelle.lindlar@tib.eu

Yvonne Tunnat
ZBW - Leibniz Inforation Centre of

Economics
Düsternbrooker Weg 120
Kiel, Germany 24105
y.tunnat@zbw.eu

Carl Wilson
OPF - Open Preservation Foundation

c/o �e British Library
Boston Spa, United Kingdom LS23

7BQ
carl@openpreservation.org

ABSTRACT
Digital preservation and active so�ware stewardship are both cycli-
cal processes. While digital preservation strategies have to be
reevaluated regularly to ensure that they still meet technological
and organizational requirements, so�ware needs to be tested with
every new release to ensure that it functions correctly. JHOVE is
an open source format validation tool which plays a central role
in many digital preservation work�ows and the PDF module is
one of its most important features. Unlike tools such as Adobe
PreFlight or veraPDF which check against requirements at pro�le
level, JHOVE’s PDF-module is the only tool that can validate the
syntax and structure of PDF �les. Despite JHOVE’s widespread
and long-standing adoption, the underlying validation rules are not
formally or thoroughly tested, leading to bugs going undetected
for a long time. Furthermore, there is no ground-truth data set
which can be used to understand and test PDF validation at the
structural level. �e authors present a corpus of light-weight �les
designed to test the validation criteria of JHOVE’s PDF module
against “well-formedness”. We conclude by measuring the code
coverage of the test corpus within JHOVE PDF validation and by
feeding detected inconsistencies of the PDF-module back into the
open source development process.

KEYWORDS
�le format validation, PDF, test data, quality assurance, JHOVE
ACM Reference format:
Michelle Lindlar, Yvonne Tunnat, and Carl Wilson. 2017. A PDF Test-Set for
Well-Formedness Validation in JHOVE - �e Good, the Bad and the Ugly. In
Proceedings of iPRES Conference, Kyoto, Japan, September 2017 (iPRES 2017),
11 pages.
DOI: 10.5281/zenodo.1228650

1 INTRODUCTION
File format validation is a central task in digital preservation pro-
cesses, giving insight into the degree with which the digital object
complies with the speci�cation of the �le format it purports to be.
For complex formats such as PDF, which allow for a multitude of
content types and variations, such as embedded AV material or
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
iPRES 2017, Kyoto, Japan
© 2017 Copyright held by the owner/author(s).
DOI: 10.5281/zenodo.1228650

embedded and non-embedded fonts, validation poses a challenging
problem. While so�ware to validate digital object’s against PDF
pro�le requirements such as PDF/A1 or PDF/X exist, they typically
focus on the requirements of the pro�le and do not take the syntac-
tical and structural requirements of the underlying PDF format into
account [8]. As of today, the go-to validator for the PDF format
is the open source tool JHOVE [23]2. �e initial development of
JHOVE dates back to 2003-2008 and the tool has been widely used
by digital archives since.

Digital preservation and active so�ware stewardship are both
cyclical processes. While digital preservation strategies have to be
regularly reevaluated to ensure they continue to meet technological
and organizational requirements, so�ware needs to be tested with
every new release to ensure that it functions correctly. Despite
JHOVE’s widespread and long-standing adoption, the underlying
validation rules are not formally or thoroughly tested, leading to
bugs which can go undetected for a long time. Formal testing for
complex so�ware such as �le format validators has to be automated.
However, a requirement for such automated testing processes is a
ground-truth as a point of reference, ideally manifested in a light-
weight test set. �is test set can be used to check the validator’s
capability to enforce speci�c clauses in the format speci�cation. In
the case of PDF validation in general and JHOVE speci�cally, no
such test-set has been available until now.

�is paper describes the authors’ e�orts to narrow this gap by
building a light-weight test-set for PDF validation. �e test set
focuses on the validation against structural and syntactical require-
ments3 of the PDF �le format as described in the ISO 32000-1:2008
standard for PDF 1.7. It will not look at particular pro�le require-
ments such as those described in the ISO 19005 series for PDF/A. As
the standard does not make a clear distinction between well-formed
and valid requirements, these are derived by looking at required
structural parts of any PDF object, namely: a header, a body con-
sisting of a minimal set of objects, a cross-reference table and a
trailer (see Figure 1). While JHOVE only supports PDF features up
to version 1.7, the cases implemented in the test set are common to
all PDF versions. �e aim of test set is threefold:

(1) to establish a ground truth for what is not well-formed
(2) to test the JHOVE so�ware against that ground truth
(3) to improve automated regression testing

1For PDF/A, e.g.: veraPDF, Callas pdfapilot, PDFTron, 3-Heights�
2While the JHOVE framework includes a variety of validation modules, this paper
limits the scope to the PDF-module. Within the context of this paper JHOVE is
therefore used as a synonym for the JHOVE framework’s PDF-module.
3Syntactical and structural requirements equal JHOVE’s well-formedness criteria.
Please refer to section 2.1 for further discussion.

iPRES 2017, September 2017, Kyoto, Japan Michelle Lindlar, Yvonne Tunnat, and Carl Wilson

Section 2 of this paper will introduce the concept of �le for-
mat validation and give insight into the development of JHOVE
in general and the PDF module in particular to provide a contex-
tual framework for the test set work. Section 3 will introduce the
methodology used for the construction of the test set as well as
for measuring and describing the automated regression testing gap.
Section 4 describes the test set itself and the results of running the
JHOVE PDF-module4 across the test set. To introduce a second
point of reference, each test �le is also rendered using a suitable
application5. While the ability to render a �le correctly does not
guarantee that it is well-formed, incorrectly displayed content or
the failure to render o�en indicates that the �le is not well-formed.
Section 5 discusses the impact of the test set as a ground-truth
and as an improving factor in current JHOVE code as well as in
existing automated regression processes. We conclude with section
6, highlighting possibilities for further work building on the test
set described in this paper.

Figure 1: Basic PDF structure

2 BACKGROUND AND RELATEDWORK
File format validation is a challenging task. Section 2.1 describes the
motivation behind and general approach to �le format validation,
sections 2.2 and 2.4 illustrate how this challenge was met in the
development of the JHOVE framework and the PDF-module, respec-
tively. As aforementioned, very few e�orts have been undertaken
to validate against standard requirements of PDF at a structural and
syntactical level, a recent exception being Caradoc [8]. Wri�en in
OCaml and �rst introduced in 2016, Caradoc is still in its beta stage6.
As opposed to JHOVE, which skips over unsupported structures
thus considering them valid by default, Caradoc sets out to take
a whitelist approach, considering unknown features as suspicious
by default and �agging them as invalid. While this is a thorough
approach, the current implementation of Caradoc only serves as a
proof-of-concept, containing rules for a very limited number of PDF
features. Due to this, the vast majority of “real-life” PDFs currently
fail validation with Caradoc.

4At the point of writing the latest available version is JHOVE 1.16 framework, which
wraps PDF-module v1.8
5�e rendering application used is Adobe Acrobat Professional 11.0.15.2
6See h�ps://github.com/ANSSI-FR/caradoc for beta 0.3 of the Caradoc tool

Hence, the digital preservation community largely relies on
JHOVE for validation - despite known bugs7. �e adoption of
and ongoing work on JHOVE will be introduced in section 2.3,
further motivating the relevance of and urgent need for thorough
regression testing and ground-truth data.

2.1 File Format Validation
File format validation is the process of checking an object’s confor-
mance to syntactic and semantic rules of the format it purports to
be. As such, it is closely related to �le format identi�cation. While
most pa�ern based identi�cation tools such as DROID or �le rely
on short signatures such as magic numbers, full identi�cation re-
quires an analysis of the entire bit-stream and a comparison to the
structure and semantics prescribed by the �le format’s speci�cation
[1]. To illustrate, consider the following minimal PDF code of the
�le minimal test.pdf:
%PDF-1.4
%%EOF

Minimal test.pdf is identi�ed as PDF 1.4 by standard �le format
identi�cation tools8. JHOVE, however, recognizes that the object is
Not well-formed, indicating problems at the basic structural level
of the �le format level which the object purports to be. Ideally, the
normative syntactic and semantic rules used to check the validity of
an object are taken from the �le format’s authoritative speci�cation.
However, in many cases a speci�cation may not exist or may not
be publicly available. Format speci�cations not wri�en within an
o�cial standardization context present another problem. �ese are
o�en ambiguous and therefore open to interpretation [2]. Ambigu-
ities in the PDF speci�cations published by Adobe have lead to a
rather broad interpretation of the �le formats syntactical and se-
mantic makeup. �is, in return, has lead to PDF rendering so�ware
being forgiving towards many violations, resulting in �les which
are strictly speaking invalid but are still renderable and usable [2].

Format validation is usually broken down into two conformance
levels - determining whether an object is well-formed and valid.
�e W3C Extensible Markup Language Standard [31], for example,
clearly de�nes the constraints of a well-formed XML object. In
short, a well-formed XML document must contain exactly one root
element, consist of one or more correctly nested and delimited ele-
ments and follow the regulations speci�ed for entities. While well-
formed XML objects comply with the XML speci�cation, valid XML
objects comply with an XML schema. In short, well-formedness
addresses the syntactic correctness while validity describes the se-
mantic correctness of an object’s conformity to the �le format it
purports to be. JHOVE �le format modules adhere to this two-tiered
conformance checking. �e validation rules implemented in the
TIFF module, for example, determine a �le to be well-formed if the
beginning of the �le is an 8 byte header followed by a sequence of
Image File Directories, which in return are each composed of a 2
byte entry count and a series of 8 byte tagged entries. �e mod-
ule de�nes an object as being valid if it meets certain additional
7E.g., see comment from original JHOVE developer Gary McGath on 2014-07-10: “�e
PDF module has a history of bugs relating to page trees, (…). If other so�ware doesn’t
complain, I’d be inclined to call this a JHOVE bug.” h�ps://sourceforge.net/p/jhove/
discussion/797887/thread/2050dc83/#c70f
8Tested with: DROID 6.2.1,Signature File V88, Siegfried 1.5.0 (both identi�ed via
signature pa�ern); TrID/32 v2.24 (�ndings: 100% PDF without PDF version output)
and File for windows v5.03

https://github.com/ANSSI-FR/caradoc
https://sourceforge.net/p/jhove/discussion/797887/thread/2050dc83/##c70f
https://sourceforge.net/p/jhove/discussion/797887/thread/2050dc83/##c70f

A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly iPRES 2017, September 2017, Kyoto, Japan

semantic-level rules, such as that TileWidth (322) and TileLength
(323) values are integral multiples of 16 [14]. Most format modules
consider well-formedness a prerequisite of validity.9

Validation rules for the JHOVE PDF-module will be discussed
further in section 2.4.

2.2 Brief History of JHOVE
JHOVE is by nomeans a new tool to the digital preservation commu-
nity. �e idea of the JSTOR/Harvard Object Validation Environment
dates back to 2003 [7]. Partially funded by the Andrew W. Mellon
Foundation [24], initial development of the driver and API layers as
well as the ASCII, UTF-8, PDF, TIFF, GIF, JPEG and XML modules
took 10 months and involved 1.35 full-time equivalents (0.10 project
management, 0.25 senior analyst, 1 developer)[7]. With the initial
release of version 1.0 in May of 2005, work on JHOVE continued
under the auspices of the JSTOR Electronic-Archiving Initiative
(now Portico) and the Harvard University Library until 2008. In late
2008, the California Digital Library, Portico and Stanford University
secured Library of Congress funding under the National Digital
Information Infrastructure Preservation Program (NDIIPP) for a
follow-up JHOVE2 project. �e project, which ran for two years,
was based on the observation that the original JHOVE, even though
extensively used, had “revealed a number of limitations imposed by
idiosyncrasies of design and implementation” [2]. JHOVE2 was con-
ceptualized to be a complete re-factoring of the so�ware, allowing
for simpli�ed integration, containing streamlined APIs and includ-
ing modules for �le formats previously not covered in JHOVE. Two
major conceptual changes in the approach to �le format characteri-
zation were the introduction of a more sophisticated data model.
While JHOVE works under the assumption that 1 object = 1 �le = 1
format, JHOVE2 allowed for complex objects, shi�ing the module
to 1 object = m �les = n objects. A second change was made by
decoupling �le format identi�cation from validation. While JHOVE
conducts �le format identi�cation by iteratively calling each exist-
ing module until one reports the �le to be valid, JHOVE2 relied on
DROID for initial �le format identi�cation. With the move towards
JHOVE2, Harvard University Library’s JHOVE developer Gary Mc-
Gath le�, asking for continued custody of the JHOVE code [19]
which he facilitated through a SourceForge project. In the following
seven years, McGath oversaw the release of 11 versions, including
several updates to the PDF-module. In 2013 McGath moved JHOVE
to GitHub, which had by then overtaken SourceForge as the code
platform of choice [24]. In March of 2014, Gary McGath announced
that he could no longer maintain the so�ware by himself [18], lead-
ing to the Open Preservation Foundation (OPF) taking over JHOVE
stewardship and moving the code to the OPF GitHub repository,
where it remains open source under a GNU Lesser General Public
License (LGPL). Since then, the OPF has o�ered so�ware supporters
and members the chance to steer maintenance and development
activities through the JHOVE product board. With the move to
the OPF GitHub repository, the versioning method has changed.
Minor version numbers are used for production releases (e.g. 1.16),
while odd numbers indicate development releases (e.g. 1.15). Early
9While this statement holds true to the original HUL modules as documented on the
Sourceforge site [21], information about requirements for well-formedness and validity
for the following non-hul modules are unfortunately lacking: ZIP, MP3, WARC, PNG
[26] [25]

OPF development e�orts focused on providing a more user-friendly
installer (version 1.12). Version 1.14 saw the introduction of three
new �le format modules: WARC, gzip and PNG, and prototype
regression testing tools [25], which are discussed in section 3.

2.3 JHOVE Adoption
While JHOVE2 never achieved wide adoption in the community
[20], [24], and development has been dormant since 2013 [6], JHOVE
remains an important tool in many digital preservation work�ows.
In the 2015 OPF community survey JHOVE was - tied with DROID
- ranked by the 132 respondents from around the globe as the most
important tool in digital preservation. �is is also re�ected in the
download numbers. Starting with a moderate 30 downloads per
week in 2009, the adoption of JHOVE quickly grew reaching 300-
400 downloads per week in early 2013 [24]. Since its �rst release
until today JHOVE remains a standard tool mentioned in state-
of-the-art system descriptions and best practice reports [15],[32],
[27],[9]. Despite the tool’s popularity neither exhaustive documen-
tation of the validation rules nor accompanying information to the
di�erent error messages exist. Up to today the most comprehensive
documentation is still that provided by the original JSTOR/Harvard
Project in 2008. To address this gap, the OPF set up the “Docu-
ment Interest Group” (DIG)10 in early 2015, which aims to improve
JHOVE and the interpretation of the error messages for textual
data modules such as the PDF-hul. A �rst step was the creation
of wiki-based documentation of the error messages 11. In 2016 the
OPF DIG conducted the �rst “JHOVE hack day” [22], leading a large
community e�ort to catalog the error messages for the di�erent
JHOVE format modules in a systematic way. Recently, a series of
validation tool benchmarks have been conducted, focusing on the
identi�cation aspect of JHOVE in juxtaposition to other tools [27]
or comparing the validation output of JHOVE’s wave [30], TIFF
[29], [16], and JPEG [28] modules to the output of other tools that
can characterise and validate the respective �le format families.

2.4 PDF Module
�e PDF-hul module has been frequently updated since JHOVE’s
1.0 inception in 2008. With the exception of the 1.6, 1.9 and 1.11
framework releases, every JHOVE release has seen updates to the
PDF module, resulting in new versions of the module. Improve-
ments range from handling of parameters in accordance with the
speci�cation (version 1.3) to optimizations of the parser and the
module’s memory use (version 1.10) [25]. Changes made in the
PDF-module may change the outcome of validation results for a
�le. As such, JHOVE’s most recent 1.16 version included PDF-hul
version 1.8, which �xed two major bugs in the code. �ese had been
present from the start of development, leading to false validation
errors relating to invalid page dictionary objects and improperly
constructed page trees [17]. While a number of �xes have im-
proved PDF/A validation [25], JHOVE has been proven unsuitable
for PDF/A validation [10] [12]. �e coverage of PDF versions hasn’t
changed since PDF-hul 1.0; for “plain” PDF, JHOVE support PDF
1.0-1.6. While PDF is backwards compatible, features introduced in

10h�p://wiki.opf-labs.org/display/Documents/Home.
11h�p://wiki.opf-labs.org/display/Documents/JHOVE+issues+and+error+messages

http://wiki.opf-labs.org/display/Documents/Home.
http://wiki.opf-labs.org/display/Documents/JHOVE+issues+and+error+messages

iPRES 2017, September 2017, Kyoto, Japan Michelle Lindlar, Yvonne Tunnat, and Carl Wilson

Table 1: Lines and Percentage of code executed by unit tests
per module

Module No. of Lines of Class Module No. of
Files Code Coverage Coverage code lines

in module
(only
*.java �les)

AIFF 18 1,253 0.00% 0.00% 1,253
ASCII 1 398 0.00% N/A% N/A
GIF 2 60 0.00% N/A% 60
GZIP 5 611 89.33% 90.44% 611
HTML 41 9,371 0.00% 0.00% 9,371
IFF 4 219 0.00% 38.29% 219
JPEG 9 895 0.00% 0.00% 895
JPEG2000 69 7,633 0.00% 0.00% 7,633
PDF 61 10,581 0.00% 0.00% 10,581
TIFF 61 14,457 0.87% 0.00% 14,457
WAVE 27 3,183 40.62% 6.87% 3,183
XML 9 1,498 0.00% 0.00% 1,498
Totals 309 50,705 N/A 2.97% N/A

newer versions are currently not supported by JHOVE. �e com-
plexity of the module re�ects the complexity of the PDF format
itself. All Adobe PDF speci�cations are freely available via the com-
pany’s website12, however, as described in section 2.1, ambiguities
in the speci�cations have lead to di�ering interpretations of the
�le format’s syntactical and semantic restrictions. �is complexity
resulted in the PDF module consuming signi�cant resources to
complete13 [7], and is also re�ected in the continuing work on the
module as described above.

But what does the module base the validation outcome on? Sec-
tion 2.1 described the general two-tiered conformance approach
taken by JHOVE. While the di�erentiation between well-formed
and valid is rather straight-forward for well speci�ed �le formats
such as TIFF, the situation is unfortunately more complex for the
PDF �le format. �e module description itself states that a PDF is
considered well-formed if it meets the criteria de�ned in Chapter
3 of the PDF Reference, breaking this down further into the fol-
lowing requirements [13]: “In general, a �le is well-formed if it
has a header:%PDF-m.n; a body consisting of well-formed objects;
a cross-reference table; and a trailer de�ning the cross-reference
table size, and an indirect reference to the document catalog dic-
tionary, and ending with: %%EOF”. Unfortunately this statement
remains vague, concrete rules breaking these high-level require-
ments down to e.g. dictionary or object level are missing. �e
PDF-module documentation carries on stating that in addition to
further requirements, well-formedness is a prerequisite for validity
12Adobe Developer Connection 2017 (h�p://www.adobe.com/devnet/pdf/pdf
reference.html) for current version, Adobe Developer Connection Archives (h�p:
//www.adobe.com/devnet/pdf/pdf reference archive.html) for previous �le format
versions
13It may surprise that the original JHOVE developers stated that the complexity of
the PDF-module was superseded by the HTML-module, elaborating that while other
modules were designed to terminate the validation process at the �rst error, the HTML
module typically encountered so many errors that it had to be designed to recover
from errors and continue [7].

[13]. Regarding limitations of the validation by the modle, the PDF-
hul documentation only states that data within content streams
as well as encrypted data is not validated. While these criteria
may seem straight-forward, in reality they include thousands of
possibilities. Furthermore, while Adobe’s speci�cation included
the “well-formedness” terminology [4], the ISO standard replaced
this with “conformance”14 [11]. �e ISO standard clearly states,
that it does not specify “methods for validating the conformance of
PDF �les”, carrying on, however, by describing that “conforming
PDF �les shall adhere to all requirements of the ISO 32000-1 speci-
�cation and a conforming �le is not obligated to use any feature
other than those explicitly required by ISO 32000-1.” [11]. With
5.471 occurrences of the word “shall” as the ISO verbal form for a
requirement and no clear di�erentiation between well-formed and
valid, achieving rule-based conformance checking remains a lo�y
goal. Nevertheless, is the most suitable point of reference for what
is syntactically and structural valid and what is not. Due to the
complexity of both the �le format and module, it should come as no
surprise that validation errors like those recently �xed in JHOVE
1.16 went unnoticed for many years. However, when relying on a
validation tool for digital preservation decision-making, the tool’s
output must be correct and complete. Ideally, a test routine exists,
which checks the tool’s output against a ground-truth for every
new release. While such a ground-truth needs to exist on both,
well-formedness and validation levels, the authors have limited the
scope to criteria determining well-formedness of the object.

3 METHOD
In this section we brie�y introduce so�ware testing methods. In
particular, we are highlighting the use of test corpora to measure
code coverage as a form of so�ware testing. We conclude this
section with a brief description of the process used to build the
light-weight test set put forth in this paper.

3.1 So�ware testing
JHOVE is a large established code base, currently comprising over
500 Java �les and 100,000 lines of code. �ere are modules that
validate �les against twelve format speci�cations, each requiring its
own specialist knowledge. Good automated testing is the only way
to ensure that a large so�ware project functions as expected, but
how do you ascertain how well a piece of so�ware has been tested?
Before addressing JHOVE testing we de�ne a few key so�ware
testing terms: �e term code coverage is used to express how much
of a code base has been tested. It can be measured empirically for
a given test scenario by measuring how many lines of code are
executed when you run it. You then divide this by the number of
lines of code in the project to give a percentage �gure. �is task is
carried out by automated coverage tools used by so�ware testers
and developers.

Testing can be carried out in di�erent ways, one of the most
e�ective forms is known as unit testing. �ese are small, discrete
tests wri�en by programmers when developing and �xing code.
�ey are usually executed automatically every time that the code is

14Adobe: “�e rules described here are su�cient to produce a well-formed PDF �le”
became ISO: “�e rules described here are su�cient to produce a basic conforming
PDF �le”

http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference_archive.html
http://www.adobe.com/devnet/pdf/pdf_reference_archive.html

A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly iPRES 2017, September 2017, Kyoto, Japan

Figure 2: Methodology for creating and using the test set

compiled. �ese test the smallest components, usually a few lines
of code, that make up a so�ware package.

Integration testing is an alternative, complementary approach to
unit testing. Rather than test low-level units, integration testing
focuses on larger so�ware components, including the delivered
so�ware. �ese tests can o�en take a long time to run so aren’t run
for every code change. Integration tests are usually run as a �nal
test before delivering release candidate so�ware.

Black box testing describes an approach to testing that concerns
itself solely with so�ware functionality and ignores the internal
details. Nearly all so�ware testing above the unit testing level is
carried out as black box testing.

3.2 Testing JHOVE
Historically, JHOVE hasn’t had a rigorous, public testing policy.
�ere are very few unit tests, the unit testing code coverage �gures
for the JHOVE modules as of v1.16 are shown in Table 115.

For each module two coverage �gures are given, each measures
the percentage of code that’s executed by unit tests, the �rst for
the module control class the other for the supporting classes. �e
test coverage was measured using the Jacoco16 so�ware and its
accompanying Maven17 reporting plugins. Overall, there’s less
than 4% coverage of the codebase. Writing unit tests for 100,000
lines of code is at least 2 person years of e�ort and isn’t practical
given the development resources available to the project. Clearly
another approach is needed to establish con�dence in JHOVE’s
results.

3.3 Using Test Corpora and Measuring
Coverage

One method suited to testing JHOVE is to create a corpus of ground
truth test data designed to test the modules functionality. A good
test should be atomic if possible, examining the codes handling of
a speci�c validation issue. One large, valid PDF document might
execute a high percentage of the code base without providing any
insight into the manner in which JHOVE deals with validation is-
sues at all. Currently two data sets for testing exist: �e �rst dataset
is comprised of example �les that accompany the JHOVE code base.
�ese have presumably been used by developers to test that the
modules were working, without providing a formal, rigorous test
corpus. �e regression testing suite that the OPF is currently de-
veloping uses this data and compares the XML output of di�erent
15See CodeCov results page for full coverage results: h�ps://codecov.io/
gh/openpreserve/jhove/tree/0093b7dd74d3d7582e�0d8f2e22eb7a89f5befd/
jhove-modules/src/main/java/edu/harvard/hul/ois/jhove/module
16h�p://www.eclemma.org/jacoco/
17h�p://www.eclemma.org/jacoco/trunk/doc/maven.html

versions of JHOVE to ensure that the results haven’t changed. �is
is typical black box testing, treating the so�ware as a unit that
takes input �les and produces XML output without worrying how
the so�ware does this. �is test set comprises approximately 80
�les that cover the PDF, TIFF, HTML, GIF, JPEG, JPEG 2000, XML
and ASCII modules. �e other test set is currently being assembled
as a community e�ort. �e aim is to gather a set of test �les that
between them generate every one of JHOVE’s 153 PDF validation
errors. First e�orts, undertaken as part of the OPF DIG group and
the JHOVE hack day have put forth 44 �les. However, as these �les
come from institutions’ productive archival work�ows, there are
some associated problems: About a third of them are subject to
access regulations and may not be shared publicly. Secondly, as
these are “real-world” examples, the PDF �les are typically large
and complex, making it hard to understand which speci�c part of
the digital object triggered a validation rule. A ground truth test
set is currently lacking.

3.4 Building a test corpus
In order to conduct straightforward black-box functional tests we
introduce a set of PDFs built speci�cally to test the requirements of
well-formedness. We limit ourselves to well-formedness, as it forms
the prerequisite for a valid �le. �e JHOVE well-formed statement
is split into the requirements for the structural sections, shown in
Figure 1: header (section 4.1), body (section 4.2), cross-reference
table (section 4.3) and trailer (section 4.4). For each section, the
JHOVE requirement - if available - forms the starting point of
the process shown in Figure 2. In a second step, the ISO 32000-
1:2008 standard is checked to transform the high-level criterion into
individual requirements / test cases. �ese requirements are then
implemented as a test �le, which is validated using JHOVE and
rendered with Adobe Acrobat Professional. To produce atomic tests
against syntactical �le format requirements, a minimal well-formed
and valid PDF (“Hello World.pdf”) was created and used as the
basis for all other test �les. �is �le consists of a single page which
includes one font de�nition as a resource and a single text stream
as a content. �e graph including respective object Ids is shown in
Figure 3. Information on test cases as well as test results are
captured in a spreadsheet accomanying the data set.

4 TEST CORPUS
�is synthetic test corpus consists of 90 �les, which are available on
the JHOVE github repository [25].�e test set contains the minimal
PDF �le (minmal test.pdf) given as an example in section 2.1, the
starter �le “Hello World.pdf” as well as 88 test cases which are
derivations of “Hello World.pdf”. Test cases were created using the

https://codecov.io/gh/openpreserve/jhove/tree/0093b7dd74d3d7582eff0d8f2e22eb7a89f5befd/jhove-modules/src/main/java/edu/harvard/hul/ois/jhove/module
https://codecov.io/gh/openpreserve/jhove/tree/0093b7dd74d3d7582eff0d8f2e22eb7a89f5befd/jhove-modules/src/main/java/edu/harvard/hul/ois/jhove/module
https://codecov.io/gh/openpreserve/jhove/tree/0093b7dd74d3d7582eff0d8f2e22eb7a89f5befd/jhove-modules/src/main/java/edu/harvard/hul/ois/jhove/module
http://www.eclemma.org/jacoco/
http://www.eclemma.org/jacoco/trunk/doc/maven.html

iPRES 2017, September 2017, Kyoto, Japan Michelle Lindlar, Yvonne Tunnat, and Carl Wilson

Figure 3: Graph and according PDF object Ids for
Hello World.pdf �le

process described in section 3.2. To allow �les within the test corpus
data set to be referenced, we introduce a naming scheme for the test
�les and cases. �e scheme is based on a scalable ontology, which
follows the basic PDF structure as shown in Figure 1. �e main
four sections are numbered with the body section (T02) branching
o� in separate subsections for possible object types. For this paper,
the object types document catalog (T02-01), page tree node (T02-
02), page node (T02-03), page resource (T02-04) and stream object
(T02-05) are analyzed further. While di�erent types of objects are
possible for page resources and stream objects, we only focus on
font (T02-04-01) and text respectively. Each test case is numbered
according to the section in which the deviation is introduced in
(Txx-xx-xx), followed by a 3 digit number (xxx). In addition to the
test case ID, the �le names contain a brief description of the feature
tested, e.g. “T001 header invalid-major-version.pdf”. The created
test corpus has been published as a data set18 and included in the
JHOVE GitHub19 repository.

4.1 PDF Header
�e PDF-hul documentation prescribes that the PDF Header con-
sists of the �rst line of the �le whichmust contain the �ve characters
“%PDF-”, followed by a version number. According to ISO32000-
1:2008, the version number is of the form 1.N, where N is a digit
between 0 and 7 [11] - Adobe’s documentation states simply that
the syntax is %PDF-M.m., where M is the major and m the minor
version [3]. In addition to the general syntax, each Adobe speci�ca-
tion explicitly names the header relevant for the respective format
version, e.g. %PDF-1.6 for PDF 1.6 [4]. Beginning with PDF 1.4 the
version may also be included in the document’s catalog dictionary.
If present, it shall be used instead of the version in the header. While
this information is relevant for adequate identi�cation of the �le
format version, it does not replace the structural requirement of
the header.
Test cases are based on the syntax requirement as well as by using
plausible version numbers. Deviations from the syntax are added
to the �rst 5 chars %PDF- as well as to the version notation M.m.
An additional test case is formed by removing the header. In total 7
18Lindlar, Tunnat, Wilson: Test corpus description and outcome - available
at h�ps://doi.org/10.22000/53
19h�ps://github.com/openpreserve/jhove/tree/ipres/pdf-test-all/test-root/corpora/
ipres-paper-pdfs/modules/PDF-hul

test cases were created for header deviations, 1 missing its header
(T01 007), 2 containing invalid major / minor versions (T01 001 -
002) and 4 with syntactical header errors (T01 003 - 006)./newline
�e �le with a missing header and the 4 objects with syntactical er-
rors were successfully detected by JHOVE as not being well-formed.
For all test objects considered Not well-formed, PDF-hul returned
the error “No PDF header”. It is debatable whether this error de-
scription is correct as the header does exist but contains invalid
information. JHOVE did not handle major and minor versions
test cases as well. Instead of either limiting the possible version
entries to the pro�les the module supports or to all possible combi-
nations of M.m, JHOVE only checks against M=1. �is leads to the
non-existing version 1.9 being accepted as well-formed and valid
(T01 002).

4.2 PDF Body Well-formed objects
�e JHOVE PDF-hul module requires that “the �le has a body,
consisting of well-formed objects”. PDF supports �ve basic and
three compound objects: Integers / real numbers; strings which
must be enclosed in parentheses; names, which are introduced by a
forward slash; boolean values; the null object, denoted by keyword
null; arrays consisting of an ordered listing of objects, e.g., [1 0 0 0];
dictionaries and streams [33]. Objects are linked to each other via
indirect references. Additionally, PDFs are divided into nodes as
objects (obj). �e content of these nodes, such as a page tree node,
are regulated in the standard, perscribing required and optional
objects within. �is paper focuses on the �ve PDF node structures
required to construct a minimal PDF as shown in Figure 3: the
document catalog (4.2.1), the page tree node (4.2.2), the page node
(4.2.3), the page resource node containing the resource font (4.2.4)
and the stream node containing text (4.2.5).

4.2.1 Document catalog. �e JHOVE well-formedness descrip-
tion only mentions the document catalog in conjunction with the
trailer (see 4.4), which must contain an indirect reference to the
document catalog. However, the document catalog is the root of
the PDF’s object hierarchy graph (see Figure 3), containing refer-
ences to all other objects which de�ne the document’s content,
outline, threads and a�ributes. �e document catalog can also con-
tain information about how the document shall be displayed, e.g.,
de�ning a default page other than page 1 to �rst show when the �le
is rendered. While a number of key pairs are possible within the
catalog dictionary, only two are required: Type with value Catalog,
which de�nes the object type of the dictionary, and Pages, which
contains an indirect reference to the page tree node [11]./newline
�e test cases present a missing or inaccessible document catalog
(T02-01 001 - 002), a missing or incorrectly de�ned Pages indirect
object (T02-01 003 - 004) and a missing Type key value pair (T02-
01 005 - 007)./newline Analyzing the results of running JHOVE
across the test set revealed some troubling behavior. While JHOVE
correctly recognizes when the document catalog is removed com-
pletely, it does not appear to cross-check the indirect reference in
the trailer and the actual object number of the document catalog.
While the �le (T02-01 002) is not well-formed according to the stan-
dard and cannot be rendered by Adobe Acrobat, JHOVE reports the
�le as being well-formed and valid. �e suspicion that referenced
object numbers are not cross-checked against the target objects is

https://docs.google.com/spreadsheets/d/1SWa2MtiSUQDVmlBvGb2a-b_zn7SmARv_CERXlFFDED0/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1SWa2MtiSUQDVmlBvGb2a-b_zn7SmARv_CERXlFFDED0/edit?usp=sharing
https://github.com/openpreserve/jhove/tree/ipres/pdf-test-all/test-root/corpora/ipres-paper-pdfs/modules/PDF-hul
https://github.com/openpreserve/jhove/tree/ipres/pdf-test-all/test-root/corpora/ipres-paper-pdfs/modules/PDF-hul

A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly iPRES 2017, September 2017, Kyoto, Japan

further con�rmed by the test case containing an incorrect indirect
reference in the Pages value (T02-01 004). Here, the �le is also
�agged as well-formed and valid by JHOVE but cannot be rendered
by Adobe Acrobat, as it fails to locate the page tree node needed
to display the pages. Similarly, the requirement that the value for
Type must be Catalog is not checked. Invalid entries are considered
Well-formed and valid by JHOVE. However, as opposed to the other
false negatives, which could not be rendered by the reader so�ware,
the test �le with an invalid Type key value (T02-01 006) renders
correctly and without a warning.
While the validation against the values result in incorrect outcomes,
the routines implemented in JHOVE do correctly check the exis-
tence of the required key values Pages and Type - the absence of
which results in objects being reported as Not well-formed with
“Invalid object de�nition” error messages (T02-01 003, 005, 007).

4.2.2 Page tree node. While the JHOVE well-formedness re-
quirements do not mention the page tree object, the object is re-
quired in order to interpret and access the �le’s content correctly.
Every PDF object has at least one page tree node, which forms the
basis of the hierarchical structure of page leaf nodes and/or further
page tree nodes. Required information within the page tree node
dictionary is the dictionary Name with required value Pages, the
number of children the node has (further page tree nodes or pages)
given in the Count key value pair, and lastly an array of indirect
objects of the children in the Kids key value pair. If the page tree
node is not the root page tree node, i.e., not the �rst page tree in
the document, a Parent key value entry is also required. As our
lightweight test set only contains a single page tree node, this value
is not required and is not checked within the test set.
�e test cases present a missing page tree node (T02-02 001), miss-
ing or malformed Type (T02-02 006, T02-02 009) and Count (T02-
02 007 - 008) key value pairs and a missing or malformed Kids array
(T02-02 003 - 005).
�e result of running JHOVE across this test set is similar to that
of the previous section - a missing page tree node is detected by
JHOVE, resulting in a Not well-formed object and an error message
stating “Invalid object de�nition”. �e same result - Not well-formed
and “Invalid object de�nition” - is obtained when validating the
test cases with missing required keys Type (T02-02 006) and Count
(T02-02 008). In both cases the �le renders correctly in Adobe
reader, however, Adobe a�empts to �x the error and prompts the
user to save the changes upon closing the �le. As in the case of the
document catalog key value pairs, the values for Type and Count
do not appear to be checked by JHOVE - invalid values such as an
incorrect integer value for Count result in well-formed and valid
�les according to JHOVE despite the fact that they clearly violate
the requirements de�ned in the standard.
In the case of the array Kids, values appear to be at least partially
checked, invalid indirect objects such as a reference to self (T02-
02 002) and no kids (T02-02 005) or a combination of existing and
non-existent children (T02-02 003) are caught correctly, resulting in
a not-well formed outcome and error messages such as “Excessive
depth or in�nite recursion in page tree structure” for self-reference
or “Invalid object de�nition” for missing kids. �e test case con-
taining only one, non-existent object as the only array entry for

the Kids key (T02-02 004) was interesting, as it resulted in a well-
formed, but not valid outcome. It is unclear, why this is considered
well-formed as opposed to, e.g., the combination of valid and invalid
array entries found in test case T02-02 003 which are �agged as not
well-formed by JHOVE.

4.2.3 Page node. No speci�c requirements concerning page ob-
jects are given in the JHOVE PDF-module description, however,
per standard a PDF �le must have at last one page object. �e page
object dictionary can contain 30 di�erent key pair values, but only
4 of them are required: Type, Parent, MediaBox and Resources. Me-
diaBox and Resources can be inherited from ancestor nodes in the
page tree. Other keys are only required under speci�c conditions,
e.g., StructParents is required, if the PDF contains structural content
items. It’s interesting to note that Contents is not a required key
value pair. If no Content object is referenced, the page is simply
blank. As our sample �le contains one Contents object, we are test-
ing the Contents reference despite the fact that it is only an optional
key.
�e test cases present a missing page object (T02-03 006), and
missing or malformed Type (T02-03 001, T02-03 002), Parent (T02-
03 003 - 005), Resources (T02-03 008, T02-03 012), MediaBox (T02-
03 008 - 009) and Contents (T02-03 010 - 011) key value pairs.
As in the analysis for the other body test cases, a missing node (T02-
03 006) as well as missing key value pairs (T02-03 001, T02-03 003,
T02-03 008, T02-03 012) result in Not well-formed �les with “Invalid
Object de�nition” errors. �is includes the test cases where the Con-
tents key value pair is missing (T02-03 010) - an interesting result,
considering that the Contents key value pair is optional according
to the standard. An absence of Contents should therefore result in
an invalid, but not directly in a not-well formed status. Moreover,
an invalid value entry for Contents results in a well-formed, but
not valid output (T02-03-011), which is surprising as in previous
dictionary cases plausibility and correctness of values was rarely
checked and never lead to well-formed, but not valid outputs. �e
respective test �le cannot be rendered by Adobe Acrobat and leads
to the rendering application crashing - clearly not the result we
expected for a well-formed but not valid object. Indirect values
for Parent (T02-03 004) and Resources (T02-03 007) go unnoticed,
resulting inWell-formed and valid outputs. Checking against incon-
sistencies for the Type values (T02-03 002) lead to an interesting
discovery. A�er having changed the Type value from the required
Pages to Catalog, JHOVE returned the �le as Not well-formed. �is
was surprising, as the previous test cases had returned invalid en-
tries for the Type key value pair as well-formed and valid. Further
analysis revealed that when the Type was then changed to Font and
re-validated the outcome was Well-formed and valid, even though
the value was still wrong. �is leads to the assumption that some
but not all values for Type are checked and the value Catalog always
leads to further analysis by the so�ware. Further test cases which
were handled correctly by JHOVE’s validation routine and were
identi�ed as Not well-formed are a wrong object type for the Parent
value, which expects a single indirect reference (T02-03 005) and
the wrong number of parameters for the MediaBox.

4.2.4 Page Resource - Font. Well-formedness criteria for page
resources in general and fonts in particular are not addressed by the
description of JHOVE well-formedness criteria. As per standard,

iPRES 2017, September 2017, Kyoto, Japan Michelle Lindlar, Yvonne Tunnat, and Carl Wilson

resources for a page, such as images or font, may be described
in resource dictionaries which can be included in dedicated page
resource objects. Alternatively, resources may also be directly
described within content stream objects. �is paper only brie�y
examines page resources for fonts. �e use of fonts in PDF is a
particularly complex subject [5], hence this is only a high level
analysis focusing on font dictionaries and associated data struc-
tures. �is includes a look at the information a conforming reader
requires to interpret the text and position the glyphs correctly. Re-
quired key value pairs in the font dictionary are Type, Basefont
and Subtype. �e test cases present a missing or invalid resource
object (T02-04-01 003, T02-04-01 004), a missing or malformed
Subtype (T02-04-01 005, T02-04-01 006) and missing BaseFont (T02-
04-01 002, T02-04-01 006) key value pairs. As is the case with other
tests, a missing dictionary Type key value pair (T02-04-01 003) re-
sulted in a not well-formed JHOVE result, while an invalid value
- in this case Page instead of the expected Font (T02-04-01 004) -
produces a well-formed and valid result. �e Subtype key identi-
�es the font type, ISO32000 lists the following valid values: Type0,
Type1, MMType1, Type3, TrueType, CIDFontType0 and CIDFontType2.
A missing SubType key value pair (T02-04-01-005) from the font
dictionary results in an unrenderable �le, which JHOVE correctly
catches as Not well-formed with an “invalid object de�nition error”.
A more distinct error message indicating the magnitude of the error
would be helpful here. A wrong value for SubType (T02-04-01 006)
unfortunately goes unnoticed - resulting in a well-formed and valid
JHOVE result. �e BaseFont key contains the actual font - for Type1
fonts this is typically the name it is known by in the respective
font program. A missing BaseFont (T02-04-01 001) results in Adobe
being unable to render any text which uses the font. JHOVE catches
this error as a well-formedness violation. Again, the error message
is “invalid object de�nition” as well as an additional “no document
catalog dictionary” error. �is appears to be a resulting downstream
error in parsing dictionaries and is misleading here. A BaseFont
with the wrong value (T02-04-01 002) also results in a “no docu-
ment catalog dictionary” error, which is again misleading. Adobe
Reader renders the text using an alternative, default font.

4.2.5 Stream Objects - Text. JHOVE states no speci�c require-
ments for stream objects. Streams are used to store binary data or
text to be displayed on a page. For this paper, we only examine a
simple, uncompressed text stream. As per ISO standard, the require-
ment for printing text on page is a Stream dictionary including the
Length key value with the number of bytes between the stream and
the endstream keywords. �e stream dictionary must be followed by
a descriptor stating the position of the text on the page, a beginning
text object marker (BT), operators to choose the text font (Tf) and
size, the text itself, the font show operator (Tj), the end text marker
(ET) and the endstream keyword. �e standard mandates that no
extra bytes other than white space are allowed between the end-
stream and the endobj markers. �e test cases check the presence
of the required text operators (T02-05-01 001 - 008, T02-05-01 012),
correct syntax of the text object (T02-05-01 009 - 011), missing key-
words stream (T02-05-01 13) and endstream (T02-05-01 14), missing
or invalid Length key value pair (T02-05-01 015, T02-05-01 016)
and extra bytes between endstream and endobj keywords (T02-05-
01 017). Running JHOVE across the test �les showed that all text

operators are checked by the PDF-module. �e absence of the
operators is detected, resulting in a Not well-formed output (T02-05-
01 001 - 008, T02-05-01 012). As these errors typically result in the
rendering application being unable to open the �le, it is particularly
important that JHOVE detects them. However, the accompanying
error message for the test cases: “No document catalog dictionary”,
appears to be a down-stream error and does not indicate that the
problem is in the stream object or more speci�cally in a missing text
operator, which would be important information for the user. �e
PDF-module correctly detects missing stream (T02-05-01 13) and
endstream (T02-05-01 14) keywords and missing or invalid Length
key value pairs (T02-05-01 015, T02-05-01 016). Validation issues
were detected when processing the actual text streams. String ob-
jects can be either encoded as literal strings enclosed in parentheses,
or as hexadecimal streams enclosed in angle brackets [11]. Our
lightweight test set includes a literal string. However, missing open-
ing or closing parentheses (T02-05-01 009, T02-05-01 010) as well
as a substitution with brackets (T02-05-01 011) goes unnoticed by
JHOVE, returning a Well-formed and valid result. �is is especially
grave as the reader fails to render the �les, showing the message
“An error exists on this page. Acrobat may not display the page
correctly. Please contact the person who created the PDF document
to correct the problem”.

4.3 Cross reference table
�e cross reference table enables random access to the various
objects contained in a PDF and is an essential element of any PDF
�le. JHOVE acknowledges this, the mandatory presence of the cross
reference table is mentioned in the well-formedness conformity
statement. However, as with other objects, JHOVE gives no further
requirements for the table. While conforming PDF implementations
may divide information between multiple cross-references streams,
cross-reference sections and cross-reference tables, this paper only
examines a lightweight PDF with a single cross-reference table.
Per standard, the cross-reference section must start with the xref
keyword. If the �le only contains one table and has never been
updated, as is the case with our test �le, the second line should
start with 0 and include a second number stating the number of
entries in the table - in our case 6. Finally, the table contains one
entry for each object. Each entry is exactly 20 bytes in length and
consists of the o�-set (10-digit), the generation number (5-digit)
and a keyword indicating whether the object is in use (n) or free
(f). [11]
�e test cases present a missing cross-reference table (T03 001),
missing xref keyword (T03 002), missing or invalid number of
entries (T03 003, T03 004), missing or invalid o�sets (T03 006 - 008),
invalid entry keywords (T03 009) and invalid generation numbers
(T03 010).
�e test �les for missing cross reference table and xref keyword,
(T03 001, 002) as well as for an invalid number of entries (T03 003
- 005) were detected correctly as Not well-formed. An interesting
outcome in this context was a so�ware bug when performing the
test against missing number of entries (T03 003), producing the
following error: “edu.harvard.hul.ois.jhove.module.pdf.Keyword
cannot be cast to edu.harvard.hul.ois.jhove.module.pdf.Numeric”.
�is is a Java exception thrown when the application has tried to

A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly iPRES 2017, September 2017, Kyoto, Japan

perform an unde�ned data conversion.
Only one test case for the cross-reference table led to an incorrect
validation result, (T03 010) - here, an invalid generation number
for an entry was proclaimed asWell-formed and valid by JHOVE.

4.4 PDF Trailer
�e PDF-module description states that to be well-formed, a �le
must have “a trailer de�ning the cross-reference table size with an
indirect reference to the document catalog dictionary, and ending
with: %%EOF” [13]. �e PDF standard is more speci�c in its require-
ments, stating that the trailer must start with the trailer dictionary,
consisting of the trailer keyword and key-value pairs enclosed in
double angle brackets. Two key value pairs are required for all
PDFs: Size of type integer, which holds the total number of entries
in the cross-reference table, and Root of type dictionary, which
contains the indirect reference to the catalog dictionary or root
object of the PDF. Other key value pairs are reserved for particular
PDF properties, such as Encrypt and ID for encrypted documents,
as well as Prev for objects with more than one cross-ref section.
�e trailer dictionary is followed by the startxref keyword and
the byte o�set counting from the beginning of the �le to the last
cross-reference section. �e trailer and the object closes with the
end-of-�le marker %%EOF [11].
For the test cases, �e JHOVE well-formed criteria stated above
are broken down into the existence of a properly formed trailer
(T04 008 - 010), the existence and validity of the mandatory key
value pairs Size (T04 015, T04 016) and Root (T04 011 - 014). �e
last line of a PDF �le contains only the end-of-�le-marker %%EOF.
As PDF �les are typically read starting with the trailer, the EOF-
marker is an essential keyword, indeed most applications will not
parse or render the �le if it is missing [3]. �e test set contains a
number of invalid variations of the %%EOF tag (T04 001 - 007).
While not explicitly mentioned in JHOVE’s conformance require-
ments, the o�set of the cross-reference section prefaced by the
startxref keyword is an essential part of the trailer. Because of this,
o�set and keyword are also included in the test set (T04 018 - 019).
With one exception, every test case pertaining to the trailer dictio-
nary or the cross-reference table byte o�set produced the expected
status message Not well-formed. �e exception was an unexpected
program termination in the test case which omi�ed the closing
brackets. It seems as if the module gets stuck in an endless loop.
Another unclear case were two error messages which appear to be
incomplete (“4” and “Null”). One arose in the case of an incorrect
value of type integer given in Size, i.e., not the correct size of the
cross-reference table entries. Here, one of the errors simply returns
the value “4”. Further experiments have shown if the number of
entries does not equal the value of Size, the error message returns
the value stated in the Size key value pair. �is should be replaced
with a more detailed message. �e “Null” error appears to have sim-
ilar origins, as it was produced by the test case with a missing Size
entry. Two of the test cases produced validation errors rather than
well-formedness violations: “Size entry missing in trailer dictio-
nary” and “Root entry missing in trailer dictionary”. While both test
cases result in a Not well-formed status due to a subsequent error
(“No document catalog dictionary”), the missing entries should be
reason enough to fail the syntactical check, as the standard clearly

states that Size and Root keys are mandatory elements of the trailer
dictionary. Further dictionary errors thrown, such as “Malformed
indirect object reference” or “Improperly nested dictionary delim-
iters” are generic to all dictionaries and also appear in other objects.
�e main problem found when validating the %%EOF tag test cases
was that JHOVE is tolerant towards data being present a�er the
%%EOF tag. Following incremental updates a PDF �le might con-
tain several %%EOF tags, still the last line must be %%EOF. �e test
case containing junk data a�er the tag (T04 005) passed JHOVE
validation as well-formed and valid. Furthermore, the ISO standard
states that the %%EOF tag should be present in the last line of the
�le. JHOVE validation simply follows the requirement that %%EOF
is the last string in the �le, regardless of it being on a line of its
own (T04 001), resulting in a well-formed and valid �le.

5 DISCUSSION
As part of the work presented in this paper we have developed a
light-weight test set for JHOVE’s PDF validation routine against
well-formedness requirements derived from the ISO 32000-1:2008
standard for PDF. As presented in section 1, our aim has been to:

(1) establish a ground truth for well-formedness criteria
(2) test the JHOVE so�ware against that ground truth; and
(3) improve automated regression testing

Within this section we will brie�y discuss if and how the test set
meets these goals.

5.1 Establishing a ground truth
�e JHOVE PDF-module’s description of the requirements which
need to be ful�lled to be considered well-formed are fairly vague.
Particularly the de�nition of what comprises a well-formed body is
high level. Neither a ground truth test corpus nor a clear overview
of the validation criteria enforced by the JHOVE PDF-module are
available.
In this paper, we have checked the criteria presented in the PDF-
module documentation against the concrete requirements stated
in the PDF ISO 32000 standard. Using a light-weight test object,
consisting of a minimal set of structural objects, we have produced
ground truth data for a small sub-set of criteria for the validation
against structural and syntactical requirements. As the ISO stan-
dard does not include a di�erentiation between well-formed and
valid, we have de�ned well-formed as the required syntactical and
structural aspects of the PDF graph in general and the object’s used
within in particular. �is approach shows that the line between
well-formed and valid for PDF is unfortunately by no means as
straightforward as the XML example included in section 2.1. �is
will be especially challengingwhen thework described here is taken
forward, looking at the optional structural elements of PDF, such as
object requirements for linearized PDFs, which have �xed require-
ments in themselves. Is a linearized PDF only well-formed when
all requirements for linearization are met? Or is any requirement
violation occurring in an optional structural part only a violation
of validity?

5.2 Testing JHOVE against ground truth
�e test cases included in this paper have shown clearly how error-
tolerant rendering so�ware can be. Files syntactically wrong at

iPRES 2017, September 2017, Kyoto, Japan Michelle Lindlar, Yvonne Tunnat, and Carl Wilson

very elementary levels may happily be rendered by tools such as
Adobe Acrobat without a warning. However, we’ve also produced
examples where the reader failed to render objects which JHOVE
deemed to be well-formed and valid, further underlining the in-
valuable asset of a ground truth test set. By running the test cases
against the JHOVE PDF-module, we have discovered a number
of inconsistencies between expected outcome for a test-case and
the de-facto validation result returned by JHOVE 1.16 / PDF-hul
1.8. �ese inconsistencies are being raised as issues on the GitHub
project site where they will be picked up by the JHOVE maintain-
ers. As a �rst step, we have opened issues on the JHOVE GitHub
repository for 9 of the discovered inconsistencies:
issue #207: PDF version checking incorrect
issue #208: Inconsistent catalog indirect reference and object num-
ber
issue #209: Inconsistent Pages indirect reference and object number
issue #210: Value for Type in Document Catalog not validated
issue #211: Indirect reference to not existing object in page tree
node Kids array results in well-formed and valid
issue #212: Value for Type in Page Tree Node not validated
issue #213: Consistency between /Parent and Kids for Page Tree
Node and Page Object not checked
issue #214: Paranthesis around literal strings are not checked
issue #215: Error message - JHOVE expects integer, gets string in
cross-reference stream with missing value

5.3 Improving test coverage and regression
testing

A corpus based testing methodology has been described in section
3.2. In this section we examine the utility of the test set produced
with this paper as a test corpus for JHOVE PDF validation. �is was
tested by measuring and analyzing the coverage for the individual
�les and the test set as a whole.
�e “hello world.pdf” seed �le covered 36% of the code in the PDF
module’s control class and 26% of the module code. Examining
the coverage �gures reveals that when the problems presented
in the test �les were undetected by JHOVE the coverage �gures
for the test are identical to the seed �le. �at makes sense as the
application found no problems in the �le so continued processing
the �le resulting in more of the code being executed. Because of this
we’ve omi�ed these results from our summary as they obscure the
coverage �gures for the discrete tests that fail as expected. Table 2
shows the coverage �gures produced by running JHOVE over the
test classes described in this document.

Regarding these test �gures, it’s worth noting the manner that
the combined coverage �gures are never higher than around 36%
for the controlling class and 26% for the module. Furthermore these
�gures are identical to the coverage generated by the seed �le. �is
means that many of the tests are exercising the same areas of the
code base re�ecting similarities in the test cases themselves. It’s
important not to get too carried away with test coverage in this
respect. �e real use of these test �le is not the amount of code they
execute but in which parts of the code they execute. Synthetic test
corpora can be cra�ed to exercise speci�c sections of the code base.
Initially this can be done by studying JHOVE’s validation criteria
and the PDF standards as is the case for the work presented here.

Table 2: Class and module coverage of test case �les pre-
sented in this paper

Test File Class Module
Coverage Coverage

T01 Header tests 9% 17%
T02-01 Document Catalog tests 21% 18%
T02-02 Page Tree tests 21% 20%
T02-03 Page Object tests 26% 22%
T02-04 Resources tests 19% 18%
T02-05 Stream tests 19% 18%
T03 Cross Reference tests 28% 24%
T04 Trailer tests 19% 20%
All Test Files 36% 26%

Table 3: Module coverage of corpus presented in this paper
compared to other corpora

Corpus All Modules PDF Module
coverage Coverage

Synthetic corpus for this paper 13% 26%
JHOVE example �les 51% 50%
JHOVE error corpus 18% 49%
All Test corpora 54% 58%

As test coverage increases it’s possible to see which areas of the
code remain untested and use this as another guide when creating
test �les.
Even a�er JHOVE validation has been tested and veri�ed to function
as expected the test corpus has a vital role in ensuring that this
remains the case. �e data set can be used to regression test new
releases of JHOVE tomake sure that �xed bugs are not inadvertently
reintroduced as new development takes place. Finally we’ll examine
coverage �gures for the two other test data sets introduced in
section 3.3 - the intital JHOVE example �les and the OPF JHOVE
error corpus - and compare the �gures to this corpus for context.

Due to the complexity of the �les within the other corpora, they
produce greater coverage of the PDF module’s code. However, the
high coverage comes as a price: due to their complexity, they are
also of less use in identifying and �xing problems. For complex,
“real-world” �les it is much harder to predict which areas of the
code they will test, in turn making it harder to diagnose problems
as there’s more code to analyze. Furthermore, many bugs can be
caused by interactions between features that weren’t properly con-
sidered when developing the so�ware. In summary synthetic test
�les are ideal for testing how the so�ware deals with the individual
elements of the speci�cation. Real world �les are excellent candi-
dates for testing so�ware’s function when presented with more
complex �les as well as measuring performance but only a�er con-
�dence in the so�ware has been established through formal testing
using synthetic test data.

A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly iPRES 2017, September 2017, Kyoto, Japan

6 SUMMARY
In the work presented in this paper, the authors have created a
light-weight test set for the validation of PDFs at the structural
well-formedness level. �e test set consists of 90 �les and 88 test
cases and is publicly available via the JHOVE GitHub repository20.
Additionally, the outcome of the validation and rendering tests
described in this paper as well as the detailed �gures for the code
coverage of the test set in regards to the JHOVE PDF-module are
described in a spreadsheet available online21.
�e authors have shown how the test corpus can be used to serve
three purposes: to establish a ground truth for what is not well-
formed, to test the JHOVE so�ware against that ground truth and
lastly to improve automated regression testing. Inconsistencies
discovered in running the ground truth data against JHOVE are
being fed back into the development process via GitHub issues. Fur-
thermore, the test set and process will be shared with the JHOVE
community, hoping to stimulate discussion around the methodol-
ogy used and triggering further e�orts in extending the test data to
cover more features of PDF �les and other format modules.
If we want the so�ware we use to be �t for the lo�y, long term
goals that the digital preservation community aspires to it needs to
be tested thoroughly. �is testing needs to be public and demon-
stratively complete, and who be�er to make sure that this is the
case than the community who use the so�ware. Only when this
testing is in place will the JHOVE status ofWell-formed and valid
carry the lifetime guarantee we want it to.

REFERENCES
[1] Stephen Abrams. 2007. Instalment on “File Formats”. DCCDigital CurationManual.

Technical Report. DCC Digital Curation Centre. h�ps://www.era.lib.ed.ac.uk/
bitstream/handle/1842/3351/Abrams%20�le-formats.pdf

[2] Stephen Abrams, Sheila Morrissey, and Tom Cramer. 2009. “What? So What”:
�e Next-Generation JHOVE2 Architecture for Format-Aware Characterization.
International Journal of Digital Curation 4, 3 (2009), 123–136. h�p://www.ijdc.
net/index.php/ijdc/article/view/139

[3] Adobe Systems Incorporated. 2001. PDF reference : Adobe portable docu-
ment format version 1.4 / Adobe Systems Incorporated. - 3rd ed. ADDISON-
WESLEY. h�p://www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/pdf
reference archives/PDFReference.pdf

[4] Adobe Systems Incorporated. 2006. PDF Reference - sixth edition: Adobe
Portable Document Format Version 1.7. Technical Report. Adobe Systems Incor-
porated. h�p://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/
pdf reference 1-7.pdf

[5] Ahmet Cakir. 2016. Usability and accessibility of portable docu-
ment format. Behaviour & Information Technology 35, 4 (2016),
324–334. DOI:h�ps://doi.org/10.1080/0144929X.2016.1159049
arXiv:h�p://dx.doi.org/10.1080/0144929X.2016.1159049

[6] COPTR. 2017. JHOVE2. COPTR Preservation Registry entry. (2017). h�p:
//coptr.digipres.org/JHOVE2.

[7] Martin Donnelly. 2006. DCC Digital Curation Centre Case Studies and Interviews:
JSTOR/Harvard Object Validation Environment (JHOVE). Technical Report. Digi-
tal Curation Centre. h�ps://www.era.lib.ed.ac.uk/bitstream/handle/1842/3335/
Donnelly%20jhove.pdf

[8] G. Endignoux, O. Levillain, and J. Y. Migeon. 2016. Caradoc: A Pragmatic
Approach to PDF Parsing and Validation. In 2016 IEEE Security and Privacy
Workshops (SPW). 126–139. DOI:h�ps://doi.org/10.1109/SPW.2016.39

[9] Peter Fornaro and Lukas Rosenthaler. 2016. Long-term Preservation and Archival
File Formats: Concepts and solutions. Archiving Conference 2016, 1 (2016), 87–90.
DOI:h�ps://doi.org/doi:10.2352/issn.2168-3204.2016.1.0.87

[10] Yvonne Friese. 2014. Ensuring long-term access: PDf validation with
JHOVE? PDF Association Blog Post. (2014). h�ps://www.pdfa.org/
ensuring-long-term-access-pdf-validation-with-jhove/

20h�ps://doi.org/10.22000/53
21h�ps://doi.org/10.22000/53

[11] ISO/TC 171/SC 2. 2008. ISO, ISO 32000-1:2008, Document management – Portable
document format – Part 1: PDF 1.7. International Organizsation for Standardiza-
tion. h�ps://www.iso.org/standard/51502.html

[12] Andrew N. Jackson. 2008. Does JHOVE Validate PDF/A Files?
Blog Post. (2008). h�p://anjackson.net/keeping-codes/experiments/
does-jhove-validate-pdfa-�les.html

[13] JSTOR. 2006. JHOVE PDF-hul. Online. (2006). h�p://jhove.sourceforge.net/
pdf-hul.html

[14] JSTOR. 2006. JHOVE TIFF-hul. Online. (2006). h�p://jhove.sourceforge.net/
ti�-hul.html

[15] Amy Kirchho� and Sheila M. Morrissey. 2016. Digital Preservation Metadata
Practice for E-Journals and E-Books. Springer International Publishing, Cham,
83–97. DOI:h�ps://doi.org/10.1007/978-3-319-43763-7 7

[16] Michelle Lindlar and Yvonne Tunnat. 2017. How valid is your validation? A
closer look behind the curtain of JHOVE. In 12th International Digital Curation
Conference: Upstream, Downstream: embedding digital curation work�ows for
data science, scholarship and society.

[17] Peter May. 2017. Testing JHOVE PDF Module: the good, the bad, and the not
well-formed. OPF Blog Post. (2017). h�p://openpreservation.org/blog/2017/03/
10/testing-jhove-pdf-module-the-good-the-bad-and-the-not-well-formed

[18] Gary McGath. 2014. Mavenized JHOVE. Mad File Format Science blog post.
(2014). h�ps://mad�leformatscience.garymcgath.com/2014/03/

[19] Gary McGath. 2015. File identi�cation tools, part 9: JHOVE2. Mad File Format
Science blog post. (2015). h�ps://mad�leformatscience.garymcgath.com/2015/
07/14/�dent-9/#more-1578

[20] Gary McGath. 2015. A new home for JHOVE. Mad File Format Science blog post.
(2015). h�ps://mad�leformatscience.garymcgath.com/2015/02/03/newjhove/

[21] Gary McGath and Carl Wilson. 2016. JHOVE File validation and characterization.
Online Resource. (2016). h�ps://sourceforge.net/projects/jhove/

[22] Becky McGuinness. 2016. JHOVE Online Hack Day Report. OPF Blogpost. (2016).
h�p://openpreservation.org/blog/2016/10/19/jhove-online-hack-day-report/

[23] Open Preservation Foundation. 2015. Digital Preservation Community Survey
2015. Technical Report. Open Preservation Foundation. h�p://openpreservation.
org/public/OPFDigitalPreservationCommunitySurvey2015.pdf

[24] Open Preservation Foundation. 2015. JHOVE Evaluation & Stabilisation Plan.
Technical Report. Open Preservation Foundation. h�p://openpreservation.org/
public/OPF JhoveEvaluationStabilisationPlan.pdf

[25] Open Preservation Foundation. 2017. JHOVE. GitHub Repository. (2017). h�ps:
//github.com/openpreserve/jhove

[26] Open Preservation Foundation. 2017. JHOVE: Open source �le format
identi�cation, validation & characterisation. Website. (2017). h�p://jhove.
openpreservation.org/.

[27] Lavdrim Shala and Ahmet Shala. 2016. File Formats - Characterization and
Validation. IFAC-PapersOnLine 49, 29 (2016), 253 – 258. DOI:h�ps://doi.org/10.
1016/j.ifacol.2016.11.062

[28] Yvonne Tunnat. 2016. Error detection of JPEG �les with JHOVE and Bad Peggy
- so who’s the real Sherlock Holmes here? OPF Blog Post. (2016). h�p://
openpreservation.org/blog/2016/11/29/jpegvalidation/

[29] Yvonne Tunnat. 2017. TIFF format validation: easy-peasy? OPF
Blog Post. (2017). h�p://openpreservation.org/blog/2017/01/17/
ti�-format-validation-easy-peasy/

[30] Johan van der Knij�. 2017. Breaking WAVEs (and some FLACs).
OPF Blog post. (2017). h�p://openpreservation.org/blog/2017/01/04/
breaking-waves-and-some-�acs/

[31] W3C. Extensible Markup Language (XML) 1.0 (Fi�h Edition). Technical Report.
W3C. h�ps://www.w3.org/TR/REC-xml/

[32] Simon Whibley and et al. 2016. WAV Format Preservation Assessment. Tech-
nical Report. British Library. h�p://wiki.dpconline.org/images/4/46/WAV
Assessment v1.0.pdf

[33] John Whitington. 2011. PDF Explained. O’Reilly Media.

https://www.era.lib.ed.ac.uk/bitstream/handle/1842/3351/Abrams%20file-formats.pdf
https://www.era.lib.ed.ac.uk/bitstream/handle/1842/3351/Abrams%20file-formats.pdf
http://www.ijdc.net/index.php/ijdc/article/view/139
http://www.ijdc.net/index.php/ijdc/article/view/139
http://www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
https://doi.org/10.1080/0144929X.2016.1159049
http://arxiv.org/abs/http://dx.doi.org/10.1080/0144929X.2016.1159049
http://coptr.digipres.org/JHOVE2.
http://coptr.digipres.org/JHOVE2.
https://www.era.lib.ed.ac.uk/bitstream/handle/1842/3335/Donnelly%20jhove.pdf
https://www.era.lib.ed.ac.uk/bitstream/handle/1842/3335/Donnelly%20jhove.pdf
https://doi.org/10.1109/SPW.2016.39
https://doi.org/doi:10.2352/issn.2168-3204.2016.1.0.87
https://www.pdfa.org/ensuring-long-term-access-pdf-validation-with-jhove/
https://www.pdfa.org/ensuring-long-term-access-pdf-validation-with-jhove/
https://github.com/openpreserve/jhove/tree/ipres/pdf-test-all/test-root/corpora/ipres-paper-pdfs/modules/PDF-hul
https://github.com/openpreserve/jhove/tree/ipres/pdf-test-all/test-root/corpora/ipres-paper-pdfs/modules/PDF-hul
https://docs.google.com/spreadsheets/d/1SWa2MtiSUQDVmlBvGb2a-b_zn7SmARv_CERXlFFDED0
https://docs.google.com/spreadsheets/d/1SWa2MtiSUQDVmlBvGb2a-b_zn7SmARv_CERXlFFDED0
https://www.iso.org/standard/51502.html
http://anjackson.net/keeping-codes/experiments/does-jhove-validate-pdfa-files.html
http://anjackson.net/keeping-codes/experiments/does-jhove-validate-pdfa-files.html
http://jhove.sourceforge.net/pdf-hul.html
http://jhove.sourceforge.net/pdf-hul.html
http://jhove.sourceforge.net/tiff-hul.html
http://jhove.sourceforge.net/tiff-hul.html
https://doi.org/10.1007/978-3-319-43763-7_7
http://openpreservation.org/blog/2017/03/10/testing-jhove-pdf-module-the-good-the-bad-and-the-not-well-formed
http://openpreservation.org/blog/2017/03/10/testing-jhove-pdf-module-the-good-the-bad-and-the-not-well-formed
https://madfileformatscience.garymcgath.com/2014/03/
https://madfileformatscience.garymcgath.com/2015/07/14/fident-9/#more-1578
https://madfileformatscience.garymcgath.com/2015/07/14/fident-9/#more-1578
https://madfileformatscience.garymcgath.com/2015/02/03/newjhove/
https://sourceforge.net/projects/jhove/
http://openpreservation.org/blog/2016/10/19/jhove-online-hack-day-report/
http://openpreservation.org/public/OPFDigitalPreservationCommunitySurvey2015.pdf
http://openpreservation.org/public/OPFDigitalPreservationCommunitySurvey2015.pdf
http://openpreservation.org/public/OPF_JhoveEvaluationStabilisationPlan.pdf
http://openpreservation.org/public/OPF_JhoveEvaluationStabilisationPlan.pdf
https://github.com/openpreserve/jhove
https://github.com/openpreserve/jhove
http://jhove.openpreservation.org/.
http://jhove.openpreservation.org/.
https://doi.org/10.1016/j.ifacol.2016.11.062
https://doi.org/10.1016/j.ifacol.2016.11.062
http://openpreservation.org/blog/2016/11/29/jpegvalidation/
http://openpreservation.org/blog/2016/11/29/jpegvalidation/
http://openpreservation.org/blog/2017/01/17/tiff-format-validation-easy-peasy/
http://openpreservation.org/blog/2017/01/17/tiff-format-validation-easy-peasy/
http://openpreservation.org/blog/2017/01/04/breaking-waves-and-some-flacs/
http://openpreservation.org/blog/2017/01/04/breaking-waves-and-some-flacs/
https://www.w3.org/TR/REC-xml/
http://wiki.dpconline.org/images/4/46/WAV_Assessment_v1.0.pdf
http://wiki.dpconline.org/images/4/46/WAV_Assessment_v1.0.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 File Format Validation
	2.2 Brief History of JHOVE
	2.3 JHOVE Adoption
	2.4 PDF Module

	3 Method
	3.1 Software testing
	3.2 Testing JHOVE
	3.3 Using Test Corpora and Measuring Coverage
	3.4 Building a test corpus

	4 Test corpus
	4.1 PDF Header
	4.2 PDF Body Well-formed objects
	4.3 Cross reference table
	4.4 PDF Trailer

	5 Discussion
	5.1 Establishing a ground truth
	5.2 Testing JHOVE against ground truth
	5.3 Improving test coverage and regression testing

	6 Summary
	References

