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Abstract

The correlation between two vectors is the cosine of the angle between
the centered data. While the cosine is a measure of association, the
literature has spent little attention to the use of the sine as a measure of
distance. A key application of the sine is a new “sine-diagonal inequality
/ disproportionality” (SDID) measure for votes and their assigned seats
for parties for Parliament. This application has nonnegative data and
uses regression through the origin (RTO) with non-centered data. Text-
books are advised to discuss this case because the geometry will improve
the understanding of both regression and the distinction between de-
scriptive statistics and statistical decision theory. Regression may better
be introduced and explained by looking at the angle between a vector
and its estimate rather than looking at the Euclidean distance and the
sum of squared errors. The paper provides an overview of the issues
involved. A new relation between the sine and the Euclidean distance is
derived. The application to votes and seats shows that a majority of the
electorate in the USA and UK, that have District Representation (DR)
and not Equal or Proportional Representation (EPR), still tends to have
“taxation without representation”.
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1 Introduction

1.1 The subject of discussion

Karl Pearson (1857-1936) designed correlation between two vectors with the de-
liberate focus on centered data, namely to capture as much variation as possible.
This arrangement also applied to the coefficient of determination, R2 or R-squared,
between a vector and its estimate.
We now have reason to look at the original and non-centered data, and in particular

at nonnegative data. This application arises for votes and the assigned seats for
parties for Parliament. When we want equal proportions of votes and seats, or to
maximise the association, or to minimise the inequality / disproportionality (ID),
then it would not make sense to center the data. Having a vector of seat shares
at a constant distance of a vector of vote shares would be rather curious. For such
non-centered data we apply regression through the origin (RTO), see Kozak and
Kozak (1995) and Eisenhauer (2003). Textbooks tend to warn against dropping the
constant in the regression, since it is better to test whether modeling errors show up
in an estimated constant, yet in this case RTO appears to be the proper approach.
Obviously, both Pearson’s centered data and RTO share the property that the con-

stant is zero, yet remarkably there are some (conceptual) differences for nonnegative
data. This article will use this framework of nonnegative vectors, following Coligna-
tus (2017c), Colignatus (2017d), Colignatus (2018a), Colignatus (2018b), Colignatus
(2018c), but potentially some properties might be generalised for other data.
Pearson also concentrated on the cosine as a measure of similarity. The literature

has spent little attention to the use of the sine as a measure of distance. For shares
of votes and seats one might say that they are 97% close but the literature on votes
and seats has focussed on developing measures of inequality / disproportionality, as
people might be more sensitive to the 3% dissimilarity. Colignatus (2018b), discusses
measures for votes and seats, and develops the new sine-diagonal inequality / dis-
proportionality (SDID) measure. SDID uses not only the sine but also the square
root on the sine, as a magnifying glass for small values, like the logarithm in the
Richter scale. Colignatus (2018a) gives a more general perspective on distance and
norm, and rejects the Aitchison geometry for compositional data for this comparison
of votes and seats. 1 There are particular aspects in voting, like majority switches,
that are not relevant for other applications. The sine measure is more sensitive than
the angular distance, and also interesting since it links up to regression, since R2

finds its translation in RTO as the squared cosine of the angle between the vectors.
A new finding in Section 4.8 below is a direct relation between the sine and the
Euclidean distance between two vectors.
Our objective here is to provide an overview of the elementary statistics of cor-

1 Comparing votes and seats is a topic of itself, and it is another topic for example to explain votes
by say the economy. In the latter, the log or logit transformations could still be used, though
Gelman and King (1994) stopped using the logit, since the vote shares in their data tended to be
between 0.2 and 0.8.
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relation, R-squared, cosine, sine, and regression through the origin (RTO), with
application to votes and seats for Parliament. While our focus is on the relevance
for statistics - Mood and Graybill (1963) p1 describe statistics as “the technology of
the scientific method” - and while we will have an eye on education in statistics, we
cannot avoid highlighting aspects of votes and seats, since this content determines
the analysis. For earthquakes there exists the Richter scale, but for votes and seats
there isn’t yet a similar “change” measure, while the advice now is to use SDID.
We will look at the same issue from different perspectives - statistics versus the

issue of content on electoral systems, correlation versus trigonometry, theory versus
education - and thus cannot avoid repetition, which however helps to identify that
we are speaking about the same issue.
We use x for a real vector, ‖x‖ =

√
x′x for the norm of x, and ‖y − x‖ for the

Euclidean distance between x and y. Normalised are x∗ = x/‖x‖ and y∗ = y/‖y‖.
There is also θ for the angle between x and y. Linear algebra provides an expression
for the cosine of this angle, as Cos[x, y] = x′y/

√
x′x y′y = x∗ ′y∗, i.e. the improduct

of the normalised vectors on the unit circle. Cos is essentially the projection divided by
the radius 1, see also the discussion and graph below. 2 Then θ = ArcCos[Cos[x, y]].
The formula for the cosine is scale invariant, as the angle does not change for positive
scalars λ and µ, with Cos[x, y] = Cos[λx, µ y].

1.2 Votes and seats

Let v be a vector of votes for parties and s a vector of their seats gained in the House
of Commons or the House of Representatives. We discard zeros in v and use a single
zero in s for the lumped category of “Other”, of the wasted vote, for parties that got
votes but no seats. Let V = 1′v be total turnout and S = 1′s the total number of
seats, and w = v/V and z = s/S the perunages. For presentation we will use 10 w
and 10 z and the range [0, 10] in general. For votes and seats, percentages [0, 100]
generate too much an illusion of precision, while [0, 1] generates too many leading
zeros. Distance measures on [0, 10] read as an inverted (Bart Simpson) report card
(with much appreciation for a low score). 3

In political science, the main current inequality / disproportionality (ID) measures
are, conventionally for percentages but now with 10: 4

2 For projection of y onto x, the projection matrix P = x x′/x′x, so that P y = x x′y/x′x = b x.
Normalising x and y onto the unit circle shows the relation to Cos. See below.

3 Ð (unicode 00D0, Mathematica Esc D- Esc, Word: ctrl ’ + Shift D) can be used as the formal
symbol of base 10. The official name of the letter is Capital Eth, but for Ð = 10 the pronunciation
“deka” is more appropriate. With universal constant H = -1 “eta”, then ÐH would be “decim”
= “per 10”. Thus 10% = 1 ÐH = 1 decim. We would state “5.4 per 10” as 5.4 decim, 5.4 / Ð
or 5.4 ÐH , or 0.54. On H = -1 see http://community.wolfram.com/groups/-/m/t/1313302.

4 We might leave out the factor 10 in these definitions, and use 10 only for presentation, but for
SDID the factor 10 is a key design feature, and thus the others are best at the same scale. Other
presentations introduced the scale via the inputs, like 10 w and 10 z, but it is better to keep w
and z unambiguously on the unit simplex and introduce the scale at the level of the measure.

http://community.wolfram.com/groups/-/m/t/1313302


An overview of the elementary statistics of correlation 5

• Absolute difference / Loosemore-Hanby (ALHID): 10 Sum[Abs[z - w] / 2]. The
division by 2 corrects for double counting. An outcome of 1 means that one
seat in a House of 10 seats is relocated from equality / proportionality.

• Euclid / Gallagher (EGID): 10
√
Sum [ (z − w)2/ 2] = 10 ||z − w||/

√
2, with

the first form for comparisons. For two parties this equals ALHID.

• χ2 / Webster / Sainte-Laguë (CWSID): 10 Sum[w (z/w−1)2] = 10 Sum[(z−
w)2/w]. The Chi-Square expression has nonzero w. One can compare CWSID
with ALHID = 10 Sum[w Abs[z/w - 1] / 2] and EGID = 10

√
Sum [w2(z/w − 1)2/ 2]

• The difference in shares for the “largest” party, i.e. with the most seats: 10
(zL - wL). This is an easy, rough and ready indicator with some history in
the literature, and Shugart and Taagepera (2017) p143 show remarkably that
EGID ≈ 10 (zL - wL).

The proposed new sine-diagonal inequality / disproportionality (SDID) measure has
the formula SDID[v, s] = sign 10

√
Sin[v, s]. The sine is invariant to scale: Sin[v, s]

= Sin[w, z]. With k = Cos[v, s] given by linear algebra, we might use θ = ArcCos[k]
and then find Sin[v, s] = Sin[θ] but we can also use Sin[θ] =

√
1− k2 directly.

The additional square root on Sin works as a magnifying glass for inequalities /
disproportionalities. The sign indicates majority switches, and is 1 for zero or positive
covariance and -1 for negative covariance. 5 ALHID and EGID have a division by
2 to remain in the [0, 10] range, while Sin achieves the same purpose without such
division. The newly derived relation in Section 4.8 explains this.
To clarify the distinction between the new proposal and the conventional mea-

sures in political science, Figure 1 gives ALHID (blue) and SDID (red), and the
intermediate steps given by the angle (yellow) and sine itself (green). 6

For two parties normalised to [0, 10] we plot with seats = {t, 10 - t}, with t the
seats for the first party. We also consider opposite values votes = {10 - t, t} = 10
- seats. Since this implies negative correlation, the SDID becomes negative, but the
plot gives the absolute value. To wit:

• The angular measure (AID) is 10 θ/90◦ (yellow). Since we look at nonnegative
vectors, the maximum angle is 90◦.

• The sine plotted is 10 Sin[θ] (green). For small angles Sin[θ] ≈ θ (slope 1)
especially in radians. There is a large difference between Sin[θ] and θ/90◦.

The key point of Figure 1 is that the SDID indeed works like a magnifying glass
to determine inequalities / disproportionalities in votes and seats. This relates to the
Weber-Fechner law on psychological sensitivity. 7

5 In speech, with the similarity of “sine” and “sign”: then use “sinus” and “signum”.
6 We will not discuss CWSID here: see Colignatus (2018a) and Colignatus (2018b).
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When a frog is put into a pan with water at room temperature and subsequently is
slowly boiled it will not jump out. When a frog is put into a pan with hot water it will
jump out immediately. People may notice big differences between vote shares and
seat shares, but they may be less sensitive to small differences, while these differences
actually can still be quite relevant for the decision to jump out. For this reason, the
SDID uses a sensitivity transform. Like with the Richter scale, it will now be easier to
relate the smaller values to the larger values. At the values t = 4.5 or 5.5, when the
absolute distance ALHID registers a 1 on a scale of 10, SDID generates a staggering
4.4 on a scale of 10, which outcome better relays the message that this difference is
alarming.

2 4 6 8 10

Share seats

first party,

2nd party opposite

Votes opposite

2

4

6

8

10

Abs, Angle, Sin, Sqrt[Sin]

Figure 1: Plot of d[votes, seats] for votes = 10 - seats and seats = {t, 10 - t}, for
d = Abs/2, AngularID, Sine, and |SDID| (eliminating the latter’s negative sign)

As another example: When votes {4.9, 5.1} are translated into seats then the
absolute difference (ALHID) and the Euclidean distance (EGID) regard outcomes
{4.8, 5.2} or {5.0, 5.0} as at the same distance, namely 0.1 seat difference (correcting
for double counting), while common sense and the sine would hold that the seats
{4.8, 5.2} are closer to the votes and less disruptive than the seats {5.0, 5.0} that
suggests that there is equality. The values are: 10 Sin[{4.9, 5.1}, {4.8, 5.2}] = 0.1998
< 0.19996 = 10 Sin[{4.9, 5.1}, {5.0, 5.0}]. 8 These values are so close together,
though, that also the magnifying glass SDID hardly sees a difference: 1.41351 <
1.41407. However, the latter values are still at the high level or 1.4 on a scale of 10,
rather than at the low value of 0.1 on a scale of 10 for ALHID. 9

7 Wikipedia is a portal and no source:
https://en.wikipedia.org/wiki/Weber%E2%80%93Fechner_law

8 We didn’t divide the sine by 2 to correct for double counting. If we would do so then 0.1998 / 2
≈ 0.1 or the ALHID score. But then we would have to multiply by 20 instead of 10 to get to the
[0, 10] range again. For small values Sin[w, z] = Sin[θ] ≈ θ ≈ ‖z/‖z‖ − w/‖w‖‖. For the unit
simplex we might consider ‖z − w‖/

√
‖z‖ ‖w‖ using the geometric mean.

9 In terms of the common percentages we can compare with the case of {49, 51}, where 1 seat in
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Table 1 contains the real world example of the US House of Representatives of
2016 (435 seats) and the UK House of Commons 2017 (650 seats). SDID properly
conveys the insight that there is shocking inequality / disproportionality.

Table 1: Votes and seats in the USA 2016 and UK 2017 10

USA, House, 2016, S = 435 UK, House, 2017, S = 650
Party Votes Seats Party Votes Seats
Republicans 4.91 5.54 Conservatives 4.22 4.88
Democrats 4.80 4.46 Labour 3.99 4.03
Other 0.29 0 Other 1.79 1.09

100% 10 10 100% 10 10
10 (zL - wL) 0.63 10 (zL - wL) 0.66
ALHID 0.63 ALHID 0.70
AID 0.67 AID 0.92
SDID 3.2 SDID 3.8

1.3 Structure of the paper

The square root within SDID is psychologically important and only a presentation
feature of descriptive statistics. This present discussion collects the key steps in
Colignatus (2018b) for the content of statistics and targets at an overview. Part of
the present text has already been used on my weblog Colignatus (2017c).

The next section provides notation and basics. The subsequent section places our
topic within the perspective of the statistical triad of experimental design, description
and decision. Subsequently we apply the cosine and sine for nonnegative data, and
state the relevant formulas. We close with a summary of the findings.
The reader might peek at Table 2 for the different models, to see what this

discussion is about specifically. I have considered putting this table up front, but it
is better to rekindle awareness about the basics before delving into the models.
PM 1. See Colignatus (2007) for the approach with determinants rather than

angles - as area and volume might generalise easier to more dimensions than the angle,
that remains stuck to the 2D plane created by the two vectors. PM 2. There is the
notion of “distance correlation” 11 but the Pearson correlation remains relevant here
precisely because of the linearity contained in the notion of equality / proportionality.
PM 3. There is “least angle regression” but this is different. 12 We remain in the
realm of “simple regression”. 13

a House of 100 is relocated. The ALHID recovers the 1% but SDID magnifies to a score of 14
on a scale of 100. This 1% of the US House is 4.35 seats, and of the UK House 6.5 seats, or,
with double effect 8.7 and 13 seats. This 1% might make quite a difference. The value of 1.4 on
a scale of 10 would seem to be acceptable as the indication that something is wrong.

10 The interpretation of this table requires Section 5.3.
11 Wikipedia is a portal and no scource. https://en.wikipedia.org/wiki/Distance_correlation
12 https://en.wikipedia.org/wiki/Least-angle_regression
13 https://en.wikipedia.org/wiki/Simple_linear_regression
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2 Notation and basics

2.1 Well-known basics

We underline variables for the centered value x = x - x̄. The angle θ is between the
centered values x and y. The Pearson correlation coefficient is r[x, y] = Cos[x - x̄,
y - ȳ] = Cos[x, y] = Cos[θ], so that θ = ArcCos[r[x, y]]. The covariance of x and y
is the improduct of the centered values, divided by the number of observations n, or
cov[x, y] = x′y/n. Using covariance, the correlation coefficient r[x, y] = cov[x, y] /√
cov[y, y] cov[x, x]. See e.g. Egghe and Leydesdorff (2009) for a visualisation of the

shift towards centered data, and Theil (1971) p165 for a discussion of the geometric
meaning that r = Cos[θ].
Along (1) θ and (2) θ, we also consider the linear cases of (3) the “regression

through the origin” (RTO) for y given x, without a constant, and (4) the “regression”
in general, with a standard constant, hence for y given x. For linearity, the standard
case with a constant may also be formulated in terms of y and x, but some formulas
then require the mention of the means. The symbol ŷ denotes the estimate of y, but
e and ê denote merely different kinds of error.

For (4) with centered y = X b + ê for matrix X, then y′y = b′X ′Xb+ ê′ê using
X ′ê = 0. This is commonly expressed as SST = SSX + SSE. In this, y′y = SST =
sum of squares total, ê′ê = SSE = sum of squared errors, and SSX = sum of squares
of the explanation = SST - SSE. 14

The coefficient of determination is R2 = SSX / SST. Thus 1 − R2 = SSE/
SST. For the calculation of SST and SSE we must use centered data, though the
regression itself might also be formulated as y = Xb + ê with a column of 1 in
X for the constant. With n observations and m explanatory variables in X, the
root mean squared error (RMSE) adjusted for the degrees of freedom is RMSE =√
SSE/(n−m). Colignatus (2006) discusses the sample distribution of (adjusted)

R-squared. When the (explanatory) variables are given without measurement errors
then there is not a “population” but a “space”, and the relevant parameter for R is
best denoted as ρ[X] to express the conditionality on the data.

While the coefficient of determination R2 in this setup seemingly has an inde-
pendent definition as SSX / SST, it appears that it is actually the square of the
correlation r between y and its estimate ŷ. It might be possible to present this iden-
tity as a great insight and wonder, but it is better to infer that such independence
of definition actually wasn’t possible. It is better to start with r[y, ŷ] and then show
that steps in its calculation can be abbreviated as SST, SSX and SSE. The R2 for two
vectors thus is the squared cosine of the angle θ between the centered values. The
root mean squared error (RMSE) then relates to Sin[θ] =

√
1−R2 =

√
SSE/SST,

namely as RMSE = Sin[θ]
√
SST/(n−m).

The angle itself is a measure of distance. The angle divided by 360◦ gives a measure

14 Often the abbreviation SSR is used, SSR = sum of squares of the regression, but then confusingly
with SSR = sum of squares of residuals = SSE = sum of squared errors. The use of SSX has X,
of both “explanation” and the variable x in y = b x+ e.
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in [0, 1]. See Colignatus (2015a) - and below - for a suggestion to measure angles
on [0, 1] anyway, using the plane itself as the unit of account, and to speak about
turns. When it doesn’t matter whether the angle is positive or negative, then 180◦
would be a relevant maximum. For nonnegative data the relevant maximum is 90◦.
Subsequently 1 minus such value is an angular measure of association.
The cosine is a measure of association too. Some have suggested to take 1 - Cos as

a distance, calling it “cosine distance”, but this actually is not a metric, see Dongen
and Enright (2012). The latter authors clarify that the sine and its root are a metric.
Using Sin[θ] =

√
1−R2 as a measure of distance might be dubious. The square root

causes a management of the signs, and when the angle is larger than 90◦, then the
same values of the sine can only be distinguished by looking at the sign of the cosine
again. It might well be that this present discussion remains relevant for nonnegative
vectors only.

2.2 Regression through the origin (RTO), for nonnegative vectors

At stake now is the use of θ of the original and non-centered vectors, which leads us
to regression through the origin (RTO). Also, we consider nonnegative vectors. In
this case, the angle between the vectors is between 0 and 90◦.
With k = Cos[θ] = Cos[x, y], and faced with a choice of a distance measure, there

is no fundamental difference between using θ = ArcCos[k] or Sin[θ] =
√

1− k2. The
advantage of using the sine instead of the angle is that we have some interpretations
in terms of regression because of the cosine. Also, θ/90◦ has a lower slope than the
sine at small values of the angle, whence the sine is more sensitive, which fits our
purposes. While we can add lengths and angles, we cannot add values of the sine
though.
There are slopes b and p from the regressions through the origin (RTO) z = bw

+ e and w= pz + ε. Then k = Cos[v, s] = Cos[w, z] =
√
b p. The geometric

mean slope is a symmetric measure of similarity of the two vectors. Also Sin[v, s] =
Sin[w, z] = Sin[θ] =

√
1− b p is a metric and a measure of distance or inequality or

disproportionality in general.
All this is straightforward but there are some reasons to call attention to it.

• Political scientists have been looking for a sound inequality / disproportionality
measure without finding one, i.e. not finding the sine. They have been setting
for the less adequate Euclidean distance EGID discussed (not proposed) by Gal-
lagher (1991), though with an awareness that it wasn’t perfect, see Taagepera
and Grofman (2003), Karpov (2008) and Koppel and Diskin (2009). Colignatus
(2018b) provides an overall evaluation.

• The use of angle, cosine and sine gives a perspective on compositional data
(i.e. nonnegative values on the unit simplex), see Barceló-Vidal and Martín-
Fernández (2016). This is discussed in Colignatus (2018a). Votes and seats
are somewhat special data however. Seats don’t fall from the sky and tend
to be apportioned given the votes and the available seats in the House, as
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ŝ = Ap[S, v]. This means that the influence of S cannot be neglected as
perhaps may be done in “pure” compositional data.

• Compositional data generally would use a log transform (with the geometric av-
erage as the mean) and drop one equation because of the addition condition.
For the present paper, however, we don’t employ statistical decision theory,
with regression as one of its applications, but we employ statistical description
(without distinction between true coefficient b and its estimate). For determi-
nation of the angle between the vectors all elements are relevant, though still
with the scalar invariance. Seeming “compositional data” like votes and seats
contribute to our understanding of RTO that we consider two errors, not only
z = b w + e (used by SDID) but also z = w + ẽ (used by ALHID, EGID and
relatively by CWSID).

The inoptimal situation of discussion in these different though related areas might
have to do something with that, remarkably, the angular distance and the sine tend
not to be in the textbooks. 15 Currently, errors are related to the normal distribution.
From there, the Euclidean distance, ||y−ŷ|| = ||ê|| =

√
SSE, is a measure of variation

and estimator for true variation, whence regression is explained, and proceeds by
minimising SSE to find the normal equations and solve for coefficients. Instead it
might make more sense to explain that the angle can be used as a distance measure,
and minimizing the angle means maximising the association expressed by Cos[y, ŷ].
For regression with a constant this uses Cos[y, c+ b x].
However, a binary regression in RTO has y = bx+e and ŷ = bx, so that Cos[y, ŷ]

= Cos[y, x] because of scale invariance, so that the angle is fixed. We still require
another criterion than the angle between y and ŷ to find the parameter b.

• For RTO, SSE = e′e = (y − b x)′(y − b x) = y′y − 2b y′x+ b2x′x, and setting
the derivative for b to zero gives a minimum for the value b = y′x/x′x. PM.
On occasion b =

√
y′y/x′x Cos[x, y] may be useful.

• From y = bx+e we can take the improduct x′y = bx′x+x′e, and set x′e = 0,
so that b = y′x/x′x. This is shorter but requires geometry instead of calculus.

The latter approach projects y onto x and imposes perpendicularity between x and
e, which means x′e = 0, so that also Cos[x, e] = Cos[x, y− bx] = 0. The projection
of y on x is given by bx, with b = x′y/x′x, using projection matrix P = xx′/x′x and
P y = b x. At this value of b the length of e is smallest. Taking the shortest distance
is equivalent to minimising ||e|| but the geometry avoids the calculus. Figure 2,
taken from Colignatus (2011) p143, shows the geometry how Effect y is projected
onto Cause x, which determines the size of the Explanation b x, so that Effect y
follows from addition of perpendicular Cause b x and Error e. On the LHS, Cause
and Effect are normalised onto the unit circle, so that the coefficient is Cos or R at

15 My sample is’t much larger than Mood and Graybill (1963) and Johnston (1972).



An overview of the elementary statistics of correlation 11

63%. The RHS is not normalised with coefficient b = 0.546. (In this version of the
paper, the LHS has been clarified with the arcs at radius 1 and at radius 0.63.)
Thus there is a geometric approach that is at least as intuitive as the minimisa-

tion of SSE with reference to the normal distribution. The conceptual link between
perpendicular x and e and minimal SSE need not be intuitive however, and can only
be proven exactly (skipping axiomatic geometry) by looking at the normal equation.

Effect

Cause
Explained

Explanation

Error

Work

Consumption

Effect

Cause
Explained

Explanation

Error

Work

Consumption

Figure 2: Projection of Effect {4, 9} on Cause {11, 3}16

Both approaches generate the same solution, and there is only the difference in
presentation, either via the angles between the vectors or the Euclidean norm of the
error. Both relate to the assumption of i.i.d. normal errors, but the latter can also
be seen as step 2, when one agrees that it is more informative to start with the use
of the angle as step 1, rather than derive the angle as a corollary or be actually silent
on it.
My suggestion is that the world of statistics develops a greater awareness of the

angle and sine as distance metrics in relation to R-squared, at least for applications of
RTO for such nonnegative data. For textbooks in statistics, this particular combina-
tion might be regarded as a missing link. The geometry would contribute to a better
understanding by students of both regression and the distinction between descriptive
statistics (no distinction between b and an estimate) and statistical decision theory
(a true b and its estimate).
Shalizi (2015) p19 states that “I have never found a situation where it [R2] helped

at all.” – see also Ford (2015). This statement is somewhat curious where minimising
the sum of squared errors is equivalent to maximising R2, so that R2 is crucial.

16 The RHS: The projection of Effect y on Cause x generates the Explanation b x. Addition of b x
and perpendicular Error e (from Explanation to Effect) generates y again. The LHS: Cause and
Effect are on the unit circle (radius 1) and the smaller arrows from the origin are on the circle
with radius 0.63. Normalisation of y = b x + e gives y∗ = b∗x∗ + e∗, using e∗ = e/‖y‖, and
b∗ = b ‖x‖/‖y‖. Obviously b∗ = Cos[y, x]. Thus the Explanation b∗x∗ on the LHS gives the Cos,
in this example 63%. For the Explained part of the Effect we use y∗ ′y∗ = b∗x∗ ′x∗b∗ + e∗ ′e∗ or
1 = b∗2 + e∗ ′e∗. See Appendix B for online animations.
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Obviously one should be careful in interpreting the actual outcome of a R2 calculation,
e.g. in specification search.

2.3 A view from didactics

In education it happens far too often that a textbook starts a new section with “Now
something completely different” while it appears that one essentially has the same
topic though only from another perspective. Consider for example {x, y}= x + i y
= r (Cos[ϕ] + i Sin[ϕ]) = Exp[r + i ϕ]. Or, in fact, that above shortest distance
can be found by both projection and calculus, creating the field of analytic geometry.
Obviously such perspectives exist and each perspective has something to say for it,
and obviously it is a result in itself when one can show the equality. But one also
feels rather exasperated, discovering that one only learns different languages for the
same.
The same holds for correlation. The “explanation” on correlation, that “correlation

between two vectors is the cosine of the angle between the centered data”, is only
required because the word “correlation” has been introduced without explicit refer-
ence to the basic angularity of the notion. Most students, who first are introduced
to “covariance” and correlation by a formula that uses covariance, will miss out on
the notion that correlation refers to an angle. Even when this is derived it tends to
remain a mystery because students have built up mental maps on “correlation” that
tend to be quite different from angles.
Perhaps it was a deliberate decision by Karl Pearson to keep trigonometry outside

of the realm of statistics, for fear that the subject might appear more dreadful than
needed. Instead, it would be better to make trigonometry more acceptable, see
Trig rerigged in Colignatus (2015a). Let α be the size of the turn, measured on
the angular circle with circumference 1. Consider the values of {X, Y } on the
unit radius circle, such that X2 + Y 2 = 1. The upper case variables X and Y , as
standard co-ordinates on the unit circle, have the same role as the lower case variables
x and y as the standard co-ordinates for the plane. We now define the functional
relationships: X = Xur[α] and Y = Yur[α]. For each angle α or size of the turn in
[0, 1] there are X = Xur and Y = Yur on the unit radius circle. This approach avoids
the mysterious names and uninformative labels “sine” and “cosine”, and avoids the
awkward calculation that 90◦ is a quarter of 360◦. Useful is also Θ = 2π, pronounced
as “archi” from Archimede, and written with capital theta. 17 Obviously Xur[α] =
Cos[α Θ] and Yur[α] = Sin[α Θ] in radians. The only reason to keep using sine
and cosine defined on the unit radius circle itself is that their derivatives in radians
translate into each other. Once students have learned trigonometry with Xur and
Yur while avoiding the current opacity, there would be easier acceptance of sine and
cosine for who can deal with calculus anyhow. 18

17 https://boycottholland.wordpress.com/2014/07/14/an-archi-gif-compliments-to-lucas-v-barbosa
18 Versions 1 & 2 of this paper did not put Xur and Yur in the title, since unknown terms would not

be understood. Given their key role they better be mentioned though. For a proper introduction
see Trig rerigged.

https://boycottholland.wordpress.com/2014/07/14/an-archi-gif-compliments-to-lucas-v-barbosa
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With Xur defined (derived) for vectors as Xur[α] = Xur[x, y] = (x/‖x‖)′(y/‖y‖),
and a new function for centered data as XurCD[x, y] = Xur[x - x̄, y - ȳ], then the
meaning of this XurCD should be clear. Once the meaning is clear, there is obviously
no objection to calling XurCD “correlation”, though.
It would be preferable to first set up the basic structure of correlation and regression

in this clean manner, before entering upon the error distribution, such that “mean”
is replaced by “expectation”, and with such use of covariance. Present textbooks
(curriculum) however shy away from re-engineering trigonometry, and work around
corners by introducing correlation as if it were something really new. In practice they
block the understanding by many.

3 Evolving statistics

3.1 The statistical triad of Design, Description and Decision

Statistics has the triad of Design, Description and Decision. Up to fairly recent,
statistics relied much upon the paradigm by R.A. Fisher that focused on population
and sample distributions. With the dictum “correlation is not causation”, statistics
assumed that causation was given by the scientific model, and then concentrated on
correlation for cases with clear causality. Since Pearl (2000) the issue of causality is
more in focus again, though this doesn’t change the triad.

• Design is especially relevant for the experimental sciences. Design is much
less applicable for observational sciences, like macro-economics and national
elections when the researcher cannot experiment with nations.

• Descriptive statistics has measures for the center of location - like mean or me-
dian - and measures of dispersion - like range or standard deviation. Important
are also the graphical methods like the histogram or the frequency polygon.
Measures like the Richter scale for earthquakes belong in this category too.
Description relates to decisions on content (e.g. in medicine or economics).
Description becomes more important because of Big Data.

• Statistical decision making involves the formulation of hypotheses and the use
of loss functions to choose alpha and beta values to evaluate hypotheses. A hy-
pothesis on the distribution of the population provides an indication for choos-
ing the sample size. A typical example is the decision error of the first kind,
i.e. that a hypothesis is true but still rejected. The probability of that error,
the alpha, is called the level of statistical significance. This notion of statistical
significance differs from causality and decisions on content. (See e.g. Varian
(2016).)

Historically, statisticians have been working on all three areas, but the most diffi-
cult was the formulation of decision methods, since this involved both the calculus
of reasoning and the more involved mathematics on normal, t, chi-square, and other
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frequency distributions. In practical work, the divide between the experimental and
the non-experimental (observational) sciences appeared insurmountable. The experi-
mental sciences have the advantages of design and decisions based upon samples, and
the observational sciences basically rely on descriptive statistics. When the observa-
tional sciences do regressions, there may be an ephemeral application of statistical
significance that invokes the Law of Large Numbers, that all error is approximated
by the normal distribution.
This statistical tradition is being challenged by Big Data including the ease of

computing - see also Wilcox (2017). When the relevant data are available, and when
you actually have the space or population data, then the idea of using a sample may
evaporate, and you would not need to develop hypotheses on those distributions any-
more. In that case descriptive statistics tends to become the most important aspect
of statistics. Decisions on content then are less compounded by statistical decision
making on statistical phenomena. It comes more into focus how descriptive statistics
relate to decisions on content. Such questions already existed for the observational
sciences like for macro-economics and national elections, in which the researcher only
had descriptive statistics, and lacked the opportunity to experiment and base deci-
sions upon samples. The disadvantaged areas may now provide insights for the earlier
advantaged areas of research.
The suggestion is: to transform the loss function into a descriptive statistic itself.

An example is the Richter scale for the magnitude of earthquakes. A measurement on
that scale is both a descriptive statistic and a factor in the loss function. A community
making a cost-benefit analysis has on the one hand the status quo with the current
risk on human lives and on the other hand the cost and benefit of investments in new
building and construction including the risk of losing the investments and a different
estimate on human lives. In the evaluation, the descriptive statistic helps to clarify
the content of the issue itself. For the amount of destruction it would not matter how
earthquakes are measured, but for human judgement it would, as the human mind
need not be sensitive to relevant differences. The key issue is no longer a decision
within statistical hypothesis testing, but the adequate description of the data and
the formulation of the decision problem in terms for better human understanding of
what is involved.

3.2 A possible reason why RTO is less prominent in the textbooks

Statistics and specifically textbooks apparently found relatively little use for original
(non-centered) data and RTO. A possible explanation is that statistical theorists fairly
soon regarded descriptive statistics as less challenging, and focused on statistical
decision making. Textbooks prefer the inclusion of a constant in the regression,
so that one can test whether it differs from zero with statistical significance. The
constant is essentially used as an indicator for possible errors in modeling. The use
of RTO or the imposition of a zero constant would block that kind of application.
This (traditional, academic) focus on statistical decision making apparently caused
the neglect of a relevant part of the analysis, that now comes into focus again.
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I am not familiar with the history of statistics - see Stigler (2008), Lehmann (2008)
and the Aldrich (2018) website 19 - and it is unknown to me what Pearson (1857-
1936), Gosset (1876-1937), Fisher (1890-1962) and other founding and early authors
wrote about the application of the cosine or sine, other than what transpires from
current textbooks. The choice to apply the cosine to centered data to create corre-
lation and R2 is deliberate. Pearson would have been aware that the cosine might
also be applied to original (non-centered) data, but he rejected this for his purposes
on variation. RTO is available in the mantra, though, and not obliterated. 20 This
history is interesting yet history is not my focus. Quite likely the theoretical challenge
was determined by the lack of Big Data. Thus we can understand that these founders
focused on statistical decision making and hypotheses on distributions rather than
on description.

3.3 Statistical significance

Part of the history is that R.A. Fisher with his attention for mathematics emphasized
precision for statistical purposes while W.S. Gosset with his attention to practical
application on content emphasized the effect size of the coefficients found by regres-
sion. Somehow, precision in terms of statistical significance became more important
in textbooks than content significance. Perhaps the simple cause is that statistical
manuals focus on what statistics can do, while they leave it to the fields of appli-
cation to focus on the effect sizes. When the fields of application ask for advice
on statistics, this is what they get, yet it may overly impress them, and they should
not forget about their own task on the effect sizes. In practice, empirical research
has rather followed Fisher than the practical relevance of Gosset. This history and
its meaning is discussed by Ziliak and McCloskey (2007), see also the discussion by
Gelman (2007), referring to Gelman and Stern (2006), and McShane, Gal, Gelman,
Robert and Tackett (2017).

3.4 Causality

Since the cosine is symmetric, the R2 is the same for regressing y given x, or x given
y. Shalizi (2015) p18 infers from the symmetry: “This in itself should be enough to
show that a high R2 says nothing about explaining one variable by another.”
This is too quick, with too much reliance on “in itself”. When theory shows that x

is a causal factor for y then it makes little sense to argue that y explains x conversely.
Thus, for research the percentage of explained variation can be informative. Obviously
it matters how one actually uses this information. For standardised variables y and
x (difference from mean, divided by standard deviation), 21 y = Rx, so that the
regression coefficient is the R, and then the R2 can also be understood with attention
for the effect size. For some applications a low R2 would still be relevant for the

19 http://www.economics.soton.ac.uk/staff/aldrich/kpreader.htm and more general
http://www.economics.soton.ac.uk/staff/aldrich/Figures.htm

20 https://en.wikipedia.org/wiki/Simple_linear_regression

http://www.economics.soton.ac.uk/staff/aldrich/kpreader.htm
http://www.economics.soton.ac.uk/staff/aldrich/Figures.htm
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particular field. Researchers do not tend to work with standardised variables, and
don’t have to when the R is available by itself.
For standardisation, let sx and sy be the standard deviations, and y∗ = y/sy and

x∗ = x/sx the standardised variables. Then y = bx+e gives y∗ = b(sx/sy)x∗+e/sy
or y∗ = rx∗+e, using r = b(sx/sy) and e = e/sy. We may also standardise ŷ = bx.
Its standard deviation is b sx, and thus ŷ∗ = ŷ/(b sx) = x∗. Thus we may also write
y∗ = r ŷ∗ + e. This could be non-informative on details for more variables, though.

3.5 Specification search

A R2 of say 70% means that 70% of the variance of y is explained by the variance
of ŷ. In itself such a report does not say much, for it is not clear whether 70% is a
little or a lot for the particular explanation. For evaluation we obviously also look at
the issue on content (and the regression coefficients). The use of R2 is primarily for
specification search.
One can always increase R2 by including other and even nonsensical variables.

For a proper use of R2 we would use the adjusted R2. Radj finds its use in model
specification searches - see Giles (2013). For an increase of Radj , coefficients of new
variables must have an absolute t-value larger than 1. A proper report would show how
Radj increases by the inclusion of particular variables. A researcher would compare
to studies by others on the same topic. Comparison on other topics obviously would
be rather meaningless. Shalizi (2015) also rejects Radj and suggests to work directly
with the mean squared error (MSE), also corrected for the degrees of freedom. Since
R2 is the squared cosine, then the MSE relates to the sine, and these are basically
different sides of the same coin, so that this discussion is much a-do about little. As
said, for standardised variables, the R2 also generates the regression coefficient, and
then it is relevant for the effect size.
Giles (2013) restates the “uselessnes” of R2: “My students are often horrified

when I tell them, truthfully, that one of the last pieces of information that I look at
when evaluating the results of an OLS regression, is the coefficient of determination
(R2), or its “adjusted” counterpart. Fortunately, it doesn’t take long to change their
perspective!” Such a statement should not be read as providing the full clarification
on cosine or sine in general, or as rejection of the relevance of the effect size also for
y = R ŷ + u.
R2 is not devoid of meaning. For a satisfactory regression it sets the level that

must be surpassed by the next satisfactory regression. Reporting on it is important
for future researchers, though they would have to use the same dataset. The sample
distributions should allow for statements on the probability of improvement.

21 http://andrewgelman.com/2009/07/11/when_to_standar/

http://andrewgelman.com/2009/07/11/when_to_standar/
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4 Application to votes and seats

4.1 Descriptive statistics and decisive apportionment

Vectors s and z = s/1′s have been created by human design upon v, and not by some
natural process as in common statistics. A statistical test on s | v would require to
assume that seats have been allocated with some probability, and this doesn’t seem
to be so fruitful when there was an underlying system of rules. We can use the same
linear algebra however, now for descriptive statistics.
The ID measures are used to compare outcomes of electoral systems across coun-

tries, though such comparisons have limited value when countries have different
designs. Taagepera and Grofman (2003) mention also some other reasons for an ID
measure: (i) comparison on President, Senate, House, or regional elections (what
they call “vote splitting” but is better called: votes for different purposes), (ii) com-
parison on years in similar settings (both votes and seats) (what they call “volatility”
but what is better called: votes on different occasions).
Above measures ALHID, EGID and CWSID have drawbacks and are inoptimal.

There appears to be some distance between the voting literature on inequality /
disproportionality and the statistics literature on association, correlation and concor-
dance. A main point is that voting uses ẽ= z - w (conventionally) and now we focus
on z = bw + e (for SDID) as descriptive, while statistical theory tends to think in
terms of hypotheses tests on general relationships like s = c + Bv + u and then
requires stochastics.

4.2 Different worlds for votes and seats: DR and EPR

A general distinction is between District Representation (DR) and Equal or Propor-
tional Representation (EPR). “Elections” in systems of EPR differ from those in DR,
and we should actually avoid the single term “election” for both cases when the
meanings are fundamentally different, see Colignatus (2018d).

• EPR recognises that elections for Parliament concern multiple seats, such that
there are conditions for overall optimality. For example Holland since 1917.

• DR has district elections that neglect conditions for overall optimality. For
example the USA and the UK. Each district may have a number of seats,
called the district magnitude M , and generally M � S. In single seat districts
(SSD), M = 1, the district vote for a Member of Parliament is treated as a
single seat election, say comparable to the vote for the US President.

EPR concerns proper election of representatives for Parliament, with the clear
purpose to scale the electorate down to the size of Parliament. DR can better be
diagnosed as a contest. In DR, votes for candidates other than the district winner(s)
are not translated into seats, and the system discards those votes. DR-elections have
much strategic voting for fear that the vote is lost. The true first preferences thus
are masked. Comparing votes and seats is comparing masked votes and actual seats,



18 Colignatus

with often unknown discarded votes. Only geography might cause a semblance of
balancing at the national level. Also the median voter theorem might cause that
voters concentrate around the middle, but this should not deceive us in thinking that
we could achieve a proper “comparison” of votes and seats in DR. Table 1 concerns
countries with DR, and the scores of the ID measures are on masked data, and we
may well have “garbage in, garbage out” (gigo). We will return to this issue on
content below, including the confusions that “a contest scales down too”, and that
“each election is also a contest”.

4.3 Apportionment in EPR

Only in EPR there is a deliberate apportionment of the seats given the votes, with
s = ŝ = Ap[S, v].

• In general the apportionment will not be perfect, since the distribution over
perhaps millions of votes must be approximated by perhaps a few hundred seats
(with integer values). The apportionment involves some political philosophies
that have been adopted by the national parliaments.

• There need not be a real distance between the voting literature and statistics,
at roots, because (i) the Chi-Square / Webster / Sainte-Laguë (CWSID) ap-
portionment philosophy obviously compares with the Chi square, and (ii) the
apportionment according to Hamilton / Largest Remainder (HLR) minimises
the absolute difference, or the Loosemore-Hanby index (ALHID), but also min-
imises the sum of squared differences, or the Euclidean distance (or the EGID
index). Perhaps this early historical linkage also caused the presumption that
voting theory already “had enough” of what was available or relevant in the
theory of statistics.

• Researchers on voting may have a tendency to remain with these philosophies
when they measure the outcomes from such apportionments too. Apportion-
ment (deciding) and measuring (describing) have different purposes and meth-
ods tough, even while there may be a family resemblance.

• When comparing results from different countries, however, it would make sense,
to use a common best measure, rather than reporting that each country applies
its own method.

There are more aspects, yet this present article does not focus on voting theory
but on giving an overview of statistics, that is also applicable for this setting. The
present discussion however highlights where comparing votes and seats differs from
other purposes in statistics: (i) First the requirement on the diagonal of the scatter
plot of w and z. (ii) Secondly, comparing votes and seats cannot rely on stochastic
assumptions for testing, and thus wants to describe & measure. We use the same
linear algebra but for a different purpose. The discussion helps to see that the choice
of an inequality / disproportionality measure apparently is not self-evident, at least
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with the current literature and textbooks so dispersed over the topics that come
together here.

4.4 Different models and errors

We do not want to explain s by v, in which case we would be very careful w.r.t.
the exclusion of the constant. Instead, we want to design a measure. This still uses
the same linear algebra. The relevant distinctions are (i) between true values versus
observations (with errors) or estimates, and (ii) between level variables versus unitised
variables.
Q = V/S is the natural quota, or number of votes to cover a seat. There may be a

threshold to get a seat, or just the natural quota. Voters may vote for parties that do
not pass the threshold and that thus get no seats. These votes sum to the “wasted
vote” W . Standardly the wasted vote and zero seats are collected in one category
“Other”, so that v and s still have the same length. The votes that cause a seat are
V e = V −W . For regression it is conventional to write s = T v, so that s is explained
by v. We call this vector-proportionality because of the lack of a constant. Any such
relation also holds for its sum totals, and we can usefully define T = S/V = 1/Q.
In reality we have s = B v + u or z = b w + e with proportionality parameter b and
error e. There is only unit proportionality or equality if z = w or b = 1 and e = 0.
Let a = S v/V = T v = v/Q = S w be the proportionally accurate average of seats
that a party might claim. A common error term is (s− a) = S (z − w). There will
be at least an error from the need of integer values for seats. The value a = Sw will
be the average, and apportionment of s will tend to be for Floor[a] ≤ s ≤ Ceiling[a].
The major distinctions are in Table 2.

Table 2: Basic models and their errors

T = S/V = 1/Q, B = b T Original Unitised

Without parameter 22 s = T v + ũ = S w + ũ = a+ ũ z = w + ẽ with ẽ = ũ/S

Regression through the origin s = B v + u z = b w + e

w = p z + ε

With constant (centered) s = c+B v + û z = γ + β w + ê

The analysis better uses regresssion through the origin (RTO) and not regression
with a constant (Pearson). The unit simplex is the natural environment to look at
this, though we should not forget about the role of S. There are three different error
measures:

22 This is not unreasonable for official data, when a law declares some ŝ = Ap[S, v] to be optimal.
Regression then could be seen as misstating the error, though b would still be a measure.
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• ê from the standard regression with a constant, using centered data (Pearson).

• e from RTO, with coefficient b = z′w/w′w. (SDID uses e.)

• ẽ = z - w or the plain difference, using b = 1. (ALHID and EGID use ẽ.)

Some useful mnemonics directly are:

1. ê′ê ≤ e′e ≤ ẽ ′ẽ because regression parameters allow the reduction of error.

2. e picks up a potential source for proportionality that ẽ does not allow for.

3. 1′ẽ = 0 and b = 1− 1′e because 1′z = 1′w = 1.

4. b = z′w/w′w because we multiply z = b w + e with w′ while w′e = 0. The
regression selects the b with perpendicular w and e, or with w′e = 0 and
minimal e′e.

5. Taking the plain differences ẽ = z − w and weighing them by the vote shares
and normalising on their squares, gives w′ẽ/w′w = b−1 (= −1′e from above).
This b = 1+w′ẽ/w′w might perhaps be seen as an “implicit outcome”, though
it only works of course since we already identified b from geometry.

For centered data, we had a simple direct relation between on the one hand the
Euclidean norm of the error, via SSE and RMSE, and on the other hand the sine√

1−R2 =
√
SSE/SST. We now wonder about RTO. Observe that the Euclidean

norm of the error is
√
SSE =

√
e′e = ‖e‖ while the Euclidean distance between the

vectors is
√
ẽ ′ẽ = ‖ẽ‖ = ‖z − w‖.

4.5 Disproportionality, dispersion and education

The notion of “proportionality” derives from the notion that the seats (tens) for
the parties should be proportional to the votes (millions) for the parties. A formal
statement is s = T v. When we shift attention to the shares w and z then we want
these proportions to be equal. We run a bit into a verbal complication when we want
to see that w and z would be proportional too.
For education we want to maintain that we want to explain to students that any

line through the origin in 2D represents a proportional relationship. For vectors and
their scatter plot we would speak about “vector-proportionality”. Thus, also for z
and w, a relation z = α w is a vector-proportional relationship, and z = w is only
unit or diagonal vector-proportional. It so happens that the unit simplex is defined
such that 1′z = α 1’ w, thus any pure proportional relation in that space requires
α = 1 of necessity. I would phrase this as that the space is defined such that those
other pure vector-proportions α 6= 1 do not exist. I would not phrase it as saying
that “z = αw for α 6= 1 would not be vector-proportional and that only α = 1 is
vector-proportional”. It is better to say: “We only have z = b w + e with vector-
proportionality parameter b and scattered e.” Thus, overall, it would be didactically
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preferable to speak about “unit or diagonal proportionality” for voting rather than
“proportionality”. Only when e = 0 then we also have equality. Equal Representation
is better anyway, whence we better abbreviate EPR instead of PR. It may be difficult
to change a convention, but it would help for mathematics education.
This calls attention to the relation with dispersion. Table 3 reviews the relations.

The key relationship in RTO is that b = 1 − 1′e. Thus b = 1 ↔ 1′e = 0. The
upper right cell is impossible: Not[e = 0 & 1′e 6= 0]. The lower right case of
disproportionality implies dispersion, but dispersion (e 6= 0) need not imply such
disproportionality. The middle column with b = 1 is in opposition to the right column,
but we must distinguish between unit or diagonal vector-proportionality (equality)
without dispersion and such average outcome with dispersion.

Table 3: Disproportionality and dispersion in Regression Trough the Origin (RTO)

RTO: b = 1− 1′e 1′e = 0 & b = 1 1′e 6= 0 & b 6= 1

No dispersion Unit or diagonal vector proportionality, Logically impossible
e = 0 Equality
Dispersion Average unit vector proportionality may have dispersion. Disproportionality
e 6= 0 E.g. w = {3, 3, 2}/8 and z = {2, 1, 1}/4 by slope and dispersion

With b = 1 then e = z − b w = z − w = ẽ. We already had 1′ẽ = 0 but b = 1
causes also 1′e = 0. When w′(z − w) = 0 then z − w = 0 is only a special case.

4.6 True variables v∗ and s∗ and particular observations v and s

A proportional relationship for 1D variables is best described by the 2D line λ y+µx =
0, which coefficients may be normalised on the unit circle. For nonzero λ this reduces
to y = T x with T = −µ/λ, where slope T also is the tangent of the angle of the line
with the (horizontal) x−axis. For vectors this generalises into vector-proportionality,
with now a plane u = λ y + µx and then choosing u = 0 so that y = T x again.
For example, y = {1, 2, 3} and x = {2, 4, 6}, then T = 1

2 , and we would see a line
without dispersion in the scatter plot.

• The notion of unit proportionality as in the line y = 1 x+ 0 is a mathematical
concept, while in statistics with dimensions we can rebase the variables, so that
there need not be a natural base for 1.

• For voting, there are natural bases in the individuals and seats. Larger parlia-
ments may have more scope for a better fit. Still, normalisation onto the unit
simplex makes sense.

• At first sight it is not clear where voting differs from other applications, say
the ratio of 1 car per 2 persons. Any vector-proportional relation s = Tv
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also holds for the totals. Thus S = 1′s = T 1′v = T V . In {w, z} space it
reduces to a scatter with diagonal z = w because division gives z = s/S =
T v/S = T v/(T V ) = w. When any vector-proportional relationship (also non-
unity) is transformed onto the unit simplex, then they become unit or diagonal
proportional in the scatter, and we lose the original information.

• There also is dispersion. Vector proportionality may only hold on average. For
the sake of understanding this issue of proportionality, but not for the sake of
estimation and hypothesis testing, we now distinguish true elements and their
observations. The basic solution namely is to distinguish on one hand the true
vector-proportionality s∗ = T ∗v∗ that holds for all true elements, and on the
other hand observations (e.g. errors in variables) s = B v + u, for which we
only have the definition for the sum totals as T = S/V . This also generates ũ
from s = T v + ũ. For example for some v∗, perhaps s∗ = a∗ = Sw∗.

• For the unit simplex we have z∗ = w∗ but for the data z = w b + e. We
divided by S and took b = B V/S = B/T and e = u/S. Thus we should not
focus only on parameters B and b but also be aware of the hidden Q = V/S
or T = 1/Q, and perhaps consider T as an estimate on T ∗.

4.7 Cos, slope and concentrated numbers of parties (CNP)

We have b = z′w/w′w =
√
z′z/w′w Cos[z, w]. The relation between Cos and b is

by means of w′w and z′z. They take the place of the covariances that are not used
in RTO, and they are also known as the Hirschman-Herfindahl concentration indices.
They are known in the voting literature by the inverse “effective number of parties”
NV = 1/w′w and NS = 1/z′z. Since it hasn’t been clarified what “effectiveness”
would be, a better term is “concentrated number of parties” (CNP).
For theory we have s∗ = T ∗v∗ for the vectors, but for the data we have s = Bv

+ u and thus only T = S/V for the totals. Thus there are not only parameters B
and b but also an “estimate” T on T ∗ (or perhaps institutionally given T = T ∗).
Table 4 reviews the relations. For readibility we drop the stars in the theory column
on the LHS.
Key points of RTO on the unit simplex are, using mostly the last column:

1. The sum of errors 1′u or 1′e need not be 0, but 1′ũ = 0 and 1′ẽ = 0.

2. It is a contribution to RTO by (seeming) compositional data that we now also
look at T = S/V and s = T v+ ũ, or z = w+ ẽ. Voting theory currently uses
this, but it might be inoptimal.

3. Useful to be aware of: b w′w = p z′z = w′z = b/NV = p/NS , while b/p =
NV /NS . The latter is the square of another geometric average of slope,

√
b/p.

4. The coefficient of determination R2 applied to non-centered data gives the
ratio of SSX / SST, with: SST = sum of squares total, SSX = sum of squares
of the explanation = SST - SSE.
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Table 4: Norm and outcome, in levels and unitised, regression through the origin
(RTO)

Norm or true situation 23 24 RTO in levels RTO on unit simplex
Theoretical s and v Observed s and v w = v/V and z = s/S

s = T v s = B v + u z = bw + e,e = u/S

1′s = T 1′v or T = S/V 1′s = S = B V + 1′u 1′z = 1 = b+ 1′e
T = S/V and s = T v + ũ z = w + ẽ with ẽ = ũ/S

s = S/V v, thus z = w RTO : 1′u need not be 0 RTO : 1′e need not be 0
B = S/V − 1′u/V b = 1− 1′e = B V/S = B/T

s′s = SST = SSX + SSE Compare B with T = S/V Compare b with 1
Cos = s′v/

√
v′v s′s = 1 Cos = s′v/

√
v′v s′s Cos = z′w/

√
w′w z′z

B = s′v/v′v = T Cos B = s′v/v′v =
√
s′s/v′v Cos b = z′w/w′w =

√
z′z/w′w Cos

R2 = T 2 v′v/s′s (SSX/SST) R2 = B2 v′v/s′s (SSX/SST) R2 = b2 w′w/z′z (SSX/ SST)
R = T

√
v′v/s′s = Cos R = B

√
v′v/s′s = Cos R = b

√
w′w/z′z = Cos

T = s′v/v′v (alike covar) 1−R2 = 1− Cos2 = u′u/s′s 1−R2 = 1− Cos2 = e′e/z′z

T = s′s/s′v (alike covar) Cos = 1↔ u = 0 Cos = 1↔ e = 0
T =

√
s′s/v′v (no covar) Sin2 = u′u/s′s = SSE/SST Sin2 = e′e/z′z = SSE/SST

5. For RTO, Cos takes the role of the coefficient of determination R2 in OLS
with a constant. We might simply use Cos2. However, it is clearest to write
R = Cos, that is, within the confines of RTO. When we compare RTO with
standard regression, then it we better distinguish the two again.

6. v′u = w′e = 0, following the outcomes for B and b (or they are chosen such).

7. The “analysis of squares” (no deviations and thus no “analysis of variance”)
on SST gives:
z′z = (bw′+e′)(bw+e) = b2w′w+2bw′e+e′e = b2w′w+e′e with w′e = 0.

Then:
1 = b2 w′w/z′z + e′e/z′z = R2 + e′e/z′z. We also have R = Cos.

8. Sin2= 1 - Cos2 = e′e / z′z = e′e / (b2 w′w + e′e).

9. There is a perfect fit e = 0 if and only if Cos = 1, when b = 1 and z = w.

10. Observe that b = 1 − 1′e = B V/S = B/T = B Q so that B has a relevant
dimensional factor.

23 This column drops the stars for readability.
24 Thus actually s∗ = T ∗ v∗, with perfection ũ∗ = 0. This column is not to be confused with

observations s = T v + ũ, see Table 2.
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11. With z = s/S and e = u/S, Sin2 = e′e/z′z = u′u/s′s, and thus it doesn’t
matter whether we regress on the levels or the unitised variables to find Cos
and Sin.

12. We may regard Cos = b
√
w′w/z′z = b

√
NS/NV as the explanation of Cos.

We may also see this as an explanation of the slope as b = Cos
√
NV /NS .

13. The footnote in the table is relevant unless you already saw the distinction
between the columns, or the distinction between theoretical s∗ and v∗ and
observed values s and v.

4.8 Analyses of squares for the direct error

Table 4 decomposes SST into SSX and SSE for the model z = b w + e, and we
deduce that Sin2 = e′e / z′z = SSE / SST. There is also the model z = w + ẽ.
The square of the Euclidean distance between the vectors is ẽ ′ẽ = (z −w)′(z −w).
We would be interested in a relation between this Euclidean distance and the sine for
variables in RTO.
This subsection derives: Sin2 = (ẽ ′ẽ / z′z - h) / (1 - h) for h = (1/b−1)2. While

my historical knowledge about this area is limited, my impression is that this could
well be a new finding.
Together: SSE / SST = Sin2 = e′e / z′z = (ẽ ′ẽ / z′z - h) / (1 - h).
The interpretation of the RHS is: The sine makes the Euclidean distance ẽ ′ẽ

relative to z′z and subtracts a value h, because the cosine uses the slope to see
proportionality that the Euclidean distance doesn’t pick up, and then rebases with
this h to remain in [0, 1].
The deduction is:
(1) A direct result from z = z is that e = ẽ + (1 - b) w or ẽ = e - (1 - b) w.
(2) The improduct of (1) with e gives e′e = ẽ ′e because w′e = 0.
(3) The improduct of (1) with ẽ gives ẽ ′e = ẽ ′ẽ+ (1− b) w′ẽ = e′e using (2).
(4) The improduct of (1) with w gives: e′w = ẽ ′w + (1 − b) w′w, and with

w′e = 0: ẽ ′w = −(1− b)w′w. Also b = 1+ ẽ ′w/w′w. We already had this “implicit
regression” above.
(5) Eliminating ẽ ′w from (3 & 4) gives ẽ ′ẽ = e′e + (1 − b)2 w′w. We already

had ê′ê ≤ e′e ≤ ẽ ′ẽ and see this confirmed by the sum of squares.
(6) From (5):
ẽ ′ẽ = e′e + (1− b)2 w′w
ẽ ′ẽ / z′z = e′e / z′z + (1− b)2 w′w /z′z
ẽ ′ẽ / z′z = Sin2 + (1− b)2 Cos2 / b2

ẽ ′ẽ / z′z = Sin2 + h (1 - Sin2)
using Cos2 = 1 - Sin2 and h = (1− b)2 / b2 = (1/b− 1)2

ẽ ′ẽ / z′z = h + (1 - h) Sin2

Sin2 = (ẽ ′ẽ/z′z − h)/(1− h)
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For voting theory this can be translated into a relation between EGID =
√
ẽ ′ẽ/2

and SDID. This derived relationship clarifies why Sin and SDID don’t have to divide by
2. Colignatus (2018b) contains plots and tables that clarify the different behaviours.

4.9 Symmetry

From symmetry, w = pz + ε generates the same insights. Cos and Sin are symmetric,
and thus we have Sin2 = ε′ε/w′w We can write down the result straight away, yet in
the repeat deduction, the negative sign in w = z − ẽ causes a distraction, and thus
it is better to repeat the steps by writing w = z + q so that q′q = ẽ ′ẽ. Then:

(1) From w = w or z + q = p z + ε we find ε = q + (1− p) z.
(2) With ε we have ε′ε = ε′q since z′ε = 0.
(3) With q we have q′ε = q′q + (1− p) q′z = ε′ε because of (2).
(4) With z we get z′ε = z′q + (1− p) z′z and with z′ε = 0: z′q = −(1− p) z′z.
(5) Eliminating z′q from (3 & 4) gives q′q = ε′ε+(1−p)2 z′z = ẽ ′ẽ from q = -ẽ.
(6) From (5) and also using p = z′w / z′z =

√
w′w/z′z Cos:

ẽ ′ẽ = ε′ε + (1− p)2 z′z
ẽ ′ẽ / w′w = ε′ε/w′w + (1− p)2 z′z/w′w
ẽ ′ẽ / w′w = Sin2 + (1− p)2 Cos2 / p2

ẽ ′ẽ / w′w = g + (1 - g) Sin2 with g = (1/p− 1)2

Sin2 = (ẽ ′ẽ / w′w - g) / (1 - g)
We already knew that both SDID and EGID are symmetric measures. That SDID

picks up disproportionality from an imputed slope b does not imply asymmetry (be-
cause of the asymmetry in the regression z = b w + e). The same sensitivity can
also be formulated from the inverted regression.
The latter form can be rewritten using w∗ = w/‖w‖. Then the relative sum of

squared differences can also be seen as another weighted sum of relative differences:
ẽ ′ẽ / w′w = Sum[(z − w)2 / w′w] = Sum[w∗2 (z/w − 1)2]

5 More on interpretation

5.1 Statistics and heuristics on the slope

This paper uses descriptive statistics, and we are not in hypothesis testing. The
linear algebra in this paper should not be confused with statistical decision methods.
The latter methods use the same linear algebra but also involve assumptions on
distributions: and we will make no such assumptions. However, when the linear
algebra results into a new measure, then this measure can be used for new statistics
again.
A heuristic is this: the voting literature has the Chi-Square / Webster / Sainte-

Laguë (CWSID) measure 10 Sum[w (z/w− 1)2], as the weighed sum of the squared
deviations of the ratios from the ideal of unity provided by the diagonal. CWSID is
not symmetric. If we would try to make CWSID symmetric then this causes division
by zero, since some parties meet with zero seats (the “wasted vote”). An insight



26 Colignatus

is: the idea to compare each ratio to unity is overdone, because the criterion of
proportionality rather applies to the whole situation, and we should not be distracted
by single cases. If b is the slope of the regression of z = b w + e, and the target
is b = 1, then (1 − b)2 is a measure on the regression coefficient. This shifts the
focus from individual parties to the relation between z and w. Thus we now consider
the slope-diagonal deviation. This gives scope for symmetry by also looking at the
regression w = p z + ε, so that we can compare b and 1/p.

The latter was the heuristic that started the Colignatus (2018b) paper. Taking the
geometric average

√
b p gave the recognition that this gave the same mathematical

expression of the cosine as well, or Cos[v, s] =
√
b p. At some point it appeared

that the role of the cosine was more important by itself, and thus not regarded as
a slope, as it generates the inequality / disproportionality measure Sin =

√
1− b p.

This again was first seen as a slope-diagonal deviation measure but eventually the
name sine-diagonal is more accurate. This double nature of cosine and sine may be
illustrated by Rubin’s Vase, see Figure 3.

Figure 3: Rubin’s Vase 25

Alongside CWSID other common measures are the absolute difference / Loosemore-
Hanby index (ALHID) and Euclid / Gallagher index (EGID). CWSID, ALHID and
EGID are parameter-free, and clearly fall under descriptive statistics. My original
view was that SDID is parameter-dependent, since it refers to b and p. Paradoxially,
however, while we started out looking for a slope measure, Cos is actually parameter-
free, since its value as a similarity measure can be found without thinking about
slopes at all. It is just a matter of perspective, see Figure 3. Thus the bonus of
above heuristic is only that it helps to better understand what the measure does.
The awareness of this double nature is important for the comparison of ALHID and
SDID. For ALHID one might argue that it takes error z - w = ẽ in Table 2 under
the assumption that official regulations have chosen s = ŝ = Ap[S, v] with some op-
timality. Thus, the use of z = b w + e can be seen as changing the error. However,
when Cos is regarded as a parameter-free measure of similarity, then no errors have
been changed. Thus we can compare ALHID and SDID with this argument out of
the way. Interpreting Cos as the outcome of RTO is only a bonus, that helps in the
development of more perspectives. The useful perspective is that SDID may pick up

25 https://en.wikipedia.org/wiki/Rubin_vase
https://commons.wikimedia.org/wiki/File:Rubin2.jpg
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more inequality / disproportionality than ALHID in the official s = ŝ = Ap[S, v] for
example by an implied b that systematically differs from 1. And the cosine is a slope
again in the equation with the standardised variables.

5.2 Electoral justice and inequality

Balinski and Young (1976) p2 quote Daniel Webster:

To apportion is to distribute by right measure, to set off in just parts, to
assign in due and proper proportion.

Webster’s emphasis was on “due and proper” and not on “proportion”, but the
world adopted “proportionality”. Arend Lijphart has written about proportionality as
“electoral justice”. I have considered adopting the term “justice” too but settle for
the notion that z = w means equal proportions, or equality. A 2D line y = 1

2 x is
proportional too. Thus, rather than speaking about “proportionality” in comparing
votes and seats, it is better to speak about unit or diagonal vector-proportionality and
electoral equality. Similarly, while the standard expression is “Proportional represen-
tation” (PR) it would be better to speak about Equal or Proportional Representation
(EPR) or even Equal Proportional Representation (EPR). I don’t think that there is
much chance that the world will rephrase this for the sake of education, but at least
it is important to explain the vocabulary as a possible source for confusion. 26

5.3 From the Humanities to Science

The issue of votes and seats contains an awkward element. The issue merges a
topic of content with methods of statistics. It appears that political science can use
an infusion from statistical ethics as well. For description we know that displaying
squares by their heights is misleading, since comparing 5 and 10 is quite else than
comparing 25 and 100. This principle also causes the need to magnify what might
be overlooked though. Indeed SDID takes the square root of the sine again, similar
to the logarithm of the Richter scale. The underlying issue however is much more
involved.
The discussion in this section concerns the role of scientists as guardians of the

quality of information. It is a normative issue whether EPR or DR is the “better”
system. This is not at issue here. There is also a Baron von Münchhausen problem
how voters are going to decide which system to adopt. We leave such issues aside,
and concentrate on the quality of information. When (political) scientists provide
statistics and research findings on votes and seats then the information should satisfy
standards of science, and not play into confusions from common language. When
the general public asks questions to scientists and when scientists provide answers,

26 France has the slogan “Liberté, Egalité, Fraternité ”. It is important to explain to the French that
their system isn’t equal. Using the word “disproportional” wouldn’t ring the bell.
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then the scientists should point out confusions in these questions, and clarify how
answers from science can help avoid such confusions.
Colignatus (2018d) evaluates the “political science of electoral systems” and con-

cludes that this branch of study still remains in the Humanities, without the methods
of clear definitions, modeling and measuring as is required for proper Science. A tell-
tale is the use of the word “election”, while EPR-elections (proper elections) are quite
different from DR-elections (actually contests). The invitation to empirical scientists
is to help re-engineer the “political science of electoral systems” to become a real
science.
Remarkably, Shugart and Taagepera (2017), political scientists themselves, in a

recommendable book that indeed is a major advance, tend to agree that “political
science of electoral systems” in general isn’t a science yet indeed, and they present
their own book as a rare exception: “Thus the book is a rare scientific book about
politics, and should set a methodological standard for all social sciences.” (p320)
They point to the trap of testing for statistical significance and the direction of the
coefficient, while neglecting the effect size that would be relevant on content. “This
can produce valuable insights, but these so-called “empirical models” are not really
models at all. (...) Every peasant in Galileo’s time knew the direction in which things
fall - but Galileo felt the need to predict more than direction.” (p324).
Unfortunately, while S&T mention different properties of DR and EPR and are

aware, so to say, that “not all votes and seats are created equal” (an expression by
Taagepera), they apparently are blind to the key distinction between elections and
contests, and thus in this key respect they are widely off-track. 27 They employ the
words “vote” and “seat” as if these would be sufficiently equal, while this is only
superficially so. While we would expect that political scientists would understand
what they are studying, apparently they don’t. And apparently it is necessary to
belabour the point.
Section 4.2mentioned two possible confusions. The first is that contests also scale

down from the electorate to Parliament. However, the very purpose and manner of
scaling down are relevant. The second confusion is that all elections are contests in
some respect. However, in EPR this “contest” would be on getting a larger share of
the vote and hence a larger share of the seats, which quite differs from the contest
of winning the largest share and then “winner takes all”. It is better not to change
the meaning of the term “contest”, when it is used as a metaphor in comparing EPR
and DR.
Let us focus on what “vote” and “seat” are about, and thus on what the term

“representative” for Parliament might mean. A common dictionary 28 emphasizes
the legal meaning of “representative”: “2 a : standing or acting for another espe-
cially through delegated authority, b : of, based on, or constituting a government
in which the many are represented by persons chosen from among them usually by

27 When the article Colignatus (2018d) was updated, I had seen only a few pages of this new book
by S&T. I have now studied it as required, with a curious mixture of great pleasure (science) and
great worry (no science).



An overview of the elementary statistics of correlation 29

election”. The dictionary apparently assumes that DR-elections and EPR-elections
are all “elections” in a legal sense. Since direct democracy might only be feasible in
town halls, we need representative democracy indeed, but the dictionary focuses on
the legal setting and hides the key distinction between DR and EPR. As opposed to
this common dictionary and legalistic thinking, in science we need strict definitions
that fit the observations. We might make the assumption that the Moon is made of
green cheese, but obviously we don’t. In a single seat case like for the President, one
might argue that the President would represent the whole nation, but the House of
Representatives has multiple seats, and this changes the logic of the case. Thus we
get the distinction:

• In EPR, “representation” for Parliament means “standing for the people who
have voted for you, by marking your name or party”. In EPR, a candidate gets
a seat when the natural quota Q = V/S, the national average votes per seat,
is covered, while this criterion is only lowered for the remainder seats. Thus
there tends to be full backing by those like-minded.

• In DR, there is (a) the confusion in SSD between the single seat election and the
multiple seats election, or (b) the confusion also in larger district magnitudes
(1 < M � S) between a proper election and a contest. The de iure House
of Representatives is de facto a House of District Winners, and de facto not
a House of Representatives in the sense of EPR. DR “assumes” (doesn’t think
through) the green cheese Moon that the winner of a district seat “represents”
all conflicting interests of both who voted for him or her and who explicitly
didn’t. 29

The distinction between EPR and DR thus is diagnosed as the distinction between
proper election for rescaling (Holland since 1917) and improper election by having
a contest (USA, UK). DR systems can only be understood from history as proto-
democracy with its confusions. Researchers who do not call attention to this, focus
on legal notions and words in a dictionary, like might be common in the Humanities,
rather than on what actually happens in empirical reality.
Let us reconsider Table 1, with outcomes of such DR-elections. The USA and

UK use both single seat districts (SSD) and the criterion of Plurality per district,
meaning that the district seat is given to the candidate with the most votes - also
called “first past the post” (FPTP). The values in the table do not indicate: (1) that
the votes are masked and do not give the first preferences, so that we rather don’t
know what voters would really prefer, (2) that the votes for candidates other than
the district winners are discarded. The latter would show by comparing the votes per
winning candidate to the natural quota Q, which would highlight that the winning

28 https://www.merriam-webster.com/dictionary/representative (2018-02-18)
29 The empirical observation is that it takes complicated bargaining to find workable compromises

for such conflicting interests, and we should not assume that a district winner would be able to
do so all by himself or herself, even by invoking magic.
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candidates tend to be far below this quota. Figure 4 plots the UK “elections” of
2010, reproduced from Colignatus (2015b) p10 (originally from 2010 with a small
update). Only the plotted points are translated into seats and the other votes are
discarded (more than half the electorate). 30

Figure 4: MPs of UK 2010: Winning % (District share) per votes won per seat

The 2010 quota was 45.6 thousand votes per seat. With 650 districts and seats,
a MP would tend to need 100% of the district to get the quota. None of the MPs
gained the electoral quota of 45.6 thousand, and more than half do worse than 50%
of the quota, and 66% is even below 50% of their own district. Such information
is not provided by the UK Electoral Commission (2017c), UK Electoral Commission
(2017b), and UK Electoral Commission (2017a), even though they claim to do an
“analysis”. 31 We can diagnose a situation of incomplete information to the general
public, and actual disinformation, biased towards proto-democratic DR and against
proper democratic EPR.
Basically the majority of the USA still miss out on “No taxation without repre-

sentation”. A legal approach, like in current “political science on electoral systems”,
when applied to the Boston Tea Party of 1773, would adopt the green cheese Moon
of the legality of the 1773 UK Parliament and the Royal Govenour Thomas Hutchison

30 It is important to relate the seats to the votes that supported them. Q = V/S divides the sum of
all votes (both going into seats and those discarded) by the number of seats. This is an acceptable
measure in EPR that doesn’t discard (only waste), but it is a misleading statistic in DR.

31 Website and texts: “The Electoral Commission is the independent body which oversees elections
and regulates political finance in the UK. We work to promote public confidence in the democratic
process and ensure its integrity.” and “We carry out policy work across a range of areas. We want
to ensure that the rules around all aspects of elections are as clear and simple as possible and
that the interests of voters are always put first.” Yet the Electoral Commission silently accepts
that most votes are discarded and not translated into seats. Most problematic is that they do not
provide the statistics that show this discarding of most votes.
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as “representing” the American people, so that this Tea Party was criminal indeed.
Let us indicate what modern day affairs in terms of the EPR notion of representa-

tion really mean for the USA in 2018. In a schematic setup, assume that Republicans
and Democrats have the majority in the House each 50% of the time. Assume {Rep,
Dem, Other} vote shares {4.6, 4.4, 1} for half of the districts, thus with Rep winners.
Assume vote shares {4.4, 4.6, 1} for the other half of the districts, thus with Dem
winners. Let minor fluctuations (say 0.25 on Other) cause the majority switches.
Then in the first half of districts only 4.6 out of 10 are represented all of the time
and 5.4 never since their votes are discarded. In the second half the same. Thus
overall only 4.6 gets represented and 5.4 never. If we make this more random then
a voter would be represented 46% of his or her life and 54% not. We have a US
House of District Winners and not a House of Representatives. The switches of a
majority around the 5-5 middle in the House are a product of the system, that al-
lows that “representatives” get less than the natural quota, and that hides what is
really happening on masking and discarding. Also, these majority switches should
not deceive us, because we are looking at representation in the House and not at the
participation of parties in the majority coalition. One might argue that a Republican
voter who loses out in his or her district then is “represented” by a Republican winner
in another district, but if this would be the true meaning of “representation”, then
even more is wrong with the dictionary, and even lawyers might protest.
Shugart and Taagepera (2017) use the term “wasted vote” but they do not clarify

to their readers that this term has quite different meanings in DR and EPR. In EPR
small parties may simply be too tiny, whence those votes go lost. In Holland this is
0.2 out of 10. DR however has systematic discarding of the votes for other candidates
than the district winners. Above schematic example has 5.4 of 10, not far from reality
in Figure 4.

S&T ingeniously and remarkably succeed in modeling key statistical variables on
votes and seats, notably by using the assembly size S (US 435, UK 650) and the
district magnitude M (in SSD M = 1), and by deriving constraints that drive the
outcomes. They suggest that these findings could be used for better electoral design.
However, they overlook (1) that M is only relevant for DR, since EPR has M =
S, and (2) that the scientifically correct advice is, when voters really want to have
elections as they say (though they might be confused on this, and rather see such
contests), to switch from DR to EPR, since DR can only be understood from history
and confusion about single seat and multiple seats elections, and perhaps a tradition
that an election is a contest indeed. The shocking but accurate analogy is that S&T
are skilled surgeons, but they are still blind to bacteria and do not wash their hands.
The problem, like with the UK Electoral Commission that emphasizes integrity, isn’t
quite with integrity but with hygiene, and the willingness to see what you are looking
at. Fish might not know the water they are swimming in, but here we are speaking
about basic notions of empirical science. It would however become an issue of research
integrity when researchers in political science are alerted to the bias and would not
correct it.
Political scientists might live with the criticism that they don’t know what they
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are studying, holding the position that they do research precisely because they don’t
understand everything yet, but this cannot be a ground for neglecting the infor-
mation that there is a distinction between a proper election and a contest that is
mistaken for an election, and neglecting the requirement of scientific standards that
we should provide correct information to the general public that appears to entertain
such confusions in common language and apparently also legal terms.
Political scientists reading the above might think that the argument does no justice

to the wealth of reasoning in political science. As an important aspect, there as well
appears to exist an argument that DR would be more “accountable” than EPR.
However, Colignatus (2018d) shows that this argument is based upon faulty logic,
recently “supported” by invalid regression analysis.
Articles have different objectives and scopes. This present article is targetted at an

overview of statistics, and the present objective is not an evaluation of this particular
subfield in political science. We cannot evade the conclusion though that there is
a fundamental problem with it. For this present article on statistics, it has been
shown adequately that this subfield in political science doesn’t satisfy elementary
requirements for science. Readers who want to check how large the problem is are
indeed referred to Colignatus (2018d).
Another empirical (and again non-normative) observation is that the legalistic and

essentially unscientific bend in the “political science on electoral systems” cannot
be but a key factor that keeps the USA and UK locked in proto-democracy since
1917, while Holland switched to EPR in 1917. Thus let me repeat that the scientific
world is advised to look into this area of “political science on electoral systems”, see
Colignatus (2018d). There might be a special role for the ethics in statistics, when
statisticians deal with statistics on votes and seats. Statisticians should be clear on
what the figures and charts mean, and should not deceive the public by playing into
common confusions and the use of words only.

5.4 The example of Brexit

I came to this subject because of the 2016 Brexit referendum and the reactions in
the UK. Oxford Chancellor (Chris) Patten (2017) expresses a similar amazement: “A
parliamentary democracy should never turn to such populist devices. Even so, May
could have reacted to the 52 per cent vote to quit Europe by saying that she would
hand the negotiations to a group of ministers who believed in this outcome and then
put the result of the talks in due course to parliament and the people. Instead, she
turned the whole of her government into a Brexit machine, even though she had
always wished to remain in the EU. (...) But, as with any divorce, we can be fairly
confident that it is the children who will suffer the most.” Eventually Colignatus
(2017a) concludes that these events can be explained by the UK system of DR. Also,
the UK Electoral Commission went along with a Brexit referendum question that is
binary only in a legal sense (Remain or Leave), while it does not satisfy the standards
for a statistical questionnaire, that would list the policy options of how to Remain
or Leave, see Colignatus (2017e). When the company YouGov.com made the proper



An overview of the elementary statistics of correlation 33

statistical questionnaire, it appeared that 17% (of those polled) put the option of
Remain between different options of Leave, see Colignatus (2017b). Basically it still
is unclear what the UK electorate would prefer. Colignatus (2017a) concludes that
the UK can only find this out when the UK switches from DR to EPR and has new
elections, so that a properly elected House of Commons can clarify the situation, and
perhaps find a compromise on their views. Perhaps this case might be an eye-opener
for other nations with DR. (And chancellor Patten is advised to look into the political
science department at his university.)

6 Conclusions
This overview generates various insights.
(1) Regression of y = b x+e likely is better introduced by the geometric approach

using angles, with projection of y on x, such that b x and e are perpendicular and x′e=
0. One would start with regression through the origin (RTO), and only subsequently
introduce the sum of squared errors and normal equations, the constant, the notion
of correlation (with centered values), the normal distribution for the error, and then
multiple regression.
(2) The comparison of votes and seats would be a key example for such an ap-

proach. This is descriptive statistics and uses the same linear algebra as regression but
without an assumption on a distribution of the errors. In this setting, the newly de-
fined sine-diagonal inequality / disproportionality (SDID) finds a quick understanding
as a measure of the distance between votes and seats.
(3) For descriptive statistics, there is an important role for psychology. We must

avoid deceiving presentations like portraying squares by their height only. This prin-
ciple also causes the need to magnify what might be overlooked, which may indeed
involve calling attention to the height of squares.
(4) Big Data might cause a shift of focus from statistical decision theory to more

attention for descriptive statistics. Elements within the loss functions for statistical
decision can be used to construct measures for statistical description. Examples are
the Richter scale for earthquakes and SDID for votes and seats.
(5) R2 has a key rol, first since it is a cosine, and secondly since minimising the

sum of squared errors is tantamount to maximising R2. The particular value of R2

would be informative for specification search. The sum of squared errors can also be
related to the sine, and for votes and seats in RTO to the SDID.
(6) For (seeming) compositional data z and w such that 1′z = 1 and 1′w = 1

there is the contribution to regression analysis that z = bw+ e is supplemented with
a meaningful ẽ = z − w. This would not hold for all compositional data, of course,
and focus on the Euclidean distance might be inoptimal for votes and seats.
(7) For the latter there is the newly derived relation SSE / SST = Sin2 =

e′e/z′z = (ẽ ′ẽ/z′z−h)/(1−h), with h = (1/b−1)2. This helps to understand that
SDID picks up disproportionality caused by an implied slope that the Euclidean norm
‖ẽ‖ doesn’t see. It also explains that the sine and SDID do not have to divide by 2
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while ALHID and EGID must do so to remain on [0, 1].
(8) For the latter case we also have w = p z + ε and Cos[w, z] =

√
b p and

Sin[w, z] =
√

1− b p. The parameter-free measure of similarity is also a geometric
average of slope. This dual face appears to be an advantage, allowing us to switch
between these perspectives.

(9) Trig rerigged appears to be relevant for statistics too. We should rather state
Xur[w, z] =

√
b p and Yur[w, z] =

√
1− b p.

(10) This discussion only looked at nonnegative data. It might well be that
the angle or turn, in [0, 1] on the circle with circumference 1, is the best overall
measure instead of correlation, since the turn covers the whole plane and avoids the
administration of the sign.
(11) The new measure SDID provides a better description of the inequality /

disproportionality of votes and seats compared to existing measures ALHID, EGID
and CWSID. The new measure has been tailored to votes and seats, by means of
(i) greater sensitivity to small inequalities, and (ii) a sign, since a small change in
inequality may have a crucial impact on the (political) majority. For different fields,
one could taylor measures in similar fashion.
(12) The proposed measure SDID provides an enlightening bridge between de-

scriptive statistics and statistical decision making. This comes with a better under-
standing of what kind of information the cosine or R-squared provides, in relation
to regressions with and without a constant. Statistics textbooks would do well by
providing their students with this new topic for both theory and practical application.
If textbooks would not change then they run the risk of perpetuating the misunder-
standing that they already created and which have been highlighted here too.
(13) On content, the application to votes and seats highlights a key distinction

in electoral systems: Equal or Proportional Representation (EPR) scales down from
electorate to Parliament (Holland since 1917) while District Representation (DR)
confuses elections with contests (USA, UK). With this key difference between DR-
elections and EPR-elections, outcomes about inequality / disproportionality are only
comparable for EPR, and rather incomparable for DR, and even within DR countries
themselves (with masked data and discarded votes). Empirical researchers are in-
vited to help re-engineer the “political science on electoral systems”, see Colignatus
(2018d).
(14) It seems overall that both statistics and political science have to reconsider

some of their own traditions to arrive at better consultation for each other and advice
to the world.
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7 Appendices

7.1 Appendix A. Original, version in Mathematica, and now LATEX
The original version of this paper is Colignatus (2018e) at MPRA, 2018-02-20. It seemed
useful to make a version in Mathematica as well, dated 2018-04-09 & 16. This present
version in LaTeX is based upon the latter. For Mathematica see Wolfram Research, Inc.
(2017). For this article’s version inMathematica: The packages used in Colignatus (2018a)
are included there to create Figure 1. A small utility package is included there too for
an improved Figure 2. Typing errors have been corrected and at some points clarity has
been enhanced. The reference to McShane et al. (2017) has been included. The version in
Mathematica is also available in the cloud, see http://community.wolfram.com/groups/-/
m/t/1317181 and its attachment.

7.2 Appendix B. Animation and other links for improduct and cosine
Once you have made a diagram like Figure 2 yourself then you know better what to look
for on the internet, and indeed we can find there some resources that some readers will find
enlightening.

1. This animation by “3Blue1Brown” can surprise even well-informed researchers: https:
//www.youtube.com/watch?v=LyGKycYT2v0&feature=youtu.be&t=2m10s

2. On Wolfram Demonstrations, Bruce Torrence allows the user to manipulate the arrows:
https://demonstrations.wolfram.com/DotProduct

3. StackExchange can appeal because of some lively discussion. We see here the Law
of Cosines, but also the key explanation that two vectors can be reduced to “one”
by taking the other as the axis, so that projection of the first on this axis merely
means taking the x-coordinate: https://math.stackexchange.com/questions/116133/
how-to-understand-dot-product-is-the-angles-cosine.

4. The following SE is a bit less to the point (it tends to invert both question and
answer) but I must thank “Ste_95” for giving the link to the animation under (1):
https://math.stackexchange.com/questions/348717/dot-product-intuition.

5. I haven’t followed up on Kalid Azad’s examples in physics but others may like physics:
https://betterexplained.com/articles/vector-calculus-understanding-the-dot-product.

6. Finally, Brendan O’Connor gives a table of the formulas and some properties for cosine,
correlation, covariance and coefficient:
https://brenocon.com/blog/2012/03/cosine-similarity-pearson-correlation-and-ols-coefficients.

http://community.wolfram.com/groups/-/m/t/1317181
http://community.wolfram.com/groups/-/m/t/1317181
https://www.youtube.com/watch?v=LyGKycYT2v0&feature=youtu.be&t=2m10s
https://www.youtube.com/watch?v=LyGKycYT2v0&feature=youtu.be&t=2m10s
https://demonstrations.wolfram.com/DotProduct
https://math.stackexchange.com/questions/116133/how-to-understand-dot-product-is-the-angles-cosine
https://math.stackexchange.com/questions/116133/how-to-understand-dot-product-is-the-angles-cosine
https://math.stackexchange.com/questions/348717/dot-product-intuition
https://betterexplained.com/articles/vector-calculus-understanding-the-dot-product
https://brenocon.com/blog/2012/03/cosine-similarity-pearson-correlation-and-ols-coefficients
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