
MPAS-Albany Land Ice Model User’s Guide
Version: 6.0

Climate, Ocean, Sea-Ice Modeling Team

Los Alamos National Laboratory

April 17, 2018

Foreword

The MPAS-Albany Land Ice (MALI) is an unstructured-mesh land ice model (ice sheets or glaciers)
capable of using enhanced horizontal resolution in selected regions of the land ice domain. MALI
is built using the Model for Prediction Across Scales (MPAS) framework for developing variable
resolution Earth System Model components and the Albany multi-physics code base for solution of
coupled systems of partial-differential equations, which itself makes use of Trilinos solver libraries.
MALI includes a three-dimensional, first-order momentum balance solver (“Blatter-Pattyn”) by
linking to the Albany-LI ice sheet velocity solver, as well as an explicit shallow ice velocity solver.
Evolution of ice geometry and tracers is handled through an explicit first-order horizontal advection
scheme with vertical remapping. Evolution of ice temperature is treated using operator splitting
of vertical diffusion and horizontal advection and can be configured to use either a temperature or
enthalpy formulation. MALI includes a mass-conserving subglacial hydrology model that supports
distributed and/or channelized drainage and can optionally be coupled to ice dynamics. Options
for calving include “eigencalving”, which assumes calving rate is proportional to extensional strain
rates. MALI has been evaluated against commonly used exact solutions and community benchmark
experiments and shows the expected accuracy. It has been used in land ice evolution experiments
estimating potential for future sea-level rise from ice sheets (e.g., Ice2Sea international assessment
project (Shannon et al., 2013; Edwards et al., 2014b)). MALI is the glacier component of the
Energy Exascale Earth System Model (E3SM) version 1.0 (https://climatemodeling.science.
energy.gov/projects/energy-exascale-earth-system-model).

MPAS-Albany Land Ice is one component within the Model for Prediction Across Scales (MPAS)
framework of climate model components that is developed in cooperation between Los Alamos
National Laboratory (LANL) and the National Center for Atmospheric Research (NCAR). Func-
tionality that is required by all cores, such as i/o, time management, block decomposition, etc, is
developed collaboratively, and this code is shared across cores within the same repository. Each
core then solves its own differential equations and physical parameterizations within this frame-
work. This user’s guide reflects the spirit of this collaborative process, where Part I, “The MPAS
Framework”, applies to all cores, and the remaining parts apply specifically to MPAS-Albany Land
Ice.

MPAS-Albany Land Ice also makes use of the Albany/LI velocity solver (formally Albany/FELIX)
for implementation of the first-order velocity solver. Not all details of running and configuring that
velocity solver are covered in this User’s Guide. We refer the user to Albany’s website for more
information about installing and running Albany: https://github.com/gahansen/Albany

MPAS-Albany Land Ice is described by a model description paper currently in review in Geo-
scientific Model Descriptions at: https://www.geosci-model-dev-discuss.net/gmd-2018-78/

Much of the information in this User’s Guide is derived from the text of that paper.

1

https://climatemodeling.science.energy.gov/projects/energy-exascale-earth-system-model
https://climatemodeling.science.energy.gov/projects/energy-exascale-earth-system-model
https://github.com/gahansen/Albany
https://www.geosci-model-dev-discuss.net/gmd-2018-78/

0.1 Support Policy

The Department of Energy support for the MALI model fully realizes and embraces the importance
of making the model source code, the data and the application software tools publicly available,
and of communicating and informing the scientific community and the public about all stages of the
project, its research and future plans. While MALI has become an open development project, we
cannot commit ourselves to increased support to cover developmental versions. We are committed
though to provide limited support for the scientifically validated configurations of the model.

0.2 Release History

A history of releases of the Land Ice core within the MPAS version numbering scheme is as follows:

version date description

6.0 April 17, 2018 Addition of Albany FO velocity solver, thermal solver, sub-
glacial hydrology model, calving, analysis members, cou-
pling to E3SM.

3.0 November 18, 2014 Fix bug in SIA slope calculation. Introduction of run-time
I/O streams.

2.0 November 15, 2013 Initial public release of Land Ice core (SIA velocity solver
only)

0.3 Additional Information

Information about MPAS-Albany Land Ice, including the most recent code, user’s guide, and test
cases, may be found at http://mpas-dev.github.com. This user’s guide refers to version 6.0.

Contributors to this guide:
Matt Hoffman, Stephen Price, Mauro Perego
Additional contributors to MPAS Framework sections:
Michael Duda, Douglas Jacobsen

Funding for the development of MPAS-Albany Land Ice was provided by the United States Depart-
ment of Energy, Office of Science.

2

http://mpas-dev.github.com

Contents

0.1 Support Policy . 2
0.2 Release History . 2
0.3 Additional Information . 2

1 MPAS-Land Ice Quick Start Guide 7

I The MPAS Framework 8

2 MPAS Framework Overview 9

3 Building MPAS 11
3.1 Prequisites . 11
3.2 Compiling I/O Libraries . 11

3.2.1 netCDF . 11
3.2.2 parallel-netCDF . 12
3.2.3 PIO . 12

3.3 Compiling MPAS . 12
3.4 Cleaning . 14
3.5 Graph partitioning with METIS . 14

4 Grid Description 16

5 Configuring Model Input and Output 20
5.1 XML stream configuration files . 20
5.2 Optional stream attributes . 22
5.3 Stream definition examples . 24

5.3.1 Example: a single-precision output stream with one month of data per file . . 24
5.3.2 Example: appending records to existing output files 24
5.3.3 Example: referencing filename intervals to a time other than the start time . 25

6 Visualization 27
6.1 ParaView . 27

II MPAS-Albany Land Ice 30

7 MPAS-Albany Land Ice Introduction 31
7.1 Background . 31

3

7.2 MALI Meshes . 32
7.3 Albany velocity solver . 33

8 Governing Equations 35
8.1 Conservation of Momentum . 35
8.2 Reduced-order Equations . 36

8.2.1 First-Order Velocity Solver and Coupling . 36
8.2.2 Shallow-Ice Approximation Velocity Solver 38

8.3 Conservation of Mass . 39
8.4 Conservation of Energy . 40

8.4.1 Vertical Diffusion . 41
8.4.2 Viscous Dissipation . 41
8.4.3 Vertical Temperature Solution . 42
8.4.4 Horizontal Advection . 43

9 Model Physics 44
9.1 Subglacial Hydrology . 44

9.1.1 Till . 44
9.1.2 Channelized drainage . 45
9.1.3 Drainage component coupling . 46
9.1.4 Numerical implementation . 47
9.1.5 Coupling to ice sheet model . 47
9.1.6 Verification and Real-world Application . 47

9.2 Iceberg Calving . 49

10 Model Analysis 51

11 Verification and Validation 53
11.1 Halfar analytic solution . 53
11.2 EISMINT . 54
11.3 ISMIP-HOM . 56
11.4 MISMIP3d . 56

12 Test Cases 60
12.1 Halfar Dome . 60

12.1.1 Provided Files . 61
12.1.2 Results . 61

12.2 EISMINT-1 Test Cases . 62
12.2.1 Provided Files . 62
12.2.2 Results . 62

13 MALI within the Energy Exascale Earth System Model 64

14 Model Configuration 65

15 Namelist options 66
15.1 velocity solver . 66
15.2 advection . 67
15.3 calving . 67

4

15.4 thermal solver . 68
15.5 physical parameters . 69
15.6 time integration . 69
15.7 time management . 70
15.8 io . 71
15.9 decomposition . 72
15.10debug . 73
15.11subglacial hydro . 73
15.12AM globalStats . 75
15.13AM regionalStats . 75

16 Dimensions 77

17 Variable definitions 78
17.1 mesh . 78
17.2 geometry . 80
17.3 velocity . 81
17.4 observations . 82
17.5 thermal . 82
17.6 scratch . 83
17.7 regions . 83
17.8 hydro . 84
17.9 globalStatsAM . 85
17.10regionalStatsAM . 86
17.11Run-time input/output streams . 87

17.11.1 A note about time strings . 87
17.11.2 input . 87
17.11.3 output . 88
17.11.4 restart . 89
17.11.5 basicmesh . 90
17.11.6 Other streams . 90

18 Land Ice Visualization 91
18.1 Python . 91

19 Known Issues 92

III Bibliography 93

IV Appendices 102

A Namelist options 103
A.1 velocity solver . 103
A.2 advection . 105
A.3 calving . 106
A.4 thermal solver . 108
A.5 physical parameters . 113

5

A.6 time integration . 115
A.7 time management . 117
A.8 io . 119
A.9 decomposition . 122
A.10 debug . 123
A.11 subglacial hydro . 125
A.12 AM globalStats . 131
A.13 AM regionalStats . 133

B Variable definitions 135
B.1 mesh . 135
B.2 geometry . 150
B.3 velocity . 158
B.4 observations . 164
B.5 thermal . 167
B.6 scratch . 170
B.7 regions . 175
B.8 hydro . 175
B.9 globalStatsAM . 190
B.10 regionalStatsAM . 195

6

Chapter 1

MPAS-Land Ice Quick Start Guide

This chapter provides MPAS-Land Ice users with a quick start description of how to build and
run the model. It is meant merely as a brief overview of the process, while the more detailed
descriptions of each step are provided in later sections.

In general, the build process follows the following steps.

1. Build MPI Layer (OpenMPI, MVAPICH2, etc.)

2. Build serial NetCDF library (v3.6.3, v4.1.3, etc.)

3. Build Parallel-NetCDF library (v1.2.1, v1.3.0, etc.)

4. Build Parallel I/O library (v1.4.1, v1.6.1, etc.)

5. (Optional) Build METIS library and executables (v4.0, v5.0.2, etc.)

6. Clone MPAS-Land Ice from repository

7. Build Land Ice core

After step 7, an executable should be created called landice model.exe. Once the executable
is built, one can begin the run process as follows:

1. Create run directory.

2. Copy executable to run directory.

3. Copy namelist.landice and streams.landice from the default inputs directory into run
directory.

4. (Optional) Copy input and graph files into run directory.

5. Edit namelist.input to have the proper parameters.
If step 4 was skipped, ensure paths to input and graph files are appropriately set.

6. (Optional) Create graph files, using METIS executable (pmetis or gpmetis depending on
version).
A graph file is required for each processor count you want to use greater than one processor.

7. Run MPAS-Land Ice.

8. Visualize output file, and perform analysis.

7

Part I

The MPAS Framework

8

Chapter 2

MPAS Framework Overview

The MPAS Framework provides the foundation for a generalized geophysical fluid dynamics model
on unstructured spherical and planar meshes. On top of the framework, implementations specific
to the modeling of a particular physical system (e.g., land ice, ocean) are created as MPAS cores.
To date, MPAS cores for atmosphere (Skamarock et al., 2012), ocean (Ringler et al., 2013; Petersen
et al., 2015, 2018), shallow water (Ringler et al., 2011), sea ice (Turner et al., 2018), and land ice
(Hoffman et al., 2018) have been implemented. The MPAS design philosophy is to leverage the
efforts of developers from the various MPAS cores to provide common framework functionality with
minimal effort, allowing MPAS core developers to focus on development of the physics and features
relevant to their application.

The framework code includes shared modules for fundamental model operation. Significant
capabilities include:

• Description of model data types. MPAS uses a handful of fundamental Fortran derived types
for basic model functionality. Core-specific model variables are handled through custom
groupings of model fields called pools, for which custom accessor routines exist. Core-specific
variables are easily defined in XML syntax in a Registry, and the framework parses the
Registry, defines variables, and allocates memory as needed.

• Description of the mesh specification. MPAS requires 36 fields to fully describe the mesh used
in a simulation. These include the position, area, orientation, and connectivity of all cells,
edges, and vertices in the mesh. The mesh specification can flexibly describe both spherical
and planar meshes. More details are provided in the next section.

• Distributed memory parallelization and domain decomposition. The MPAS Framework pro-
vides needed routines for exchanging information between processors in a parallel environment
using Message Passing Interface (MPI). This includes halo updates, global reductions, and
global broadcasts. MPAS also supports decomposing multiple domain blocks on each pro-
cessor to, for example, optimize model performance by minimizing transfer of data from
disk to memory. Shared memory parallelization through OpenMP is also supported, but the
implementation is left up to each core.

• Parallel input and output capabilities. MPAS performs parallel input and output of data from
and to disk through the commonly used libraries of NetCDF, Parallel NetCDF (pnetcdf), and
Parallel Input/Output (PIO) (Dennis et al., 2012). The Registry definitions control which
fields can be input and/or output, and a framework streams functionality provides easy run-
time configuration of what fields are to be written to what file name and at what frequency

9

through an XML streams file. The MPAS framework includes additional functionality specific
to providing a flexible model restart capability.

• Advanced timekeeping. MPAS uses a customized version of the timekeeping functionality of
the Earth System Modeling Framework (ESMF), which includes a robust set of time and
calendar tools used by many Earth System Models (ESMs). This allows explicit definition of
model epochs in terms of years, months, days, hours, minutes, seconds, and fractional seconds
and can be set to three different calendar types: Gregorian, Gregorian no leap, and 360 day.
This flexibility helps enable multi-scale physics and simplifies coupling to ESMs. To manage
the complex date/time types that ensue, MPAS framework provides routines for arithmetic
of time intervals and the definition of alarm objects for handling events (e.g., when to write
output, when the simulation should end).

• Run-time configurable control of model options. Model options are configured through namelist
files that use standard Fortran namelist file format, and input/output are configured through
streams files that use XML format. Both are completely adjustable at run time.

• Online, run-time analysis framework. A system for defining analysis of model states during
run time, reducing the need for post-processing and model output.

Additionally, a number of shared operators exist to perform common operations on model data.
These include geometric operations (e.g., length, area, and angle operations on the sphere or the
plane), interpolation (linear, barycentric, Wachspress, radial basis functions, spline), vector and
tensor operations (e.g., cross products, divergence), and vector reconstruction (e.g., interpolating
from cell edges to cell centers). Most operators work on both spherical and planar meshes.

10

Chapter 3

Building MPAS

3.1 Prequisites

To build MPAS, compatible C and Fortran compilers are required. Additionally, the MPAS software
relies on the PIO parallel I/O library to read and write model fields, and the PIO library requires
the standard netCDF library as well as the parallel-netCDF library from Argonne National Labs.
All libraries must be compiled with the same compilers that will be used to build MPAS. Section
3.2 summarizes the basic procedure of installing the required I/O libraries for MPAS.

In order for the MPAS makefiles to find the PIO, parallel-netCDF, and netCDF include files and
libraries, the environment variables PIO, PNETCDF, and NETCDF should be set to the root installation
directories of the PIO, parallel-netCDF, and netCDF installations, respectively. Newer versions of
the netCDF library use a separate Fortran interface library; the top-level MPAS Makefile attempts
to add -lnetcdff to the linker flags, but some linkers require that -lnetcdff appear before
-lnetcdf, in which case -lnetcdff will need to be manually added just before -lnetcdf in the
specification of LIBS in the top-level Makefile.

An MPI installation such as MPICH or OpenMPI is also required, and there is no option to
build a serial version of the MPAS executables. There is currently no support for shared-memory
parallelism with OpenMP within the MPAS framework.

3.2 Compiling I/O Libraries

NOTE: It’s important to note the MPAS Developers are not responsible for any of the libraries
that are used within MPAS. Support for specific libraries should be taken up with the respective
developer groups.

Although most recent versions of the I/O libraries should work, the most tested versions of
these libraries are: netCDF 4.1.3, parallel-netCDF 1.3.1, and PIO 1.4.1. The netCDF and parallel-
netCDF libraries must be installed before building PIO library.

All commands are presented for csh, and will not work if pasted into another shell. Please
translate them to the appropraite commands in your shell.

3.2.1 netCDF

Version 4.1.3 of the netCDF library may be downloaded from http://www.unidata.ucar.edu/

downloads/netcdf/netcdf-4_1_3/index.jsp. Assuming the gfortran and gcc compilers will be
used, the following shell commands are generally sufficient to install netCDF.

11

http://www.unidata.ucar.edu/downloads/netcdf/netcdf-4_1_3/index.jsp
http://www.unidata.ucar.edu/downloads/netcdf/netcdf-4_1_3/index.jsp

> setenv FC gfortran

> setenv F77 gfortran

> setenv F90 gfortran

> setenv CC gcc

> ./configure --prefix=XXXXX --disable-dap --disable-netcdf-4 --disable-cxx

--disable-shared --enable-fortran

> make all check

> make install

Here, XXXXX should be replaced with the directory that will serve as the root installation direc-
tory for netCDF. Before proceeding to compile PIO the NETCDF PATH environment variable should
be set to the netCDF root installation directory.

Certain compilers require addition flags in the CPPFLAGS environment variable. Please refer
to the netCDF installation instructions for these flags.

3.2.2 parallel-netCDF

Version 1.3.1 of the parallel-netCDF library may be downloaded from https://trac.mcs.anl.

gov/projects/parallel-netcdf/wiki/Download. Assuming the gfortran and gcc compilers will
be used, the following shell commands are generally sufficient to install parallel-netCDF.

> setenv MPIF90 mpif90

> setenv MPIF77 mpif90

> setenv MPICC mpicc

> ./configure --prefix=XXXXX

> make

> make install

Here, XXXXX should be replaced with the directory that will serve as the root installation direc-
tory for parallel-netCDF. Before proceeding to compile PIO the PNETCDF PATH environment variable
should be set to the parallel-netCDF root installation directory.

3.2.3 PIO

Instructions for building PIO can be found at http://www.cesm.ucar.edu/models/pio/. Please
refer to these instructions for building PIO.

After PIO is built, and installed the PIO enviroment variable needs to be defined to point at the
directory PIO is installed into. Older versions of PIO cannot be installed, and the PIO environment
variable needs to be set to the directory where PIO was built instead.

3.3 Compiling MPAS

Before compiling MPAS, the NETCDF, PNETCDF, and PIO environment variables must be
set to the library installation directories as described in the previous section. A CORE

variable also needs to either be defined or passed in during the make process. If CORE

is not specified, the build process will fail.
The MPAS code uses only the ‘make’ utility for compilation. Rather than employing a separate

configuration step before building the code, all information about compilers, compiler flags, etc.,

12

https://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/Download
https://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/Download
http://www.cesm.ucar.edu/models/pio/

is contained in the top-level Makefile; each supported combination of compilers (i.e., a configu-
ration) is included in the Makefile as a separate make target, and the user selects among these
configurations by running make with the name of a build target specified on the command-line,
e.g.,

> make gfortran

to build the code using the GNU Fortran and C compilers. Some of the available targets are listed
in the table below, and additional targets can be added by simply editing the Makefile in the
top-level directory.

Target Fortran compiler C compiler MPI wrappers

xlf xlf90 xlc mpxlf90 / mpcc

pgi pgf90 pgcc mpif90 / mpicc

ifort ifort gcc mpif90 / mpicc

gfortran gfortran gcc mpif90 / mpicc

g95 g95 gcc mpif90 / mpicc

In order to get a more complete and up-to-date list of available tagets, one can use the following
command within the top-level of MPAS. NOTE: This command is known to not work with Mac
OSX.

> make -rpn | sed -n -e ’/^$/ { n ; /^[^]*:/p }’ | sed "s/: *.*$//g"

The MPAS framework supports multiple cores — currently a shallow water model, an ocean
model, a non-hydrostatic atmosphere model, a non-hydrostatic atmosphere initialization core, and
a land ice core — so the build process must be told which core to build. This is done by either
setting the environment variable CORE to the name of the model core to build, or by specifying the
core to be built explicitly on the command-line when running make. For the shallow water core,
for example, one may run either

> setenv CORE sw

> make gfortran

or

> make gfortran CORE=sw

If the CORE environment variable is set and a core is specified on the command-line, the
command-line value takes precedence; if no core is specified, either on the command line or via
the CORE environment variable, the build process will stop with an error message stating such.
Assuming compilation is successful, the model executable, named ${CORE} model (e.g., sw model),
should be created in the top-level MPAS directory.

In order to get a list of available cores, one can simply run the top-level Makefile without
setting the CORE environment variable, or passing the core via the command-line. And example of
the output from this can be seen below.

> make

13

(make error)

make[1]: Entering directory ‘mpas’

Usage: make target CORE=[core] [options]

Example targets:

ifort

gfortran

xlf

pgi

Availabe Cores:

atmosphere

init_atmosphere

landice

ocean

sw

Available Options:

DEBUG=true - builds debug version. Default is optimized version.

USE_PAPI=true - builds version using PAPI for timers. Default is off.

TAU=true - builds version using TAU hooks for profiling. Default is off.

Ensure that NETCDF, PNETCDF, PIO, and PAPI (if USE_PAPI=true) are environment variables

that point to the absolute paths for the libraries.

************ ERROR ************

No CORE specified. Quitting.

************ ERROR ************

make[1]: Leaving directory ‘mpas’

3.4 Cleaning

To remove all files that were created when the model was built, including the model executable
itself, make may be run for the ‘clean’ target:

> make clean

As with compiling, the core to be cleaned is specified by the CORE environment variable, or by
specifying a core explicitly on the command-line with CORE=.

3.5 Graph partitioning with METIS

Before MPAS can be run in parallel, a mesh decomposition file with an appropriate number of
partitions (equal to the number of MPI tasks that will be used) is required in the run directory. A
limited number of mesh decomposition files (graph.info.part.*) are provided with each test case.
In order to create new mesh decomposition files for your desired number of partitions, begin with
the provided graph.info file and partition with METIS software (http://glaros.dtc.umn.edu/
gkhome/views/metis). The serial graph partitioning program, METIS (rather than ParMETIS or

14

http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis

hMETIS) should be sufficient for quickly partitioning any SCVT produced by the grid gen mesh
generator.

After installing METIS, a graph.info file may be partitioned into N partitions by running

> gpmetis graph.info N

The resulting file, graph.info.part.N , can then be copied into the MPAS run directory before
running the model with N MPI tasks.

15

Chapter 4

Grid Description

This chapter provides a brief introduction to the common types of grids used in the MPAS frame-
work.

The MPAS grid system requires the definition of seven elements. These seven elements are
composed of two types of cells, two types of lines, and three types of points. These elements are
depicted in Figure 4.1 and defined in Table 4.1. These elements can be defined on either the plane
or the surface of the sphere. The two types of cells form two meshes, a primal mesh composed of
Voronoi regions and a dual mesh composed of Delaunay triangles. Each corner of a primal mesh
cell is uniquely associated with the “center” of a dual mesh cell and vice versa. So we define the
two mesh as either a primal mesh (composed of cells Pi) or a dual mesh (composed of cells Dv).
The center of any primal mesh cell, Pi, is denoted by xi and the center of any the dual mesh cell,
Dv, is denoted by xv. The boundary of a given primal mesh cell Pi is composed of the set of lines
that connect the xv locations of associated dual mesh cells Dv. Similarly, the boundary of a given
dual mesh cell Dv is composed of the set of lines that connect the xi locations of the associated
primal mesh cells Pi.

As shown in Figure 4.1, a line segment that connects two primal mesh cell centers is uniquely
associated with a line segment that connects two dual mesh cell centers. We assume that these
two line segments cross and the point of intersection is labeled as xe. In addition, we assume that
these two line segments are orthogonal as indicated in Figure 4.1. Each xe is associated with two
distances: de measures the distance between the primal mesh cells sharing xe and le measures the
distance between the dual mesh cells sharing xe.

Since the two line segments crossing at xe are orthogonal, these line segments form a convenient
local coordinate system for each edge. At each xe location a unit vector ne is defined to be parallel
to the line connecting primal mesh cells. A second unit vector te is defined such that te = k× ne.

In addition to these seven element types, we require the definition of sets of elements. In all,
eight different types of sets are required and these are defined and explained in Table 4.2 and Figure
4.2. The notation is always of the form of, for example, i ∈ CE(e), where the LHS indicates the
type of element to be gathered (cells) based on the RHS relation to another type of element (edges).

Table 4.3 provides the names of all elements and all sets of elements as used in the MPAS
framework. Elements appear twice in the table when described in the grid file in more than one
way, e.g. points are described with both cartesian and latitude/longitude coordinates. An “ncdump
-h” of any MPAS grid, output or restart file will contain all variable names shown in second column
of Table 4.3.

16

Table 4.1: Definition of elements used to build the MPAS grid.

Element Type Definition

xi point location of center of primal-mesh cells
xv point location of center of dual-mesh cells
xe point location of edge points where velocity is defined
de line segment distance between neighboring xi locations
le line segment distance between neighboring xv locations
Pi cell a cell on the primal-mesh
Dv cell a cell on the dual-mesh

Table 4.2: Definition of element groups used to reference connections in the MPAS grid.
Examples are provided in Figure 4.2.

Syntax ouptut

e ∈ EC(i) set of edges that define the boundary of Pi.
e ∈ EV (v) set of edges that define the boundary of Dv.
i ∈ CE(e) two primal-mesh cells that share edge e.
i ∈ CV (v) set of primal-mesh cells that form the vertices of dual mesh cell Dv.
v ∈ V E(e) the two dual-mesh cells that share edge e.
v ∈ V I(i) the set of dual-mesh cells that form the vertices of primal-mesh cell Pi.
e ∈ ECP (e) edges of cell pair meeting at edge e.
e ∈ EV C(v, i) edge pair associated with vertex v and mesh cell i.

Table 4.3: Variable names used to describe a MPAS grid.

Element Name Size Comment

xi {x,y,z}Cell nCells cartesian location of xi
xi {lon,lat}Cell nCells longitude and latitude of xi
xv {x,y,z}Vertex nVertices cartesian location of xv
xv {lon,lat}Vertex nVertices longitude and latitude of xv
xe {x,y,z}Edge nEdges cartesian location of xe
xe {lon,lat}Edge nEdges longitude and latitude of xe
de dcEdge nEdges distance between xi locations
le dvEdge nEdges distance between xv locations

e ∈ EC(i) edgesOnCell (nEdgesMax,nCells) edges that define Pi.
e ∈ EV (v) edgesOnVertex (3,nCells) edges that define Dv.
i ∈ CE(e) cellsOnEdge (2,nEdges) primal-mesh cells that share edge e.
i ∈ CV (v) cellsOnVertex (3,nVertices) primal-mesh cells that define Dv.
v ∈ V E(e) verticesOnEdge (2,nEdges) dual-mesh cells that share edge e.
v ∈ V I(i) verticesOnCell (nEdgesMax,nCells) vertices that define Pi.

17

xi

xv

xe

location of edge points

centers of dual-mesh cells

centers of primal-mesh cells

dual-mesh cell,Dv

primal-mesh cell, Pi

line segments
are orthogonal.

de

le

Figure 4.1: Definition of elements used to build the MPAS grid. Also see Table 4.1.

18

P1

e1

e2

e3

e4

e5

e6

P3D2 D1

D3

D4 D5

D6

P2
D7

D8D9

D 10

e7

e8

e9

e10

e11

e ∈ EV (D1) = [e1, e6, e7]

e ∈ EC(P1) = [e1, e2, e3, e4, e5, e6]

i ∈ CE(e1) = [P1, P2]

i ∈ CV (D1) = [P1, P2, P3]

v ∈ V E(e1) = [D1, D2]

e ∈ ECP (e1) = [e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11]

e ∈ ECV (P1, D1) = [e1, e6]

v ∈ V C(P1) = [D1, D2, D3, D4, D4, D5, D6]

Figure 4.2: Definition of element groups used to reference connections in the MPAS grid.
Also see Table 4.2.

19

Chapter 5

Configuring Model Input and Output

The reading and writing of model fields in MPAS is handled by user-configurable streams. A stream
represents a fixed set of model fields, together with dimensions and attributes, that are all written
or read together to or from the same file or set of files. Each MPAS model core may define its own
set of default streams that it typically uses for reading initial conditions, for writing and reading
restart fields, and for writing additional model history fields. Besides these default streams, users
may define new streams to, e.g., write certain diagnostic fields at a higher temporal frequency than
the usual model history fields.

Streams are defined in XML configuration files that are created at build time for each model
core. The name of this XML file is simply ‘streams.’ suffixed with the name of the core. For
example, the streams for the sw (shallow-water) core are defined in a file named ‘streams.sw’. An
XML stream file may further reference other text files that contain lists of the model fields that are
read or written in each of the streams defined in the XML stream file.

Changes to the XML stream configuration file will take effect the next time an MPAS core is
run; there is no need to re-compile after making modifications to the XML files. As described in
the next section, it is therefore possible, e.g., to change the interval at which a stream is written,
the template for the filenames associated with a stream, or the set of fields that are written to a
stream, without the need to re-compile any code.

Two classes of streams exist in MPAS: immutable streams and mutable streams. Immutable
streams are those for which the set of fields that belong to the stream may not be modified at
model run-time; however, it is possible to modify the interval at which the stream is read or
written, the filename template describing the files containing the stream on disk, and several other
parameters of the stream. In contrast, all aspects of mutable streams, including the set of fields
that belong to the stream, may be modified at run-time. The motivation for the creation of two
stream classes is the idea that an MPAS core may not function correctly if certain fields are not
read in upon model start-up or written to restart files, and it is therefore not reasonable for users to
modify this set of required fields at run-time. An MPAS core developer may choose to implement
such streams as immutable streams. Since fields may not be added to an immutable stream at
run-time, new immutable streams may not be defined at run-time, and the only type of new stream
that may be defined at run-time is the mutable stream type.

5.1 XML stream configuration files

The XML stream configuration file for an MPAS core always has a parent XML element named
streams, within which individual streams are defined:

20

<streams>

... one or more stream definitions ...

</streams>

Immutable streams are defined with the immutable stream element, and mutable streams are
defined with the stream element:

<immutable stream name="initial conditions"

type="input"

filename template="init.nc"

input interval="initial only"

/>

<stream name="history"

type="output"

filename template="output.$Y-$M-$D $h.$m.$s.nc"

output interval="6:00:00" >

... model fields belonging to this stream ...

</stream>

As shown in the example stream definitions, above, both classes of stream have the following
required attributes:

• name — A unique name used to refer to the stream.

• type — The type of stream, either "input", "output", "input;output", or "none". A
stream may be both an input and an output stream (i.e., "input;output") if, for example, it
is read once at model start-up to provide initial conditions and thereafter written periodically
to provide model checkpoints. A stream may be defined as neither input nor output (i.e.,
"none") for the purposes of defining a set of fields for inclusion other streams. Note that, for
immutable streams, the type attribute may not be changed at run-time.

• filename template — The template for files that exist or will be created by the stream. The
filename template may include any of the following variables, which are expanded based on
the simulated time at which files are first created.

– $Y — Year

– $M — Month

– $D — Day of the month

– $d — Day of the year

– $h — Hour

21

– $m — Minute

– $s — Second

A filename template may include either a relative or an absolute path, in which case MPAS
will attempt to create any directories in the path that do not exist, subject to filesystem
permissions.

• input interval — For streams that have type "input" or "input;output", the interval,
beginning at the model initial time, at which the stream will be read. Possible values include a
time interval specification in the format "YYYY-MM-DD hh:mm:ss"; the value "initial only",
which specifies that the stream is read only once at the model initial time; or the value "none",
which specifies that the stream is not read during a model run.

• output interval — For streams that have type "output" or "input;output", the inter-
val, beginning at the model initial time, at which the stream will be written. Possible val-
ues include a time interval specification in the format "YYYY-MM-DD hh:mm:ss"; the value
"initial only", which specifies that the stream is written only once at the model initial
time; or the value "none", which specifies that the stream is not written during a model run.

Finally, the set of fields that belong to a mutable stream may be specified with any combination
of the following elements. Note that, for immutable streams, no fields are specified at run-time in
the XML configuration file.

• var — Associates the specified variable with the stream. The variable may be any of those
defined in an MPAS core’s Registry.xml file, but may not include individual constituent arrays
from a var array.

• var array — Associates all constituent variables in a var array, defined in an MPAS core’s
Registry.xml file, with the stream.

• var struct — Associates all variables in a var struct, defined in an MPAS core’s Registry.xml
file, with the stream.

• stream — Associates all explicitly associated fields in the specified stream with the stream;
streams are not recursively included.

• file — Associates all variables listed in the specified text file, with one field per line, with
the stream.

5.2 Optional stream attributes

Besides the required attributes described in the preceding section, several additional, optional
attributes may be added to the definition of a stream.

• filename interval — The interval between the timestamps used in the construction of the
names of files associated with a stream. Possible values include a time interval specification in
the format "YYYY-MM-DD hh:mm:ss"; the value "none", indicating that only one file containing
all times is associated with the stream; the value "input interval" that, for input type
streams, indicates that each time to be read from the stream will come from a unique file;
or the value "output interval" that, for output type streams, indicates that each time to

22

be written to the stream will go to a unique file whose name is based on the timestamp
of the data being written. The default value is "input interval" for input type streams
and "output interval" for output type streams. For streams of type "input;output", the
default filename interval is "input interval" if the input interval is an interval (i.e., not
"initial only"), or "output interval" otherwise. Refer to Section 5.3.1 for an example of
the use of the filename interval attribute.

• reference time — A time that is an integral number of filename intervals from the timestamp
of any file associated with the stream. The default value is the start time of the model
simulation. Refer to Section 5.3.3 for an example of the use of the reference time attribute.

• clobber mode — Specifies how a stream should handle attempts to write to a file that already
exists. Possible values for the mode include:

– "overwrite" — The stream is allowed to overwrite records in existing files and to append
new records to existing files; records not explicitly written to are left untouched.

– "truncate" or "replace files" — The stream is allowed to overwrite existing files,
which are first truncated to remove any existing records; this is equivalent to replacing
any existing files with newly created files of the same name.

– "append" — The stream is only allowed to append new records to existing files; existing
records may not be overwritten.

– "never modify" — The stream is not allowed to modify existing files in any way.

The default clobber mode for streams is "never modify". Refer to Section 5.3.2 for an
example of the use of the clobber mode attribute.

• precision — The precision with which real-valued fields will be written or read in a stream.
Possible values include "single" for 4-byte real values, "double" for 8-byte real values, or
"native", which specifies that real-valued fields will be written or read in whatever precision
the MPAS core was compiled. The default value is "native". Refer to Section 5.3.1 for an
example of the use of the precision attribute.

• packages — A list of packages attached to the stream. A stream will be active (i.e., read
or written) only if at least one of the packages attached to it is active, or if no packages
at all are attached. Package names are provided as a semi-colon-separated list. Note that
packages may only be defined in an MPAS core’s Registry.xml file at build time. By default,
no packages are attached to a stream.

• io type — The underlying library and file format that will be used to read or write a stream.
Possible values include:

– "pnetcdf" — Read/write the stream with classic large-file NetCDF files (CDF-2) using
the ANL Parallel-NetCDF library.

– "pnetcdf,cdf5" — Read/write the stream with large-variable files (CDF-5) using the
ANL Parallel-NetCDF library.

– "netcdf" — Read/write the stream with classic large-file NetCDF files (CDF-2) using
the Unidata serial NetCDF library.

– "netcdf4" — Read/write the stream with HDF-5 files using the Unidata parallel NetCDF-
4 library.

23

Note that the PIO library must have been built with support for the selected io type. By
default, all input and output streams are read and written using the "pnetcdf" option.

5.3 Stream definition examples

This section provides several example streams that make use of the optional stream attributes
described in Section 5.2. All examples are of output streams, since it is more likely that a user will
need to write additional fields than to read additional fields, which a model would need to be aware
of; however, the concepts that are illustrated here translate directly to input streams as well.

5.3.1 Example: a single-precision output stream with one month of data per
file

In this example, the optional attribute specification filename interval="01-00 00:00:00" is
added to force a new output file to be created for the stream every month. Note that the general
format for time interval specifications is YYYY-MM-DD hh:mm:ss, where any leading terms can be
omitted; in this case, the year part of the interval is omitted. To reduce the file size, the specification
precision="single" is also added to force real-valued fields to be written as 4-byte floating-point
values, rather than the default of 8 bytes.

<stream name="diagnostics"

type="output"

filename template="diagnostics.$Y-$M.nc"

filename interval="01-00 00:00:00"

precision="single"

output interval="6:00:00" >

<var name="u10"/>

<var name="v10"/>

<var name="t2"/>

<var name="q2"/>

</stream>

The only fields that will be written to this stream are the hypothetical 10-m diagnosed wind
components, the 2-m temperature, and the 2-m specific humidity variables. Also, note that the
filename template only includes the year and month from the model valid time; this can be prob-
lematic when the simulation starts in the middle of a month, and a solution for this problem is
illustrated in the example of Section 5.3.3.

5.3.2 Example: appending records to existing output files

By default, streams will never modify existing files whose filenames match the name of a file that
would otherwise be written during the course of a simulation. However, when restarting a simulation
that is expected to add more records to existing output files, it can be useful to instruct the MPAS
I/O system to append these records, thereby modifying existing files. This may be accomplished
with the clobber mode attribute.

24

<stream name="diagnostics"

type="output"

filename template="diagnostics.$Y-$M.nc"

filename interval="01-00 00:00:00"

precision="single"

clobber mode="append"

output interval="6:00:00" >

<var name="u10"/>

<var name="v10"/>

<var name="t2"/>

<var name="q2"/>

</stream>

In general, if MPAS were to attempt to write a record at a time that already existed in an output
file, a clobber mode of ‘append’ would not permit the write to take place, since this would modify
existing data; in ‘append’ mode, only new records may be added. However, due to a peculiarity in
the implementation of the ‘append’ clobber mode, it may be possible for an output file to contain
duplicate times. This can happen when the first record that is appended to an existing file has
a timestamp not matching any in the file, after which, any record that is written — regardless
of whether its timestamp matches one already in the file — will be appended to the end of the
file. This situation may arise, for example, when restarting a model simulation with a shorter
output interval than was used in the original model simulation with an MPAS core that does
not write the first output time for restart runs.

5.3.3 Example: referencing filename intervals to a time other than the start
time

The example stream of the previous sections creates a new file each month during the simulation,
and the filenames contain only the year and month of the timestamp when the file was created.
If a simulation begins at 00 UTC on the first day of a month, then each file in the diagnostic
stream will contain only output times that fall within the month in the filename. However, if a
simulation were to begin in the middle of a month — for example, the month of June, 2014 —
the first diagnostics output file would have a filename of ‘diagnostics.2014-06.nc’, but rather than
containing only output fields valid in June, it would contain all fields written between the middle
of June and the middle of July, at which point one month of simulation would have elapsed, and a
new output file, ‘diagnostics.2014-07.nc’, would be created.

In order to ensure that the file ‘diagnostics.2014-06.nc’ contained only data from June 2014, the
reference time attribute may be added such that the day, hour, minute, and second in the date
and time represent the first day of the month at 00 UTC. In this example, the year and month of
the reference time are not important, since the purpose of the reference time here is to describe to
MPAS that the monthly filename interval begins (i.e., is referenced to) the first day of the month.

<stream name="diagnostics"

type="output"

filename template="diagnostics.$Y-$M.nc"

25

filename interval="01-00 00:00:00"

reference time="2014-01-01 00:00:00"

precision="single"

clobber mode="append"

output interval="6:00:00" >

<var name="u10"/>

<var name="v10"/>

<var name="t2"/>

<var name="q2"/>

</stream>

In general, the components of a timestamp, YYYY-MM-DD hh:mm:ss, that are less significant than
(i.e., to the right of) those contained in a filename template are important in a reference time. For
example, with a filename template that contained only the year, the month component of the
reference time would become important to identify the month of the year on which the yearly
basis for filenames would begin.

26

Chapter 6

Visualization

This chapter discusses visualization tools that may be used by all cores.

6.1 ParaView

ParaView may be used to visualize MPAS initialization, output, and restart files. It includes a
reader that was specifically designed to read MPAS NetCDF files, including Cartesian and spherical
domains. At this time, only cell-centered quantities may be plotted with ParaView. Variables
located at edges and vertices must be interpolated to cell centers for visualization.

ParaView is freely available for download at http://www.paraview.org. Binary installations
are available for Windows, Mac, and Linux, as well as source code files and tutorials. From the
ParaView website:

ParaView is an open-source, multi-platform data analysis and visualization appli-
cation. ParaView users can quickly build visualizations to analyze their data using
qualitative and quantitative techniques. The data exploration can be done interactively
in 3D or programmatically using ParaView’s batch processing capabilities. ParaView
was developed to analyze extremely large datasets using distributed memory computing
resources. It can be run on supercomputers to analyze datasets of terascale as well as
on laptops for smaller data.

To visualize an MPAS cell-centered variable in ParaView, open the file and choose MPAS NetCDF

(Unstructured) as the file format. In the lower left Object Inspector panel, choose your variables
of interest (Figure 6.1). For large data sets, loading fewer variables will result in less wait time.
Options are available for latitude-longitude projections, vertical level, etc. Click the ’Apply’ button
to load the data set. In the toolbars at the top, choose the variable to plot from the pull-down
menu, and ’Surface’ for the type of visualization. The color bar button displays a color bar, and
the color scale editor button allows the user to manually change the color bar type and extents.
The Filters menu provides computational tools for interactive data manipulation. Movies, in avi
format or as individual frames, may be conveniently created with the Save Animation tool in the
File menu.

Paraview may be used to view the grid from any MPAS NetCDF file by choosing Wireframe

or Suface With Edges from the visualization-type pull-down menu (Figure 6.2). This produces a
view of the Delaunay triangulation, which is the dual mesh to the primal Voronoi cell grid (Figure
4.1). Paraview plots all variables by interpolating colors between each corner of the Delaunay
triangles. These corners are the cell-center locations of the primal grid.

27

http://www.paraview.org

Figure 6.1: Example of ParaView to view an MPAS NetCDF file.

28

Figure 6.2: Example of visualizing the dual mesh from an MPAS NetCDF file.

29

Part II

MPAS-Albany Land Ice

30

Chapter 7

MPAS-Albany Land Ice Introduction

7.1 Background

During the past decade, numerical ice sheet models (ISMs) have undergone a renaissance relative to
their predecessors. This period of intense model development was initiated following the Fourth As-
sessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007), which pointed
to deficiencies in ISMs of the time as being the single largest shortcoming with respect to the
scientific community’s ability to project future sea-level rise stemming from ice sheets. Model mat-
uration during this period, which continued through the IPCC’s Fifth Assessment Report (IPCC,
2013) and to the present day, has focused on improvements to ISM “dynamical cores” (including
the fidelity, discretization, and solution methods for the governing conservation equations (e.g.,
Bueler and Brown, 2009; Schoof and Hindmarsh, 2010; Goldberg, 2011; Perego et al., 2012; Leng
et al., 2012; Larour et al., 2012; Aschwanden et al., 2012; Cornford et al., 2013; Gagliardini et al.,
2013; Brinkerhoff and Johnson, 2013)), ISM model “physics” (for example, the addition of improved
models of basal sliding coupled to explicit subglacial hydrology (e.g., Schoof, 2005; Werder et al.,
2013; Hewitt, 2013; Hoffman and Price, 2014; Bueler and van Pelt, 2015); and ice damage, fracture,
and calving (e.g., Åström et al., 2014; Bassis and Ma, 2015; Borstad et al., 2016; Jiménez et al.,
2017)) and the coupling between ISMs and Earth System Models (ESMs) (e.g., Ridley et al., 2005;
Vizcáıno et al., 2008, 2009; Fyke et al., 2011; Lipscomb et al., 2013). These “next generation” ISMs
have been applied to community-wide experiments focused on assessing (i) the sensitivity of ISMs
to idealized and realistic boundary conditions and environmental forcing and (ii) the potential fu-
ture contributions of ice sheets to sea-level rise (see e.g., Pattyn et al., 2013; Nowicki et al., 2013b,a;
Bindschadler et al., 2013; Shannon et al., 2013; Edwards et al., 2014b).

While these efforts represent significant steps forward, next-generation ISMs continue to con-
front new challenges. These come about as a result of (1) applying ISMs to larger (whole-ice sheet),
higher-resolution (regionally O(1 km) or less), and more realistic problems, (2) adding new or im-
proved sub-models of critical physical processes to ISMs, and (3) applying ISMs as partially or fully
coupled components of ESMs. The first two challenges relate to maintaining adequate performance
and robustness, as increased resolution and/or complexity have the potential to increase forward
model cost and/or degrade solver reliability. The latter challenge relates to the added complexity
and cost associated with optimization workflows, which are necessary for obtaining model initial
conditions that are realistic and compatible with forcing from ESMs. These challenges argue for
ISM development that specifically targets the following model features and capabilities:

1. parallel, scalable, and robust, linear and nonlinear solvers

31

2. variable and / or adaptive mesh resolution

3. computational kernels based on flexible programming models, to allow for implementation on
a range of High-Performance Computing (HPC) architectures1

4. adjoint capabilities for use in high-dimensional parameter field optimization and uncertainty
quantification

Based on these considerations, we have developed MPAS-Albany Land Ice (MALI), which is
composed of three major components: 1) model framework, 2) dynamical cores for solving equations
of conservation of momentum, mass, and energy, and 3) modules for additional model physics. The
model leverages existing and mature frameworks and libraries, namely the Model for Prediction
Across Scales (MPAS) framework and the Albany and Trilinos solver libraries. These have allowed
us to take into consideration and address, from the start, many of the challenges discussed above.
The model is described in detail in the following sections. MPAS-Albany Land Ice is described
by a model description paper currently in review in Geoscientific Model Descriptions at: https:

//www.geosci-model-dev-discuss.net/gmd-2018-78/ Much of the information in this User’s
Guide is derived from the text of that paper. The User’s Guide is further updated at the model
evolves.

7.2 MALI Meshes

MALI typically uses centroidal Voronoi meshes on a plane. Spherical Voronoi meshes can also be
used, but little work has been done with such meshes to date. Tools for creating and manipulating
meshes are not yet publicly available. MALI employs a C-grid discretization (Arakawa and Lamb,
1977) for advection, meaning state variables (ice thickness and tracer values) are located at Voronoi
cell centers, and flow variables (transport velocity, un) are located at cell edge midpoints (Figure
7.1). MALI uses a sigma vertical coordinate (specified number of layers, each with a spatially
uniform layer thickness fraction, see (Petersen et al., 2015) for more information):

σ =
s− z
H

(7.1)

where s is surface elevation, H is ice thickness, and z is the vertical coordinate. Table 7.1 describes
the relationship between the MPAS Voronoi grid and the Delaunay Triangulation used by the
Albany First Order velocity solver.

Table 7.1: Correspondence between the MPAS Voronoi tesselation and its dual Delaunay
triangulation used by Albany. Key MALI model variables that are natively
found at each location are listed. Note that variables are interpolated from one
location to another as required for various calculations.

Voronoi tesselation Delaunay triangulation Variables

cell center triangle node H,T, u, v, Φ (MPAS)
cell edge triangle edge un (for advection)
cell vertex triangle center Φ (Albany)

1For example, traditional CPU-only architectures and MPI programming models versus CPU+GPU, hybrid ar-
chitectures using MPI for nodal communication and OpenMP or CUDA for on-node parallelism.

32

https://www.geosci-model-dev-discuss.net/gmd-2018-78/
https://www.geosci-model-dev-discuss.net/gmd-2018-78/

a b

x

y

z

Figure 7.1: MALI grids. a) Horizontal grid with cell center (blue circles), edge midpoint
(red triangles), and vertices (orange squares) identified for the center cell.
Scalar fields (H, T) are located at cell centers. Advective velocities (un) and
fluxes are located at cell edges. b) Vertical grid with layer midpoints (blue
circles) and layer interfaces (red triangles) identified. Scalar fields (H, T) are
located at layer midpoints. Fluxes are located at layer interfaces.

7.3 Albany velocity solver

MPAS-Albany Land Ice can optionally be compiled with support for the Albany First Order ve-
locity solver. Albany is an open source, C++ multi-physics code base for the solution and analysis
of coupled systems of partial-differential equations (PDEs) (Salinger et al., 2016). It is a finite
element code that can (in three spatial dimensions) employ unstructured meshed comprised of
hexahedral, tetrahedral, or prismatic elements. Albany is designed to take advantage of the com-
putational mathematics tools available within the Trilinos suite of software libraries (Heroux et al.,
2005) and it uses template-based generic programming methods to provide extensibility and flexi-
bility (Pawlowski et al., 2012). Together, Albany and Trilinos provide parallel data structures and
I/O, discretization and integration algorithms, linear solvers and preconditioners, nonlinear solvers,
continuation algorithms, and tools for automatic differentiation (AD) and optimization. By formu-
lating a system of equations in the residual form, Albany employs AD to automatically compute
the Jacobian matrix, as well as forward and adjoint sensitivities. Albany can solve large-scale
PDE-constrained optimization problems, using Trilinos optimization package ROL, and it provides
uncertainty quantification capabilities through the Dakota framework (Adams et al., 2013). It
is a massively parallel code by design and recently it has been adopting the Kokkos (Edwards
et al., 2014a) programming model to provide manycore performance portability (Demeshko et al.,
2018) on major HPC platforms. Albany provides several applications including LCM (Laboratory
for Computational Mechanics) for solid mechanics problems, QCAD (Quantum Computer Aided
Design) for quantum device modeling, and LI (Land Ice) for modeling ice sheet flow. We refer
to the code that discretizes these ice sheet diagnostic momentum balance equations as Albany-LI.
Albany-LI was formerly known as Albany/FELIX (Finite Elements for Land Ice eXperiments), and
described by Tezaur et al. (2015a,b) and Tuminaro et al. (2016) under that name.

To compile MALI with support for Albany capabilities requires an installation of the Albany
libraries. Installations exist on many Department of Energy supercomputers. To build them your-
self, review the information at https://github.com/gahansen/Albany/wiki. Compiling Albany
requires a build of Trilinosi (https://github.com/trilinos/Trilinos) with specific packages and
third party libraries, and is not a trivial exercise. Compiling Albany for usage with MPAS requires

33

https://github.com/gahansen/Albany/wiki
https://github.com/trilinos/Trilinos

setting the Albany cmake configuration variable ENABLE MPAS INTERFACE:BOOL=ON. A successful
Albany installation will include the file export albany.in. Before compiling MPAS, the environ-
ment variable MPAS EXTERNAL LIBS should be set to the list of libraries listed in this file. Then,
MALI with Albany support is enabled by compiling with ALBANY=true, e.g.:

make gfortran CORE=landice ALBANY=true

For MALI runs using the Albany velocity solver (config velocity solver=’FO’), an Albany
.xml configuration file named albany input.xml is required in addition to the standard MPAS
namelist and streams configuration files. Examples of that file exist in the MPAS repository within
subdirectories for various tests in the testing and setup/compass/landice directory. For further
details on compiling Albany and configuring run-time options for Albany, see https://github.

com/gahansen/Albany.

34

https://github.com/gahansen/Albany
https://github.com/gahansen/Albany

Chapter 8

Governing Equations

The “dynamical core” of the the MALI ice sheet model solves the governing equations expressing
the conservation of momentum, mass, and energy.

8.1 Conservation of Momentum

Treating glacier ice as an incompressible fluid in a low-Reynolds number flow, the conservation of
momentum in a Cartesian reference frame is expressed by the Stokes-flow equations, for which the
gravitational-driving stress is balanced by gradients in the viscous stress tensor, σij :

∂σij
∂xj

+ ρg = 0, i, j = 1, 2, 3 (8.1)

where xi is the coordinate vector, ρ is the density of ice, and g = is acceleration due to gravity1.
Deformation results from the deviatoric stress, τij , which relates to the full stress tensor as

τij = σij −
1

3
σkkδij , (8.2)

for which −1
3σkk is the mean compressive stress and δij is the Kroneker delta (or the identity

tensor). Stress and strain rate are related through the constitutive relation,

τij = 2ηeε̇ij , (8.3)

where ˙εij is the strain-rate tensor and ηe is the “effective”, non-Newtonian ice viscosity given by
Nye’s generalization of Glen’s flow law (Glen, 1955),

ηe = γA− 1
n ε̇

1−n
n

e . (8.4)

In Equation 8.4, A is a temperature dependent rate factor, n is an exponent commonly taken as 3 for
polycrystalline glacier ice, and γ is an ice “stiffness” factor (inverse enhancement factor) commonly
used to account for other impacts on ice rheology, such as impurities or crystal anisotropy. The
effective strain rate ε̇e is given by the second invariant of the strain-rate tensor,

ε̇e =

(
1

2
ε̇ij ε̇ij

) 1
2

, (8.5)

1In Equation 8.1 and elsewhere we use indicial notation, with summation over repeat indices.

35

The strain rate tensor is defined by gradients in the components of the ice velocity vector ui:

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2, 3. (8.6)

Finally, the rate-factor A follows an Arrhenius relationship

A (T ∗) = Aoe
−Qa/RT ∗

, (8.7)

in which Ao is a constant, (T ∗) is the absolute temperature (i.e., corrected for the dependence of
melt temperature on ice pressure), Qa is the activation energy for crystal creep, and R is the gas
constant.

Boundary conditions required for the solution of Eq. 8.1 depend on the form of reduced-order
approximation applied and are discussed further below.

8.2 Reduced-order Equations

Ice sheet models solve Eq. 8.1-8.7 with varying degrees of complexity in terms of the tensor
components in Eq. 8.1-8.6 that are accounted for or omitted, based on geometric scaling arguments.
Because ice sheets are inherently “thin” – their widths are several orders of magnitude larger than
their thickness – reduced-order approximations of the full momentum balance are often appropriate
(see, e.g., Dukowicz et al., 2010; Schoof and Hewitt, 2013) and, importantly, can often result
in considerable computational cost savings. Here, we employ two such approximations, a first-
order-accurate “Blatter-Pattyn” approximation and a zero-order, “shallow-ice approximation” as
described in more detail in the following sections.

8.2.1 First-Order Velocity Solver and Coupling

Ice sheets typically have a small aspect ratio, small surface and bed slopes, and vertical pressure dis-
tributions that are very nearly hydrostatic. These characteristics imply that reduced-order approx-
imations of the Stokes momentum balance may apply over large areas of the ice sheets, potentially
allowing for significant computational savings. Formal derivations involve non-dimensionalizing the
Stokes momentum balance and introducing a geometric scaling factor, δ = H/L, where H and L
represent characteristic vertical and horizontal length scales (often taken as the ice thickness and
the ice sheet span), respectively. Upon conducting an asymptotic expansion, reduced-order models
with a chosen degree of accuracy (relative to the original Stokes flow equations) can be derived by
retaining terms of the appropriate order in δ. For example, the first-order accurate Stokes approx-
imation is arrived at by retaining terms of O(δ1) and lower (The reader is referred to Schoof and
Hindmarsh (2010) and Dukowicz et al. (2010) for additional discussion2).

Using the notation of Perego et al. (2012) and Tezaur et al. (2015a) 3, the first-order accurate
Stokes approximation (also referred to as the “Blatter-Pattyn” approximation, see Blatter, 1995;
Pattyn, 2003) is expressed through the following system of PDEs,{ −∇ · (2ηf ε̇1) + ρg ∂s∂x = 0,

−∇ · (2ηf ε̇2) + ρg ∂s∂y = 0,
(8.8)

2In practice, additional scaling parameters describing the ratio of deformation to sliding velocity may also be
introduced.

3Vectors and tensors are given in bold rather than using indices. Note that, in a slight abuse of notation, we have
switched from using x1, x2, x3 to denote the three coordinate directions to x, y, z.

36

where ∇· is the divergence operator, s ≡ s(x, y) represents the ice sheet upper surface, and the
vectors ε̇1 and ε̇2 are given by

ε̇1 =
(

2ε̇xx + ε̇yy, ε̇xy, ε̇xz
)T
, (8.9)

and
ε̇2 =

(
ε̇xy, ε̇xx + 2ε̇yy, ε̇yz

)T
. (8.10)

Akin to Equations 8.4 and 8.5, ηf in Equation 8.8 represents the effective viscosity but for the case
of the first-order stress balance with an effective-strain rate is given by

ε̇e ≡
(
ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy + ε̇2xz + ε̇2yz

) 1
2 , (8.11)

rather than by Equation 8.5, and with individual strain rate terms given by,

ε̇xx =
∂u

∂x
, ε̇yy =

∂v

∂y
, ε̇xy =

1

2

(
∂u

∂y
+
∂v

∂x

)
, ε̇xz =

1

2

∂u

∂z
, ε̇yz =

1

2

∂v

∂z
. (8.12)

At the upper surface, a stress-free boundary condition is applied,

ε̇1 · n = ε̇2 · n = 0, (8.13)

with n the outward normal vector at the ice sheet surface, z = s(x, y). At the bed, z = b(x, y), we
apply no slip or continuity of basal tractions (“sliding”),

u = v = 0, no slip
2µε̇1 · n + βum = 0, 2µε̇2 · n + βvm = 0, sliding,

(8.14)

where β is a linear-friction parameter and m ≥ 1. In most applications we set m = 1 (see also
Section 9.1.5).

On lateral boundaries, a stress boundary condition is applied,

2µε̇i · n− ρg(s− z)n = ρogmax(z, 0)n, (8.15)

where ρo is the density of ocean water and n the outward normal vector to the lateral boundary
(i.e., parallel to the (x, y) plane), so that lateral boundaries above sea level are effectively stress
free and lateral boundaries submerged within the ocean experience hydrostatic pressure due to the
overlying column of ocean water.

We solve these equations using the Albany-LI momentum balance solver, which is built us-
ing the Albany and Trilinos software libraries discussed above. The mathematical formulation,
discretization, solution methods, verification, and scaling of Albany-LI are discussed in detail in
Tezaur et al. (2015a). Albany-LI implements a classic finite element discretization of the first-order
approximation. At the grounding line, the basal friction coefficient β can abruptly drop to zero
within an element of the mesh. This discontinuity is resolved by using an higher-order Gauss
quadrature rule on elements containing the grounding line, which corresponds to the sub-element
parametrization SEP3 proposed in Seroussi et al. (2014). Additional exploration of solver scalabil-
ity and demonstrations of solver robustness on large scale, high-resolution, realistic problems are
discussed in Tezaur et al. (2015b). The efficiency and robustness of nonlinear solvers are achieved
using a combination of the Newton method (damped with a line search strategy when needed) and
of a parameter continuation algorithm for the numerical regularization of the viscosity. The scal-
ability of linear solvers is obtained using a multilevel preconditioner (see Tuminaro et al. (2016))

37

specifically designed to target shallow problems characterized by meshes extruded in the vertical
dimension, like those found in ice sheet modeling. The preconditioner has been demonstrated to
be particularly effective and robust even in the presence of ice shelves that typically lead to highly
ill-conditioned linear systems. Because the momentum balance solver is ≥ 95% of the cost of a
typical forward model time step, the model performance reported on in Tezaur et al. (2015a,b) and
Tuminaro et al. (2016) is generally representative of overall MALI performance.

The Albany-LI first-order velocity solver written in C++ is coupled to MPAS written in Fortran
using an interface layer. Albany uses a three-dimensional mesh extruded from a basal triangulation
and composed of prisms or tetrahedra (see Tezaur et al. (2015a)). When coupled to MPAS, the
basal triangulation is the part of the Delaunay triangulation, dual to an MPAS Voronoi mesh,
that contains active ice and it is generated by the interface. Bed topography, ice lower surface, ice
thickness, basal friction coefficient (β), and three-dimensional ice temperature, all at cell centers
(Table 7.1), are passed from MPAS to Albany. Optionally, Dirichlet velocity boundary conditions
can also be passed. After the velocity solve is complete, Albany returns the x and y components of
velocity at each cell center and blue layer interfaces, the normal component of velocity at each cell
edge and blue layer interfaces, and viscous dissipation at blue each cell vertex and layer midpoints.

The interface code defines the lateral boundary conditions on the finite element mesh that
Albany will use. Lateral boundaries in Albany are applied at cell centers (triangle nodes) that do
not contain dynamic ice on the MPAS mesh and that are adjacent to the last cell of the MPAS mesh
that does contain dynamic ice. This one element extension is required to support calculation of
normal velocity on edges (un) required for advection of ice out of the final cell containing dynamic
ice (Figure 8.1). The interface identifies three types of lateral boundaries for the first-order velocity
solve: terrestrial, floating marine, and grounded marine. Terrestrial margins are defined by bed
topography above sea level. At these boundary nodes, ice thickness is set to a small ice minimum
thickness value (ε = 1 m). Floating marine margin triangle nodes are defined as neighboring one
or more triangle edges that satisfy the hydrostatic floatation criterion. At these boundary nodes,
we need to ensure the existence of a realistic calving front geometry, so we set ice thickness to
the minimum of thickness at neighboring cells with ice. Grounded marine margins are defined as
locations where the bed topography is below sea level, but no adjacent triangle edges satisfy the
floatation criterion. At these boundary nodes, we apply a small floating extension with thickness ε.
For all three boundary types, ice temperature is averaged from the neighboring locations containing
ice.

8.2.2 Shallow-Ice Approximation Velocity Solver

A similar procedure to that described above for the first-order accurate Stokes approximation can
be used to derive the so-called “shallow-ice approximation” (SIA) (Hutter, 1983; Fowler and Larson,
1978; Morland and Johnson, 1980; Payne et al., 2000), in this case by retaining only terms of O(δ0).
In the case of the SIA, the local gravitational driving stress is everywhere balanced by the local
basal traction and the horizontal velocity as a function of depth is simply the superposition of the
local basal sliding velocity and the integral of the vertical shear from the ice base to that depth:

u = −2(ρg)n
(ˆ z

b
A(s− z)ndz

)
|∇s|n−1∇s+ ub (8.16)

where b is the bed elevation and ~ub is the sliding velocity.
SIA ice sheet models typically combine the momentum and mass balance equations to evolve

the ice geometry directly in the form of a depth-integrated, two-dimensional diffusion problem
(Hindmarsh and Payne, 1996; Payne et al., 2000). However we implement the SIA as an explicit

38

x

y

Figure 8.1: Correspondence between MPAS and Albany meshes and application of bound-
ary conditions for the first-order velocity solver. Solid black lines are cells on
the Voronoi mesh and dashed gray lines are triangles on the Delaunay Trian-
gulation. Light blue Voronoi cells contain dynamic ice and gray cells do not.
Dark blue circles are Albany triangle nodes that use variable values directly
from the co-located MPAS cell centers. White circles are extended node lo-
cations that receive variable values as described in the text based on whether
they are terrestrial, floating marine, or grounded marine locations. Red tri-
angles indicate Voronoi cell edges on which velocities (un) are required for
advection.

velocity solver that can be enabled in place of the more accurate first order solver, while keeping
the rest of the model identical. The purpose of the SIA velocity solver is primarily for rapid testing,
so the less efficient explicit implementation of Eq. 8.16 is not a concern.

We implement Eq. 8.16 in sigma coordinates on cell edges, where we only require the normal
component of velocity, un:

un = −2(ρg)nHn+1|∇s|n−1 ds

dxn

ˆ σ

1
Aσndσ + ubn (8.17)

where xn is the normal direction to a given edge and ubn is sliding velocity in the normal direction to
the edge. We average A and H from cell centers to cell edges. ds

dxn
is calculated as the difference in

surface elevation between the two cells that neighbor a given edge divided by the distance between
the cell centers; on a Voronoi grid, cells edges are midway between cell centers by definition.
The surface slope component tangent to an edge (required to complete the calculation of ∇s) is
calculated by first interpolating surface elevation from cell centers to vertices.

8.3 Conservation of Mass

Conservation of mass is used to conduct ice sheet mass transport and evolution. Assuming constant
density to write conservation of mass in volume form, the equation relates ice thickness change to
the divergence of mass and sources and sinks:

∂H

∂t
+∇ ·Hū = ȧ+ ḃ, (8.18)

39

where H is ice thickness, t is time, ū is depth-averaged velocity, ȧ is surface mass balance, and ḃ is
basal mass balance. Both ȧ and ḃ are positive for ablation and negative for accumulation.

Eq. 8.18 is used to update thickness in each grid cell on each time step using a forward Euler,
fully explicit time evolution scheme. Eq. 8.18 is implemented using a finite volume method, such
that fluxes are calculated for each edge of each cell to calculate ∇ · Hū. Specifically, we use a
first-order upwind method that applies the normal velocity on each edge (un) and an upwind value
of cell centered ice thickness. Note that with the First Order velocity solver, normal velocity is
interpolated from cell centers to edges using the finite element basis functions in Albany. In the
shallow ice approximation velocity solver, normal velocity is calculated natively at edges. MPAS
Framework includes a higher-order flux-corrected transport scheme (Ringler et al., 2013) for which
we have performed some initial testing, but is not routinely used in the Land Ice core at this time.

Tracers are advected layer by layer with a similar equation:

∂(Qtl)

∂t
+∇ · (Qtlū) = Ṡ (8.19)

where Qt is a tracer quantity (e.g., temperature – see below), l is layer thickness, and Ṡ represents
any tracer sources or sinks. While any number of tracers can be included in the model, the only
one to be considered here is temperature, due to its important effect on ice rheology through Eq.
8.7 and will be discussed further in the following section.

Because we employ a sigma vertical coordinate system with fixed layer fractions, after Eqs.
8.18 and 8.19 are applied, a vertical remapping operation is required. Overlaps between the newly
calculated layers and the target sigma layers are calculated for each grid cell. Assuming uniform
values within each layer, mass, energy, and other tracers are transferred between layers based on
these overlaps to restore the prescribed sigma layers while conserving mass and energy.

8.4 Conservation of Energy

Conservation of energy is expressed through the three-dimensional, advective-diffusive heat equa-
tion:

∂T

∂t
=

1

ρc

∂

∂xi

(
k
∂T

∂xi

)
− ui

∂T

∂xi
+

Φ

ρc
, (8.20)

with thermal conductivity k and heat capacity c. In Equation 8.20, the rate of temperature change
(left-hand side) is balanced by diffusive, advective, and internal (viscous dissipation – see Equation
8.27 for Φ) source terms (first, second, and third terms on the right-hand side, respectively). In
MALI we solve an approximation of Equation 8.20,

∂T

∂t
=

k

ρc

∂2T

∂z2
− ui

∂T

∂xi
+

Φ

ρc
, (8.21)

in which horizontal diffusion is assumed negligible (van der Veen, 2013, p. 280) and k is assumed
constant and uniform. The viscous dissipation term Φ is discussed further below (Section 8.4.2).

Temperatures are staggered in the vertical relative to velocities and are located at the centers of
nz−1 vertical layers, which are bounded by nz vertical levels (grid point locations). This convention
allows for conservative temperature advection, since the total internal energy in a column (the sum
of ρcT∆z over nz − 1 layers) is conserved under transport. The upper surface temperature Ts and
the lower surface temperature Tb, coincident with the surface and bed grid points, give a total of
nz + 1 temperature values within each column.

40

Equation 8.21 is solved using an operator splitting technique. At each time step, we first perform
an implicit vertical solve accounting for the diffusion and dissipation terms, and then we explicitly
advect horizontally the resulting temperature.

8.4.1 Vertical Diffusion

Using a “sigma” vertical coordinate, the vertical diffusion portion of Equation 8.21 can be dis-
cretized as:

∂2T

∂z2
=

1

H2

∂2T

∂σ2
. (8.22)

In σ–coordinates, the central difference formulas for first partial derivatives at the upper and
lower interfaces of layer k are

∂T

∂σ

∣∣∣∣
σk

=
Tk − Tk−1

σ̃k − σ̃k−1
,

∂T

∂σ

∣∣∣∣
σk+1

=
Tk+1 − Tk
σ̃k+1 − σ̃k

,

(8.23)

where σ̃k is the value of σ at the midpoint of layer k, halfway between σk and σk+1. The second
partial derivative, defined at the midpoint of layer k, is then given by

∂2T

∂σ2

∣∣∣∣
σ̃k

=

∂T
∂σ

∣∣
σk+1
− ∂T

∂σ

∣∣
σk

σk+1 − σk
(8.24)

By inserting Equation (8.23) into Equation (8.24), we obtain the discrete form of the vertical
diffusion term in Equation 8.21:

∂2T

∂σ2

∣∣∣∣
σ̃k

=
Tk−1

(σ̃k − σ̃k−1) (σk+1 − σk)
− Tk

(
1

(σ̃k − σ̃k−1) (σk+1 − σk)
+

1

(σ̃k+1 − σ̃k) (σk+1 − σk)

)
+

Tk+1

(σ̃k+1 − σ̃k) (σk+1 − σk)
. (8.25)

To simplify some expressions below, we define the following coefficients associated with the vertical
temperature diffusion,

ak =
1

(σ̃k − σ̃k−1) (σk+1 − σk)
, bk =

1

(σ̃k+1 − σ̃k) (σk+1 − σk)
. (8.26)

8.4.2 Viscous Dissipation

The source term from viscous dissipation in Equation 8.21 is given by the product of the stress and
strain rate tensors:

Φ = σij ε̇ij = τij ε̇ij . (8.27)

The change to deviatoric stress on the right-hand side of Equation 8.27 follows from terms related
to the mean compressive stress (or pressure) dropping out due to incompressibility. Analogous to
the effective strain rate given in Equation 8.5, the effective-deviatoric stress is given by

τe =

(
1

2
τijτij

) 1
2

, (8.28)

41

which can be combined with Equations 8.27 and 8.5 to derive an expression for the viscous dissi-
pation in terms of effective deviatoric stress and strain,

Φ = 2τeε̇e (8.29)

Finally, an analog to Equation 8.3 gives

τe = 2ηeε̇e, (8.30)

which can be used to eliminate ε̇e in Equation 8.29 and arrive at an alternate expression for the
dissipation based on only two scalar quantities

Φ = 4ηeε̇
2
e. (8.31)

The viscous dissipation source term is computed within Albany-LI at MPAS cell vertices and
then reconstructed at cell centers in MPAS.

For the SIA model, dissipation can be calculated in sigma coordinates as

Φ(σ) =
σg

c

∂~u

∂σ
· ∇s (8.32)

which can be combined with Eq. 8.16 to make:

Φ(σ) = −2σg

cρ
(gσρ)n+1(H|∇s|)n+1A (8.33)

We calculate Φ on cell edges following the procedure described for Eq. 8.17, and then interpolate
Φ back to cell centers to solve Eq. 8.21.

8.4.3 Vertical Temperature Solution

The vertical diffusion portion of Equation 8.21 is discretized according to

Tn+1
k − Tnk

∆t
=

k

ρcH2

(
akT

n+1
k−1 − (ak + bk)T

n+1
k + bkT

n+1
k+1

)
+

Φk

ρc
, (8.34)

where ak and bk are defined in (8.26), n is the current time level, and n + 1 is the new time
level. Because the vertical diffusion terms are evaluated at the new time level, the discretization is
backward-Euler (fully implicit) in time.

The temperature T0 at the upper boundary is set to min(Tair, 0), where the mean-annual surface
air temperature Tair is a two-dimensional field specified from observations or climate model output.

At the lower boundary, for grounded ice there are three potential heat sources and sinks: (1)
the diffusive flux from the bottom surface to the ice interior (positive up),

F bot
d =

k

H

Tnz − Tnz−1

1− σ̃nz−1
; (8.35)

(2) the geothermal flux Fg, prescribed from a spatially variable input file (based on observations),
and (3) the frictional heat flux associated with basal sliding,

Ff = τb · ub, (8.36)

42

where τb and ub are 2D vectors of basal shear stress and basal velocity, respectively, and the friction
law from Equation 8.14 becomes

Ff = β
√
u2b + v2b . (8.37)

If the basal temperature Tnz < Tpmp (where Tpmp is the pressure melting point temperature),
then the fluxes at the lower boundary must balance,

Fg + Ff = F bot
d , (8.38)

so that the energy supplied by geothermal heating and sliding friction is equal to the energy removed
by vertical diffusion. If, on the other hand, Tnz = Tpmp, then the net flux is nonzero and is used to
melt or freeze ice at the boundary:

Mb =
Fg + Ff − F bot

d

ρL
, (8.39)

where Mb is the melt rate and L is the latent heat of melting. Melting generates basal water, which
may either be stored at the bed locally, serve as a source for the basal hydrology model (See Section
9.1), or may simply be ignored. If basal water is present locally, Tnz is held at Tpmp.

For floating ice the basal boundary condition is simpler: Tnz is simply set to the freezing
temperature Tf of seawater. Optionally, a melt rate can be prescribed at the lower surface.

Rarely, the solution for T may exceed Tpmp for a given internal layer. In this case, T is set to
Tpmp, excess energy goes towards melting of ice internally, and the resulting melt is assumed to
drain to the bed immediately.

If (8.39) applies, we compute Mb and adjust the basal water depth. When the basal water
goes to zero, Tnz is set to the temperature of the lowest layer (less than Tpmp at the bed) and flux
boundary conditions apply during the next time step.

8.4.4 Horizontal Advection

Temperature advection in any individual layer k is treated using tracer advection, as in Equation
8.19 above, where the ice temperature Tk is substituted for the generic tracer Q. After horizontal
transport, the surface and basal mass balance is applied to the top and bottom ice surfaces, re-
spectively. Because layer transport and the application of mass balance terms results in an altered
vertical-layer spacing with respect to σ coordinates, a vertical remapping scheme is applied. This
conservatively transfers ice volume and internal energy between adjacent layers while restoring σ
layers to their initial distribution. Internal energy divided by mass gives the new layer temperatures.

43

Chapter 9

Model Physics

Physical processes currently implemented in MALI are a mass-conserving subglacial hydrology
model and a small number of basic schemes for iceberg calving. These are described in more detail
below.

9.1 Subglacial Hydrology

Sliding of glaciers and ice sheets over their bed can increase ice velocity by orders of magnitude
and is the primary control on ice flux to the oceans. The state of the subglacial hydrologic system
is the primary control on sliding (Clarke, 2005; Cuffey and Paterson, 2010; Flowers, 2015), and ice
sheet modelers have therefore emphasized subglacial hydrology and its effects on basal sliding as a
critical missing piece of current ice sheet models (Little et al., 2007; Price et al., 2011).

MALI includes a mass-conserving model of subglacial hydrology that includes representations
of any or all of water storage in till, distributed drainage, and channelized drainage and is coupled
to ice dynamics. The model is based on the model of Bueler and van Pelt (2015) with an additional
component for channelized drainage and modified for MALI’s unstructured horizontal grid. While
the implementation follows closely that of Bueler and van Pelt (2015), the model and equations are
summarized here along with a description of the features unique to the application in MALI.

9.1.1 Till

The simple till component represents local storage of water in subglacial till without horizontal
transport within the till. Evolution of the effective water depth in till, Wtill is therefore a balance
of delivery of meltwater, mb, to the till, drainage of water out of the till at rate Cd (mass leaving
the subglacial hydrologic system, for example, to deep groundwater storage), and overflow to the
distributed drainage system, γ:

∂Wtill

∂t
=
mb

ρw
− Cd − γt. (9.1)

In the model, meltwater (from either the bed or drained from the surface), is first delivered to
the till component. Water in excess of the the maximum storage capacity of the till, Wmax

till , is
instantaneously transferred as a source term to the distributed drainage system through the γt
term.

44

Distributed drainage

The distributed drainage component is implemented as a “macroporous sheet” that represents bulk
flow through linked cavities that form in the lee of bedrock bumps as the glacier slides over the
bed (Flowers and Clarke, 2002; Hewitt, 2011; Flowers, 2015). Water flow in the system is driven
by the gradient of the hydropotential, φ, defined as

φ = ρwgzb + Pw (9.2)

where Pw is the water pressure in the distributed drainage system. A related variable, the ice
effective pressure, N , is the difference between ice overburden pressure and water pressure in the
distributed drainage system, Pw:

N = ρgH − Pw. (9.3)

The evolution of the area-averaged cavity space is a balance of opening of cavity space by the
glacier sliding over bedrock bumps and closing through creep of the ice above. The model uses
the commonly used assumption (e.g. Schoof, 2010; Hewitt, 2011; Werder et al., 2013; Hoffman and
Price, 2014) that cavities always remain water filled (c.f. Schoof et al., 2012), so cavity space can
be represented by the effective water depth in the macorporous sheet, W :

∂W

∂t
= cs|~ub|(Wr −W)− ccdAbN3W (9.4)

where cs is bed roughness parameter, Wr is the maximum bed bump height, ccd is creep scaling
parameter representing geometric and possibly other effects, and Ab is the ice flow parameter of
the basal ice.

Water flow in the distributed drainage system, ~q, is driven the hydropotential gradient and is
described by a general power-law:

~q = −kqWα1 |∇φ|α2−2∇φ (9.5)

where kq is a conductivity coefficient. The α1 and α2 exponents can be adjusted so that Eq. 9.5
reduces to commonly used water flow relations, such as Darcy flow, the Darcy-Weisbach relation,
and the Manning equation.

9.1.2 Channelized drainage

The inclusion of channelized drainage in MALI is an extension to the model of Bueler and van
Pelt (2015). The distributed drainage model ignores dissipative heating within the water, which
in the real world leads to melting of the ice roof, and the formation of discrete, efficient channels
melted into the ice above when the distributed discharge reaches a critical threshold (Schoof, 2010;
Hewitt, 2011; Werder et al., 2013; Flowers, 2015). These channels can rapidly evacuate water from
the distributed drainage system and lower water pressure, even under sustained meltwater input
(Schoof, 2010; Hewitt, 2011; Werder et al., 2013; Hoffman and Price, 2014; Flowers, 2015).

The implementation of channels follows the channel network models of Werder et al. (2013) and
Hewitt (2013). The evolution of channel area, S, is a balance of opening and closing processes as
in the distributed system, but in channels the opening mechanism is melting caused by dissipative
heating of the ice above:

dS

dt
=

1

ρL
(Ξ−Π)− cccAbN3S (9.6)

where ccc is the creep scaling parameter for channels.

45

The channel opening rate, the first term in Eq. 9.6, is itself a balance of dissipation of potential
energy, Ξ, and sensible heat change of water, Π, due to changes in the pressure-dependent melt
temperature. Dissipation of potential energy includes energy produced by flow in both the channel
itself and a small region of the distributed system along the channel:

Ξ =

∣∣∣∣dφds ~Q
∣∣∣∣+

∣∣∣∣dφds ~qclc
∣∣∣∣ (9.7)

where s is the spatial coordinate along a channel segment, ~Q is the flow rate in the channel, and
~qc is the flow in the distributed drainage system parallel to the channel within a distance lc of the
channel. The term adding the contribution of dissipative melting within the distributed drainage
system near the channel is included to represent some of the energy that has been ignored from
that process in the description of the distributed drainage system and allows channels to form
even when channel area is initially zero if discharge in the distributed drainage system is sufficient
(Werder et al., 2013). The term representing sensible heat change of the water, Π, is necessitated
by the assumption that the water always remains at the pressure-dependent melt temperature of
the water. Changes in water pressure must therefore result in melting or freezing:

Π = −ctcwρw
(
~Q+ lc~qc

) dPw
ds

(9.8)

where ct is the Clapeyron slope and cw is the specific heat capacity of water. The pressure-dependent
melt term can be disabled in the model.

Water flow in channels, ~Q, mirrors Eq. 9.5:

~Q = −kQSα1 |∇φ|α2−2∇φ (9.9)

where kQ is a conductivity coefficient for channels.

9.1.3 Drainage component coupling

Eqs. 9.1-9.9 are coupled together by describing the drainage system with two equations, mass con-
servation and pressure evolution. Mass conservation of the subglacial drainage system is described
by

∂W

∂t
+
∂Wtill

∂t
= −∇ · (~VdW) +∇ · (Dd∇W)−

[
∂S

∂t
+
∂Q

∂s

]
δ(xc) +

mb

ρw
(9.10)

where Vd is water velocity in the distributed flow, Dd is the diffusivity of the distributed flow, and
δ(xc) is the Dirac delta function applied along the locations of the linear channels.

Combining Eq. 9.10 and Eq. 9.4 and making the simplification that cavities remain full at all
times yields an equation for water pressure within the distributed drainage system, Pw:

φ0
ρwg

∂Pw
∂t

= −∇ · ~q + cs|~ub|(Wr −W)− ccdAbN3W −
[
∂S

∂t
+
∂Q

∂s

]
δ(xc) +

mb

ρw
− ∂Wtill

∂t
(9.11)

where φ0 is an englacial porosity used to regularize the pressure equation. Following Bueler and
van Pelt (2015), the porosity is only included in the pressure equation and is excluded from the
mass conservation equation.

Any of the three drainage components (till, distributed drainage, channelized drainage) can be
deactivated at runtime. The most common configuration currently used is to run with distributed
drainage only.

46

9.1.4 Numerical implementation

The drainage system model is implemented using Finite Volume Methods on the unstructured
grid used by MALI. State variables (W,Wtill, S, Pw) are located at cell centers and velocities and
fluxes (~q, ~Vd, ~Q) are calculated at edge midpoints. Channel segments exist along the lines joining
neighboring cell centers. Eq. 9.10 is evaluated by summing tendencies from discrete fluxes into
or out of each cell. First-order upwinding is used for advection. At land-terminating ice sheet
boundaries, Pw = 0 is applied as the boundary condition. At marine-terminating ice sheet bound-
aries, the boundary condition is Pw = −ρwgzb, where ρw is ocean water density. The drainage
model uses explicit forward Euler time-stepping using Eqs. 9.1, 9.10, 9.6, and 9.11. This requires
obeying advective and diffusive Courant-Friedrichs-Lewy (CFL) conditions for distributed drainage
as described by Bueler and van Pelt (2015), as well as an additional advective CFL condition for
channelized drainage, if it is active.

We acknowledge that the non-continuum implementation of channels can make the solution
grid-dependent, and grid convergence may therefore not exist for many problems (Bueler and van
Pelt, 2015). However, for realistic problems with irregular bed topography, we have found dominant
channel location is controlled by topography, mitigating this issue.

9.1.5 Coupling to ice sheet model

The subglacial drainage model is coupled to the ice dynamics model through a basal friction law.
Currently, the only option is a modified Weertman-style power law (Bindschadler, 1983; Hewitt,
2013) that adds a term for effective pressure to Eq. 8.14:

~τb = C0N ~ub
m (9.12)

where C0 is a friction parameter. Implementation of a Coulomb friction law (Schoof, 2005; Gagliar-
dini et al., 2007) and a plastic till law (Tulaczyk et al., 2000; Bueler and van Pelt, 2015) are in
development. When the drainage and ice dynamics components are run together, coupling of the
systems allows the negative feedback described by (Hoffman and Price, 2014) where elevated water
pressure increases ice sliding and increased sliding opens additional cavity space, lowering water
pressure. The meltwater source term, m, is calculated by the thermal solver in MALI. Either or
both of the ice dynamics and thermal solvers can be disabled, in which case the relevant coupling
fields can be prescribed to the drainage model.

9.1.6 Verification and Real-world Application

To verify the implementation of the distributed drainage model, we use the nearly exact solution
described by Bueler and van Pelt (2015). The problem configuration uses distributed drainage
only on a two-dimensional, radially-symmetric ice sheet of radius 22.5 km with parabolic ice sheet
thickness and a nontrivial sliding profile. Bueler and van Pelt (2015) showed that this configuration
allows for nearly-exact reference values of W and Pw to be solved at steady state from an ordinary
differential equation initial value problem with very high accuracy. We follow the test protocol
of Bueler and van Pelt (2015) and initialize the model with the near-exact solution and then run
the model forward for one month, after which we evaluate model error due to drift away from the
expected solution. Performing this test with the MALI drainage model, we find error comparable
to that found by Bueler and van Pelt (2015) and approximately first order convergence (Figure
9.1).

47

0.001

0.01

0.1

100 1000

er
ro

r i
n

w
at

er
 th

ic
kn

es
s

(m
)

grid spacing (m)

0.01

0.1

1

100 1000

er
ro

r i
n

w
at

er
 p

re
ss

ur
e

(b
ar

)

grid spacing (m)

a

b

Figure 9.1: Error in subglacial hydrology model for radial test case with near-exact solu-
tion described by Bueler and van Pelt (2015) for different grid resolutions. a)
Error in water thickness. × symbols indicate maximum error, and squares in-
dicate mean error. Average error in water thickness decays as O(∆x0.97). b)
Error in water pressure, with same symbols. Average error in water pressure
decays as O(∆x1.02).

To check the model implementation of channels, we use comparisons to other, more mature
drainage models through the Subglacial Hydrology Model Intercomparison Project (SHMIP)1.
Steady state solutions of the drainage system effective pressure, water fluxes, and channel devel-
opment for an idealized ice sheet with varying magnitudes of meltwater input (SHMIP experiment
suites A and B) compared between MALI and other models of similar complexity (GlaDS, Elmer)
are very similar.

To demonstrate a real-world application of the subglacial hydrology model, we perform a stan-
dalone subglacial hydrology simulation of the entire Antarctica Ice Sheet on a uniform 20 km
resolution mesh (Figure 9.2). We force this simulation with basal sliding and basal melt rate after
optimizing the first-order velocity solver optimized to surface velocity observations (Figure 9.2a).
We then run the subglacial hydrology model to steady state with only distributed drainage active
and using standard parameter values. Results show a subglacial hydrologic state that is reason-
able. For example, the subglacial water flux shows similar spatial patterns to the basal sliding
speed (Figure 9.2), suggesting a basal friction law based on the subglacial hydrologic state could
be configured to yield realistic ice velocity. Calibrating parameters for the subglacial hydrology

1https://shmip.bitbucket.io/

48

Figure 9.2: Subglacial hydrology model results for 20 km resolution Antarctic Ice Sheet.
a) Basal ice speed calculated by the first-order velocity solver optimized to
surface velocity observations. This field and the calculated basal melt are
the forcings applied to the standalone subglacial hydrology model. b) Water
flux in the distributed system calculated by the subglacial hydrology model at
steady state.

model and a basal friction law and performing coupled subglacial-hydrology/ice-dynamics simula-
tions are beyond the scope of this paper; we merely mean to demonstrate plausible behavior from
the subglacial hydrology model for a realistic ice-sheet-scale problem.

9.2 Iceberg Calving

MALI includes a few simple methods for removing ice from calving fronts during each model time
step:

1. All floating ice is removed.

2. All floating ice in cells with an ocean bathymetry deeper than a specified threshold is removed.

3. All floating ice thinner than a specified threshold is removed.

4. The calving front is maintained at its initial location by adding or removing ice after thickness
evolution is complete. This option does not conserve mass or energy but provides a simple
way to maintain a realistic ice shelf extent (e.g., for model spinup).

5. “Eigencalving” scheme (Levermann et al., 2012). Calving front retreat rate, Cv, is propor-
tional to the product of the principal strain rates (ε̇1, ε̇2) if they both are extensional:

Cv = K2ε̇1ε̇2 for ε̇1 > 0 and ε̇2 > 0. (9.13)

The eigencalving scheme can optionally also remove floating ice at the calving front with
thickness below a specified thickness threshold (Feldmann and Levermann, 2015). In practice

49

we find this is necessary to prevent formation of tortuous ice tongues and continuous, gradual
extension of some ice shelves along the coast.

Ice that is eligible for calving can be removed immediately or fractionally each time step based
on a calving timescale. To allow ice shelves to advance as well as retreat, we implement a simple
parameterization for sub-grid motion of the calving front by forcing floating cells adjacent to open
ocean to remain dynamically inactive until ice thickness there reaches 95% of the minimum thickness
of all floating neighbors. This is an ad hoc alternative to methods tracking the calving front position
at sub-grid scales (Albrecht et al., 2011; Bondzio et al., 2016).

50

Chapter 10

Model Analysis

As with other climate model components built using the MPAS framework, MALI supports the
development and application of “analysis members”, which allow for a wide range of run-time-
generated simulation diagnostics and statistics output at user specified time intervals. Support
tools included with the code release allow for the definition of any number or combination of pre-
defined “geographic features” – points, lines (“transects”), or areas (“regions”) – of interest within
an MPAS mesh. Features are defined using the standard GeoJSON format (Butler et al., 2016) and
a large existing database of globally defined features is currently supported1. Python-based scripts
are available for editing GeoJSON feature files, combining or splitting them, and using them to
define their coverage within MPAS mesh files. Currently, MALI includes support for standard ice
sheet model diagnostics (see Table 10.1) defined over the global domain (by default) and / or over
specific ice sheet drainage basins and ice shelves (or their combination). Support for generating
model output at points and along transects will be added in the future (e.g., vertical samples at
ice core locations or along ground-penetrating radar profile lines). Defining regions requires tools
that are not yet publicly available.

1https://github.com/MPAS-Dev/geometric_features

51

https://github.com/MPAS-Dev/geometric_features

Table 10.1: Standard model diagnostics available for an arbitrary number of predefined
geographic regions.

diagnostic units

net ice area and volume m2, m3

net grounded ice area and volume m2, m3

net floating ice area and volume m2, m3

net volume above floatation m3

minimum, maximum, and mean ice thickness m
net surface mass balance kg yr−1

net basal mass balance kg yr−1

net basal mass balance for floating ice kg yr−1

net basal mass balance for grounded ice kg yr−1

average surface mass balance m yr−1

average basal mass balance for grounded ice m yr−1

average basal mass balance for floating ice m yr−1

net flux due to iceberg calving kg yr−1

net flux across grounding lines kg yr−1

maximum surface and basal velocity m yr−1

52

Chapter 11

Verification and Validation

MALI has been verified by a series of configurations that test different components of the code.
In some cases analytic solutions are used, but other tests rely on intercomparison with community
benchmarks that have been run previously by many different ice sheet models.

MALI currently includes 86 automated system regression tests that run the model for various
problems with analytic solutions or community benchmarks. In addition to checking the accuracy
of model answers, some of the tests check that model restarts give bit-for-bit exact answers with
longer runs without restart. Some others check that the model gives bit-for-bit exact answers on
different numbers of processors. All but 20 of the longer running tests are run every time new
features are added to the code, and these tests each also include a check for answer changes. This
chapter describes the configuration and analysis of some of the more significant tests. Detailed
description of tests that can easily be run by new users are described in Chapter 12.

11.1 Halfar analytic solution

In (Halfar, 1981, 1983), Halfar described an analytic solution for the time-evolving geometry of a
radially-symmetric, isothermal dome of ice on a flat bed with no accumulation flowing under the
shallow ice approximation. This test provides an obvious test of the implementation of the shallow-
ice velocity calculation and thickness evolution schemes in numerical ice sheet models and a way
to assess model order of convergence (Bueler et al., 2005; Egholm and Nielsen, 2010). Bueler et al.
(2005) showed the Halfar test is the zero accumulation member of a family of analytic solutions,
but we apply the original Halfar test here.

In our application we use a dome following the analytic profile prescribed by Halfar (1983) with
an initial radius of 21213.2 m and an initial height of 707.1 m. We run MALI with the shallow ice
velocity solver and isothermal ice for 200 years and then compare the modeled ice thickness to the
analytic solution at 200 years. We find the root mean square error in model thickness decreases as
model grid spacing is decreased (Figure 11.1a). The order of convergence of 0.78, consistent with
the first-order approximation used for advection.

We also use this test to assess the accuracy of simulations with variable resolution. We perform
an addition run of the Halfar test using a variable resolution mesh that has 1000 m cell spacing
beyond a radius of 20 km that transitions to 5000 m cell spacing at a radius of 3 km (Figure
11.1b), generated with the JIGSAW(GEO) mesh generation tool (Engwirda, 2017a,b). Root mean
square error in thickness for this simulation is similar to that for the uniform 1000 m resolution case
(Figure 11.1a), providing confidence in the advection scheme applied to variable resolution meshes.
The variable resolution mesh has about half the cells of the 1000 m uniform resolution mesh.

53

1

10

100

100 1000 10000

th
ic

kn
es

s R
M

S
er

ro
r (

m
)

Grid spacing (m)

a

b

Figure 11.1: a) Root mean square error in ice thickness as a function of grid cell spac-
ing for the Halfar dome after 200 years shown with black dots. The order of
convergence is 0.78. The red square show the RMS thickness error for the
variable resolution mesh shown in b) with 1000 m spacing around the mar-
gin. b) Mesh with resolution that varies linearly from 1000 m grid spacing
beyond a radius of 20 km (thick white line) to 5000 m at a radius of 3 km
(thin white line). The ice thickness initial condition for the Halfar problem
is shown. This mesh requires 1265 cells for the 200 yr duration Halfar test
case, while a uniform 1000 m resolution mesh requires 2323 cells.

11.2 EISMINT

European Ice Sheet Modeling Initiative (EISMINT) model intercomparison consisted of two phases
designed to provide community benchmarks for shallow-ice models. Both phases included exper-
iments that grow a radially symmetric ice sheet on a flat bed to steady state with a prescribed
surface mass balance. The EISMINT intercomparisons test ice geometry evolution and ice tem-
perature evolution with a variety of forcings. Bueler et al. (2007) describe an alternative tool for
testing thermomechanical shallow-ice models with artificially constructed exact solutions. While
their approach has the notable advantage of providing exact solutions, we have not implemented the
non-physical three-dimensional compensatory heat source necessary for its implementation. While
we hope to use the verification of Bueler et al. (2007) in the future, for now we use the EISMINT
intercomparison suites to test our implementation of thermal evolution and thermomechanical cou-
pling.

The first phase (Huybrechts et al., 1996) (sometimes called EISMINT1) prescribes evolving ice

54

geometry and temperature, but the flow rate parameter A is set to a prescribed value so there is
no thermomechanical coupling. We have conducted the Moving Margin experiment with steady
surface mass balance and surface temperature forcing. Following the specifications described by
Huybrechts et al. (1996), we run the ice sheet to steady state over 200 ka. We use the grid spacing
prescribed by Huybrechts et al. (1996) (50 km), but due to the uniform Voronoi grid of hexagons
we employ, we have a slightly larger number of grid cells in our mesh (1080 vs 961). At the end of
the simulation, the modeled ice thickness at the center of the dome by MALI is 2976.7 m, compared
with a mean of 2978.0 ± 19.3 m for the ten three-dimensional models reported by Huybrechts et al.
(1996). MALI achieves similar good agreement for basal homologous temperature at the center
of the dome with a value of −13.09◦ C, compared with −13.34 ± 0.56◦ C for the six models that
reported temperature in Huybrechts et al. (1996).

The second phase of EISMINT (Payne et al., 2000) (sometimes called EISMINT2), uses the
basic configuration of the EISMINT1 Moving Margin experiment but activates thermomechanical
coupling through Eq. 8.7. Two experiments (A and F) grow an ice sheet to steady state over
200 ka from an initial condition of no ice, but with different air temperature boundary conditions.
Additional experiments use the steady state solution from experiment A (the warmer air temper-
ature case) as the initial condition to perturbations in the surface air temperature or surface mass
balance forcings (experiments B, C, and D). Because these experiments are thermomechanically
coupled, they test model ice dynamics and thickness and temperature evolution, as well as their
coupling. There is no analytic solution to these experiments, but ten different models contributed
results, yielding a range of behavior against which to compare additional models. Here we present
MALI results for the five such experiments that prescribe no basal sliding (experiments A, B, C,
D, F). Our tests use the same grid spacing as prescribed by Payne et al. (2000) (25 km), again with
a larger number of grid cells in our mesh (4464 vs 3721).

Payne et al. (2000) report results for five basic glaciological quantities calculated by ten different
models, which we have summarized here with the corresponding values calculated by MALI (Table
11.1). All MALI results fall within the range of previously reported values, except for volume
change and divide thickness change in experiment C and melt fraction change in experiment D.
However, these discrepancies are close to the range of results reported by Payne et al. (2000), and
we consider temperature evolution and thermomechanical coupling within MALI to be consistent
with community models, particularly given the difference in model grid and thickness evolution
scheme.

A long-studied feature of the EISMINT2 intercomparison is the cold “spokes” that appear in
the basal temperature field of all models in Experiment F and, for some models, experiment A
(Payne et al., 2000; Saito et al., 2006; Bueler et al., 2007; Brinkerhoff and Johnson, 2013). MALI
with shallow-ice velocity exhibits cold spokes for experiment F but not experiment A (Figure 11.2).
Bueler et al. (2007) argue these spokes are a numerical instability that develops when the derivative
of the strain heating term is large. Brinkerhoff and Johnson (2013) demonstrate that the model
VarGlaS avoids the formation of these cold spokes. However, that model differs from previously
analyzed models in several ways: it solves a three-dimensional, advective-diffusive description of an
enthalpy formulation for energy conservation; it uses the Finite Element Method on unstructured
meshes; conservation of momentum and energy are iterated on until they are consistent (rather
than lagging energy and momentum solutions as in most other models). At present, it is unclear
which combination of those features is responsible for preventing the formation of the cold spokes.

55

Table 11.1: EISMINT2 results for MALI shallow-ice model. For each experiment, model
name “EISMINT2” refers to mean and range of models reported in Payne
et al. (2000), where we assume the range reported in by Payne et al. (2000)
is symmetric about the mean. For experiments B, C, and D reported values
are the change from experiment A results. MALI results that lie outside the
range of values in Payne et al. (2000) are italicized.

Exp. Model Volume Area Melt fraction Divide thickness Divide basal
106 km3 106 km2 m temperature K

A EISMINT2 2.128±0.0725 1.034±0.043 0.718±0.145 3688.3±48.3 255.6±1.4
MALI 2.097 1.030 0.637 3671.8 255.2

Exp. Model % change % change % change % change change (K)

B EISMINT2 -2.589±0.4735 0.0±0.0 11.836±9.3345 -4.9±0.658 4.6±0.259
MALI -2.258 0.0 16.832 -5.013 4.6

C EISMINT2 -28.505±0.602 -19.515±1.777 -27.806±15.6855 -12.9±0.7505 3.7±0.3075
MALI -27.529 -20.179 -35.521 -12.049 3.8

D EISMINT2 -12.085±0.618 -9.489±1.63 -1.613±2.8725 -2.2±0.266 -0.2±0.03
MALI -12.265 -9.459 -5.216 -2.092 -0.2

11.3 ISMIP-HOM

The Ice Sheet Model Intercomparison Project-Higher Order Models (ISMIP-HOM) is a set of
community benchmark experiments for testing higher-order approximations of ice dynamics (Pattyn
et al., 2008). Tezaur et al. (2015a) describe results from the Albany-LI velocity solver for ISMIP-
HOM experiments A (flow over a bumpy bed) and C (ice stream flow). For all configurations of
both tests, Albany-LI results were within one standard deviation of the mean of first-order models
presented in Pattyn et al. (2008), and showed excellent agreement with the similar first-order model
formulation of Perego et al. (2012). These tests only require a single diagnostic solve of velocity,
and thus results through MALI match those of the standalone Albany-LI code it is using.

11.4 MISMIP3d

The Marine Ice Sheet Model Intercomparison Project-3d (MISMIP3d) is a community benchmark
experiment testing grounding line migration of marine ice sheets and includes nontrivial effects
in all three dimensions (Pattyn et al., 2013). The experiments use a rectangular domain that is
800 km long in the longitudinal direction and 50 km wide in the transverse direction, with the
transverse direction making up half of a symmetric glacier. The bedrock forms a sloping plane
below sea level. The first phase of the experiment (Stnd) is to build a steady state ice sheet
from a spatially uniform positive surface mass balance, with a prescribed flow rate factor A (no
temperature calculation or coupling) and prescribed basal friction for a nonlinear basal friction
law. A marine ice sheet forms with an unbuttressed floating ice shelf that terminates at a fixed ice
front at the edge of the domain. From this steady state, the P75R perturbation experiment reduces
basal friction by a maximum of 75% across a Gaussian ellipse centered where the Stnd grounding
line position crosses the symmetry axis. The perturbation is applied for 100 years, resulting in a
curved grounding line that is advanced along the symmetry axis. After the completion of P75S,
a reversibility experiment named P75R removes the basal friction perturbation and allows the ice
sheet to relax back towards the Stnd state.

56

0 200 400 600 800 1000 1200 1400
X position (km)

0

200

400

600

800

1000

1200

1400
Y

po
si

tio
n

(k
m

)

240

245

250

255

260

265

270

275

0 200 400 600 800 1000 1200 1400
X position (km)

0

200

400

600

800

1000

1200

1400

Y
po

si
tio

n
(k

m
)

240

245

250

255

260

265

270

275a b

Figure 11.2: a) Basal homologous temperature (K) for EISMINT2 Experiment A. b)
Same for Experiment F. Figures are plotted following Payne et al. (2000).

Pattyn et al. (2013) report results from 33 models of varying complexity and applied at resolution
ranging from 0.1 to 20 km. Participating models used depth-integrated shallow-shelf or L1L1/L2L2
approximations, hybrid shallow-ice/shallow-shelf approximation, or the complete Stokes equations;
there were no three-dimensional first-order approximation models included. This relatively simple
experiment revealed a number of key features necessary to accurately model even a simple ma-
rine ice sheet. Insufficient grid resolution prevented reversibility of the steady state grounding line
position after experiments P75S and P75R. Reversibility required grid resolution well below 1 km
without a subgrid parameterization of grounding line position, and grids a couple times coarser
with a grounding line parameterization (Pattyn et al., 2013; Gladstone et al., 2010). The steady
state grounding line position in the Stnd experiment was dependent on the stress approximation
employed, with Stokes model calculating grounding lines the farthest upstream and models that
simplify or eliminate vertical shearing (e.g., shallow shelf) having grounding lines farther down-
stream, by up to 100 km. With these features resolved, numerical error due to grounding line
motion is smaller than errors due to parameter uncertainty (Pattyn et al., 2013).

We find MALI using the Albany-LI first-order velocity solver is able to resolve the MISMIP3d
experiments satisfactorily compared to the Pattyn et al. (2013) benchmark results when using a
grid resolution of 500 m with grounding line parameterization. Results at 1 km resolution with
grounding line parameterization are close to fully resolved. We first assess grid convergence by
comparing the position of the steady state grounding line in the Stnd experiment for a range of
resolutions against our highest resolution configuration of 250 m (Figure 11.3). Without a grounding
line parameterization, the grounding line position appears unconverged, but with the grounding
line parameterization, grid convergence occurs at 500 m resolution. The converged grounding line
position for the Stnd experiment with MALI is 534 km. This represents the first results published
for a three-dimensional, first-order stress approximation that we are aware of, and this grounding
line position falls between that of the L1L2 and Stokes models reported by Pattyn et al. (2013),
consistent with the intermediate level of approximation of our model. The dissertation work by
Leguy (2015) reported similar results for the Blatter-Pattyn velocity solver with grounding line
parameterization in the Community Ice Sheet Model.

Reversibility of the P75S and P75R experiments shows the same grid resolution requirement
of 500 m, while the 1 km simulation with grounding line parameterization is close to reversible

57

450

460

470

480

490

500

510

520

530

540

100100010000

St
ea

dy
 st

at
e g

ro
un

di
ng

 li
ne

 p
os

iti
on

 (k
m

)

Grid spacing (m)

Figure 11.3: Grid resolution convergence for MISMIP3d Stnd experiment with (gray
squares) and without (black circles) grounding line parameterization.

(Figure 11.4). Our highest resolution 250 m simulation without grounding line parameterization
does show reversibility at the end of P75R (not shown), but the results differ somewhat from the
runs with grounding line parameterization due to the differing starting position determined from
the Stnd experiment. Thus for marine ice sheets with similar configuration to the MISMIP3d test,
we recommend using MALI with the grounding line parameterization and a resolution of 1 km or
less.

The transient results using the MALI three-dimensional first-order stress balance look most
similar to those of the “SCO6” L1L2 model presented by Pattyn et al. (2013) in that it takes
about 50 years for the grounding line to reach its most advanced position during P75S. In contrast,
the Stokes models took notably longer and the models with reduced or missing representation of
membrane stresses reached their furthest advance within the first couple decades (Pattyn et al.,
2013).

In addition to MISMIP3d, we have used MALI to perform the MISMIP+ experiments (Asay-
Davis et al., 2016). These results are included in the MISMIP+ results paper in preparation and
not shown here.

58

Figure 11.4: Results of the MISMIP3d P75R and P75S experiments from MALI at in-
creasing grid resolution: a) 2000 m, b) 1000 m, c) 500 m, d) 250 m. Re-
sults for 250 m without grounding line parameterization (e) are also shown
for reference. Plots follow conventions of Figures 5 and 6 in Pattyn et al.
(2013). Upper plot in each subplot shows steady state grounding line posi-
tions for steady-state spin-up (black), P75S (red), and P75R (blue) experi-
ments. Lower plot in each subplot shows grounding line position with time
for P75R (red) and P75S (blue) at y=0 km (top curves) and y=50 km (bot-
tom curves). 500 m and 250 m results are nearly identical. 250 m results
without grounding line parameterization are intermediate of those at 1000 m
and 2000 m resolution with grounding line parameterization.

59

Chapter 12

Test Cases

This chapter describes detail of a couple of simple test cases that can easily be run by new users.
It does not provide an exhaustive description of all the tests that have been added to MALI.
Some additional tests are summarized in Chapter 11. MPAS includes a test case system called
”Configuration Of Model for Prediction Across Scales Setups” (COMPASS) located within the
model source code at testing and setup/compass. We hope to include instructions for setting up
COMPASS tests in future releases.

The test cases discussed below are available for download at http://mpas-dev.github.io/

land_ice/download.html.

12.1 Halfar Dome

This test case describes the time evolution of a dome of ice as described by Halfar (1983). This
test provide an analytic solution for a flat-bedded SIA problem.

∂H

∂t
= ∇ · (ΓHn+2|∇H|n−1∇H) (12.1)

where n is the exponent in the Glen flow law, commonly taken as 3, and Γ is a positive constant:

Γ =
2

n+ 2
A(ρg)n (12.2)

For n = 3, this reduces to:

H(t, r) = H0

(
t0
t

) 1
9

1−
((

t0
t

) 1
18 r

R0

) 4
3

3
7

(12.3)

where

t0 =
1

18Γ

(
7

4

)3 R4
0

H7
0

(12.4)

and H0, R0 are the central height of the dome and its radius at time t = t0.
For more details see http://www.projects.science.uu.nl/iceclimate/karthaus/2009/more/

lecturenotes/EdBueler.pdf, Bueler et al. (2005), Halfar (1983).

60

http://mpas-dev.github.io/land_ice/download.html
http://mpas-dev.github.io/land_ice/download.html
http://www.projects.science.uu.nl/iceclimate/karthaus/2009/more/lecturenotes/EdBueler.pdf
http://www.projects.science.uu.nl/iceclimate/karthaus/2009/more/lecturenotes/EdBueler.pdf

12.1.1 Provided Files

Our implementation of the Halfar dome has an initial radius of R0 = 21.2 km and an initial thickness
of H = 707.1 m. These values can be changed by editing setup dome initial conditions.py.

• README:
Information about the test case.

• namelist.landice:
This file is used for actually running the dome test case in the MPAS land ice core. It may
not include all options available to the model. See the namelist.landice.defaults file in the
MPAS root directory for a list of all options available. They are also documented in Section
15.

• streams.landice:
This file is used for specifying file input/output settings for the model.

• check halfar solution.py:
This is the script to compare model results to the analytic solution.

• visualize dome.py:
This python script provides some general visualization of the model output. It can be used
in addition to halfar.py for additional visualization.

• graph.info.part.* files:
These provide grid partitioning information for running the test case on more than one pro-
cessor.

• setup dome initial conditions.py:
This python script generates the dome initial condition after an empty landice grid.nc file
exists. If you downloaded a tar archive, you do not need to do this. However, if you want to
modify the IC for some reason, you can edit and run this script.

12.1.2 Results

As the dome of ice evolves, its margin advances and its thickness decreases (there is no surface mass
balance to add new mass). The script halfar.py will plot the modeled and analytic thickness at
a specified time (Figure 12.1), as well as report model error statistics. Invoke halfar.py --help

for details of its usage.

61

Figure 12.1: Halfar test case results after 200 years of dome evolution. This figure is gen-
erated by halfar.py.

12.2 EISMINT-1 Test Cases

This test case is from the European Ice Sheet Modelling INiTiative intercomparison experiments.
These experiments are described at http://homepages.vub.ac.be/~phuybrec/eismint.html and
in Huybrechts et al. (1996).

Currently only the Moving Margin 1 Test Case from EISMINT-1 is included.

12.2.1 Provided Files

• namelist.landice:
This file is used for actually running the dome test case in the MPAS land ice core. It may
not include all options available to the model. See the namelist.landice.defaults file in the
MPAS root directory for a list of all options available. They are also documented in Section
15.

• streams.landice:
This file is used for specifying file input/output settings for the model.

• check output eismint-mm1.py
This script can be used to compare model output to results from the EISMINT intercompar-
ison.

• graph.info.part.* files:
These provide grid partitioning information for running the test case on more than one pro-
cessor.

• setup initial conditions EISMINT1-MovingMargin-1.py
This file can be used to setup the initial conditions for the test case. If you downloaded a tar
archive, you do not need to do this. However, if you want to modify the initial condition for
some reason, you can edit and run this script.

12.2.2 Results

As the initial ice sheet evolves, its shape eventually reaches a steady-state with the imposed surface
mass balance. The script check output eismint-mm1.py will plot the modeled thickness at a
specified time, as well as compare the model results to the results from the original EISMINT

62

http://homepages.vub.ac.be/~phuybrec/eismint.html

intercomparison. Invoke check output eismint-mm1.py --help for details of its usage. The script
will compare the maximum ice thickness at the final time of the model output to the values reported
from the models participating in the EISMINT-1 intercomparison. You should see something similar
to this:

====================================

Max modeled thickness (m) = 2976.68217741

EISMINT models ice thickness at divide (m):

3d models (10 of them): 2978.0 +/- 19.3

2d models (3 of them): 2982.2 +/- 26.4

====================================

====================================

Basal homologous temperature at divide (deg C) = -13.0860572743

EISMINT models basal temperature at divide (m):

3d models (6 of them): -13.34 +/- 0.56

====================================

63

Chapter 13

MALI within the Energy Exascale
Earth System Model

MALI is the current land ice model component of the U.S. Department of Energy’s Energy Exas-
cale Earth System Model (E3SM, https://github.com/E3SM-Project/E3SM). E3SM is an Earth
System Model with atmosphere, land, ocean, and sea ice components, linked through a coupler that
passes the necessary fields (e.g., model state, mass, momentum, and energy fluxes) between the
components. E3SM, which branched from the Community Earth System Model (CESM, version
1.2 beta10) in 2014, targets high resolution global simulations, and all components have a variable
resolution mesh capability. The ocean (Ringler et al., 2013; Petersen et al., 2015, 2018) and sea ice
(Turner et al., 2018) components are also built on the MPAS Framework. Because the coupling
between E3SM and MALI is currently still fairly rudimentary, we include only a few additional
details below and leave a more detailed description to future work. Having all three of these E3SM
components in the MPAS framework has simplified adding and maintaining them within E3SM,
because developments in the component driver code and build and configuration scripts made by
one MPAS component can easily be leveraged by the others.

Physics at the ice sheet atmosphere interface are handled by the snow model within the E3SM
Land Model (ELM; Zhu et al. (2018); Ricciuto et al. (2018)). ELM’s snow model calculates ice
sheet surface mass balance using a surface energy balance model and, at each coupling interval,
MALI passes the current ice sheet extent and surface elevation through the coupler to ELM. The
coupler then returns the surface mass balance and surface temperature calculated by ELM to MALI.
These fields are used within MALI as boundary conditions to the mass and thermal evolution
equations (Sections 8.3 and 8.4). Currently, runoff from surface melting is calculated within ELM
and routed directly through E3SM’s runoff model, rather than being passed to and used by MALI.
The subglacial discharge model discussed above in Section 9.1 is not currently coupled to the rest
of E3SM.

Ongoing and future work on MALI and E3SM coupling includes: passing subglacial discharge
at terrestrial ice margins to the land runoff model in E3SM; passing surface runoff calculated in
E3SM to the land ice model (for use as a source term in the subglacial hydrology model); two-way
coupling between the ocean and a dynamic MALI model1; discharge of icebergs (solid ice flux from
MALI) to the coupler and from there to the ocean and sea ice models.

1Coupling to a static Antarctic ice sheet with ocean circulation in sub-ice shelf cavities is supported in E3SM
version 1.0.0

64

https://github.com/E3SM-Project/E3SM

Chapter 14

Model Configuration

This chapter describes the configuration of the Land Ice core. The chapter covers the dimensions
used in the model, the Namelist options which are used to provide run-time configurability of model
options, the variables used in the model, and the usage of run-time I/O streams.

65

Chapter 15

Namelist options

Embedded links point to more detailed namelist information in the appendix.

15.1 velocity solver

The velocity solver namelist record controls which velocity solver is used and options associated
with velocity solvers.

Name Description

config velocity solver Selection of the method for solving ice velocity. ’L1L2’, ’FO’, and
’Stokes’ require compiling with external dycores. ’none’ skips the
calculation of velocity so the velocity field will be 0 or set to a field
read from an input file. ’simple’ gives a simple prescribed velocity
field computed at initialization.

config sia tangent slope -
calculation

Selection of the method for calculating the tangent component
of surface slope at edges needed by the SIA velocity solver.
’from vertex barycentric’ interpolates upperSurface values from
cell centers to vertices using the barycentric interpolation routine
in operators (mpas cells to points using baryweights) and then cal-
culates the slope between vertices. It works for obtuse triangles,
but will not work correctly across the edges of periodic meshes.
’from vertex barycentric kiteareas’ interpolates upperSurface val-
ues from cell centers to vertices using barycentric interpolation
based on kiterea values and then calculates the slope between ver-
tices. It will work across the edges of periodic meshes, but will not
work correctly for obtuse triangles. ’from normal slope’ uses the
vector operator mpas tangential vector 1d to calculate the tangent
slopes from the normal slopes on the edges of the adjacent cells.
It will work for any mesh configuration, but is the least accurate
method.

config flowParamA calculation Selection of the method for calculating the flow law parameter A. If
’constant’ is selected, the value is set to config default flowParamA.
The other options are calculated from the temperature field. This
calculation only applies if config velocity solver is set to ’sia’. For
the ’FO’ velocity solver, this is set in the albany input.xml file.

66

Name Description (Continued)
config do velocity -
reconstruction for external -
dycore

By default, external, higher-order dycores return the uRecon-
structX and uReconstructY fields (which are the native locations of
their FEM solution). If this option is set to .true., uReconstructX
and uReconstructY will be calculated by MPAS using framework’s
vector reconstruction routines based on the values of normalVeloc-
ity supplied by the external dycore. This provides a way to test
the calculation of normalVelocity in the interface.

config simple velocity type Selection of the type of simple velocity field computed at
initialization when config velocity solver = ’simple’. See
mode forward/mpas li velocity simple.F for details of what the op-
tions do.

config use glp If true, then apply Albany’s grounding line parameterization
config beta use effective pressure If true, then multiply beta by effective pressure before passing to

Albany. This allows, e.g., a Weertman basal friction law with an
effective pressure term. Note that basal friction still needs to be
selected in Albany xml file.

15.2 advection

The advection namelist record controls options assocated with advection of thickness and tracers.
Tracer advection is not currently supported.

Name Description

config thickness advection Selection of the method for advecting thickness (’fo’ = first-order
upwinding).

config tracer advection Selection of the method for advecting tracers.

15.3 calving

The calving namelist record controls options assocated with calving of floating ice.

Name Description

config calving Selection of the method for calving ice (as defined further below).
config calving topography Defines the topographic height below which ice calves (for topo-

graphic threshold option).
config calving thickness Defines the ice thickness below which ice calves (for thick-

ness threshold option).
config calving eigencalving -
parameter source

Source of the eigencalving parameter value

67

Name Description (Continued)
config calving eigencalving -
parameter scalar value

Value of eigencalving parameter if taken as a scalar by option con-
fig calving eigencalving parameter source. (Default value is 1.0e9
m a converted to units used here.)

config data calving Select whether or not to configure calving in a ’data’ model mode
(calc. calving flux but do not update ice geometry)

config calving timescale Defines the timescale for calving. The fraction of eligible ice that
calves is min(dt/calving timescale, 1.0). A value of 0 means that
all eligible ice calves.

config restore calving front If true, then restore the calving front to its initial position. If ice
grows beyond the initial extent, it is removed. If ice shrinks to an
extent behind the initial extent, those locations are filled with thin
ice (defined as 1/10th the value of config dynamic thickness). Note
that this violates conservation of mass and energy.

15.4 thermal solver

The thermal solver namelist record controls options assocated with temperature evolution.

Name Description

config thermal solver Selection of the method for the vertical thermal solver (possible
values are described further below).

config thermal calculate bmb Determines if basal and internal melting calculated by the thermal
solver should contribute to basal mass balance or be ignored.

config temperature init Selection of the method for initializing the ice temperature (as de-
scribed further below).

config thermal thickness Defines the minimum ice thickness for conducting thermal calcula-
tions. Ice thinner than this value is ignored by the thermal solver.

config surface air -
temperature source

Selection of the method for setting the surface air
temperature. ’constant’ uses the value set by con-
fig surface air temperature value. ’file’ reads the field from
an input or forcing file or ESM coupler. ’lapse’ uses the value of
config surface air temperature value at elevation 0 with a lapse
rate applied from config surface air temperature lapse rate.

config surface air -
temperature value

Constant value of the surface air temperature.

config surface air -
temperature lapse rate

Lapse rate to apply to surface air temperature when con-
fig surface air temperature source=’lapse’. Positive values lead to
colder temperatures at higher elevations.

config basal heat flux source Selection of the method for setting the basal heat flux.
config basal heat flux value Constant value of the basal heat flux (positive upward).
config basal mass bal float Selection of the method for computing the basal mass balance of

floating ice. ’none’ sets the basalMassBal field to 0 everywhere.
’file’ uses without modification whatever value was read in through
an input or forcing file or the value set by an ESM coupler. ’con-
stant’, ’mismip’, ’seroussi’ use hardcoded fields defined in the code.

68

Name Description (Continued)
config basal mass bal -
seroussi amplitude

amplitude on the depth adjustment applied to the Seroussi sub-
glacial melt parameterization

config basal mass bal -
seroussi period

period of the periodic depth adjustment applied to the Seroussi
subglacial melt parameterization

config basal mass bal -
seroussi phase

phase of the periodic depth adjustment applied to the Seroussi
subglacial melt parameterization. Units are cycles, i.e., 0-1

config bmlt float flux Value of the constant heat flux applied to the base of floating ice
(positive upward).

config bmlt float xlimit x value defining region where bmlt float flux is applied; melt only
where abs(x) is greater than xlimit.

15.5 physical parameters

The physical parameters namelist record sets scalar physical parameters and constants within the
land ice model.

Name Description

config ice density ice density to use (assumed constant and uniform)
config ocean density ocean density to use for calculating floatation (assumed constant

and uniform)
config sea level sea level to use for calculating floatation (assumed constant and

uniform)
config default flowParamA Defines the default value of the flow law parameter A to be used if

it is not being calculated from ice temperature. This value will be
used by either the sia or FO velocity solver if they are respectively
configured to use a scalar A value. Defaults to the SI representation
of 1.0e-16 yr−1 Pa−3.

config enhancementFactor multiplier on the flow parameter A
config flowLawExponent Defines the value of the Glen flow law exponent, n. This value will

be used by either the sia or FO velocity solver. A value other than
3.0 is untested.

config dynamic thickness Defines the ice thickness below which dynamics are not calculated
(and hence ice velocity is set to 0).

15.6 time integration

The time integration namelist record controls parameters that pertain to all time-stepping methods.
At present, Forward Euler is the only time integration method implemented.

69

Name Description

config dt Length of model time step defined as a time interval.
config time integration Time integration method (currently, only forward Euler is sup-

ported).
config adaptive timestep Determines if the time step should be adjusted based on the CFL

condition or should be steady in time. If true, the config dt *
options are ignored.

config min adaptive timestep The minimum allowable time step in seconds. If the CFL condition
dictates the time step should be shorter than this, then the model
aborts.

config max adaptive timestep The maximum allowable time step in seconds. If the allowable time
step determined by the adaptive CFL calculation is longer than
this, then the model will specify config max adaptive timestep as
the time step instead. Defaults to 100 years (in seconds).

config adaptive timestep -
CFL fraction

A multiplier on the minimum allowable time step calculated from
the CFL condition. (Setting to 1.0 may be unstable, so smaller
values are recommended.)

config adaptive timestep -
include DCFL

Option of whether to include the diffusive CFL condition in the
determination of the maximum allowable timestep. The diffusive
CFL condition at any location is estimated based on the local ice
flux and surface slope.

config adaptive timestep -
force interval

If adaptive timestep is enabled, the model will ensure a timestep
ends at multiples of this interval. This is useful for ensuring that
model output is written at a specific desired interval (rather than
the closest time after) or when running coupled to an earth system
model that expects a certain interval.

15.7 time management

General time management is handled by the time management namelist record. Included options
handle time-related parts of MPAS, such as the calendar type and if the simulation is a restart or
not.

Users should use this record to specify the beginning time of the simulation, and either the
duration or the end of the simulation. Only the end or the duration need to be specified as the
other is derived within MPAS from the beginning time and other specified one.

If both the run duration and stop time are specified, run duration is used in place of stop time.

Name Description

70

Name Description (Continued)

config do restart Determines if the initial conditions should be read from a
restart file, or an input file. To perform a restart, set this to
true in the namelist.input file. The restart time will be read
from config start time (which can be set to ’file’ to have the
restart time read automatically from the file defined by con-
fig restart timestamp name). A restart will read everything from
the restart file - no information is read from the ’input’ stream. It
will perform a run normally, except velocity will not be solved on
a restart.

config restart timestamp name Path to the filename for restart timestamps to be read and written
from.

config start time Timestamp describing the initial time of the simulation. If it is
set to ’file’, the initial time is read from the filename specified by
config restart timestamp name (defaults to ’restart timestamp’).

config stop time Timestamp describing the final time of the simulation. If it is
set to ’none’ the final time is determined from config start time
and config run duration. If config run duration is also specified, it
takes precedence over config stop time. Set config stop time to be
equal to config start time (and config run duration to ’none’) to
perform a diagnostic solve only.

config run duration Timestamp describing the length of the simulation. If it is set
to ’none’ the duration is determined from config start time and
config stop time. config run duration overrides inconsistent val-
ues of config stop time. If a time value is specified for con-
fig run duration, it must be greater than 0.

config calendar type Selection of the type of calendar that should be used in the simu-
lation.

15.8 io

The io namelist record provides options for modifications to the I/O system of MPAS. These include
frequency, file name, and parallelization options.

Name Description

config stats interval Integer specifying interval (number of timesteps) for writing
global/local statistics. If set to 0, then statistics are not
written (except perhaps at startup, as determined by ’con-
fig write stats on startup’). Applies to statistics written to log file
and not analysis member output written to netCDF files.

config write stats on startup Logical flag determining if statistics should be written prior to the
first time step. Applies to statistics written to log file and not
analysis member output written to netCDF files.

config stats cell ID global ID for the cell selected for local statistics/diagnostics. Ap-
plies to statistics written to log file and not analysis member output
written to netCDF files.

71

Name Description (Continued)
config write output on startup Logical flag determining if an output file should be written prior

to the first time step.
config pio num iotasks Integer specifying how many IO tasks should be used within the

PIO library. A value of 0 causes all MPI tasks to also be IO tasks.
IO tasks are required to write contiguous blocks of data to a file.
Optimal performance is typically found by having 1-2 tasks per
node performing I/O. To do so, config pio num iotasks must be
manually set in conjunction with config pio stride as appropriate
for the processor layout used. For example, running on 240 pro-
cessors on a machine with 24 processors per node, setting con-
fig pio num iotasks=20 and config pio stride=12 would configure
two I/O tasks per node.

config pio stride Integer specifying the stride of each IO task. See con-
fig pio num iotasks for details.

config year digits Integer specifying the number of digits used to represent the year
in time strings.

config output external -
velocity solver data

If .true., external velocity solvers (if enabled) will write their own
output data in addition to any MPAS output that is configured.

config write albany ascii mesh Logical flag determining if ascii mesh files will be created. These
files are written in a format that can be used by the standalone
Albany velocity solver for optimization. If .true., the model initial-
izes, writes the mesh files, and then terminates.

15.9 decomposition

MPAS handles decomposing all variables into computational blocks. The decomposition used needs
to be specified at run time and is computed by an external tool (e.g. metis). Additionally, MPAS
supports multiple computational blocks per MPI process, and the user may specify an additional
decomposition file which can specify the assignment of blocks to MPI processes. Run-time param-
eters that control the run-time decomposition used are specified within the decomposition namelist
record.

Name Description

config num halos Determines the number of halo cells extending from a blocks owned
cells (Called the 0-Halo). The default first-order upwinding advec-
tion requires a minimum of 2. Note that a minimum of 3 is required
for incremental remapping advection on a quad mesh or for FCT
advection (neither of which is currently supported for land ice).

config block decomp file prefix Defines the prefix for the block decomposition file. Can include a
path. The number of blocks is appended to the end of the prefix
at run-time.

config number of blocks Determines the number of blocks a simulation should be run with.
If it is set to 0, the number of blocks is the same as the number of
MPI tasks at run-time.

72

Name Description (Continued)
config explicit proc decomp Determines if an explicit processor decomposition should be used.

This is only useful if multiple blocks per processor are used.
config proc decomp file prefix Defines the prefix for the processor decomposition file. This file is

only read if config explicit proc decomp is .true. The number of
processors is appended to the end of the prefix at run-time.

15.10 debug

At run-time a user can enable debugging features within MPAS-Land Ice. Currently the only
debug option is to print more detailed information about thickness advection. Potential future
debug options would be to include disabling of any tendencies to help determine why an issue
might be happening; various checks on certain fields; and the ability to prescribe both a thickness
and velocity field at run-time which are constant throughout a simulation. All options that control
these debugging features are specified within the debug namelist record.

Name Description

config print thickness -
advection info

Prints additional information about thickness advection.

config print calving info Prints additional information about calving physics (if enabled).
config print thermal info Prints additional information about thermal calculations (if en-

abled).
config always compute fem grid Always compute finite-element grid information for external dy-

cores rather than only doing so when the ice extent changes.
config print velocity cleanup -
details

After velocity is calculated there are a few checks for appropriate
values in certain geometric configurations. Setting this option to
.true. will cause detailed information about those adjustments to
be printed.

15.11 subglacial hydro

The subglacial hydro namelist record controls options assocated with the subglacial hydrology
model.

Name Description

config SGH activate subglacial hydrology model
config SGH adaptive -
timestep fraction

fraction of adaptive CFL timestep to use

73

Name Description (Continued)
config SGH max adaptive -
timestep

The maximum allowable time step in seconds. If the al-
lowable time step determined by the adaptive CFL calcula-
tion is longer than this, then the model will specify con-
fig SGH max adaptive timestep as the time step instead. Defaults
to 100 years (in seconds).

config SGH tangent slope -
calculation

Selection of the method for calculating the tangent component of
slope at edges. ’from vertex barycentric’ interpolates scalar val-
ues from cell centers to vertices using the barycentric interpolation
routine in operators (mpas cells to points using baryweights) and
then calculates the slope between vertices. It works for obtuse
triangles, but will not work correctly across the edges of periodic
meshes. ’from vertex barycentric kiteareas’ interpolates scalar val-
ues from cell centers to vertices using barycentric interpolation
based on kiterea values and then calculates the slope between ver-
tices. It will work across the edges of periodic meshes, but will not
work correctly for obtuse triangles. ’from normal slope’ uses the
vector operator mpas tangential vector 1d to calculate the tangent
slopes from the normal slopes on the edges of the adjacent cells.
It will work for any mesh configuration, but is the least accurate
method.

config SGH pressure calc Selection of the method for calculating water pressure. ’cavity’
closes the hydrology equations by assuming cavities are always com-
pletely full. ’overburden’ assumes water pressure is always equal
to ice overburden pressure.

config SGH alpha power of alpha parameter in subglacial water flux formula
config SGH beta power of beta parameter in subglacial water flux formula
config SGH conduc coeff conductivity coefficient for subglacial water flux
config SGH till drainage background subglacial till drainage rate
config SGH advection Advection method for SGH. ’fo’=first-order upwind; ’fct’=flux-

corrected transport. FCT currently not enabled.
config SGH bed roughness cavitation coefficient
config SGH bed roughness max bed roughness scale
config SGH creep coefficient creep closure coefficient
config SGH englacial porosity notional englacial porosity
config SGH till max maximum water thickness in subglacial till
config SGH chnl active activate channels in subglacial hydrology model
config SGH chnl alpha power of alpha parameter in subglacial water flux formula (in chan-

nels)
config SGH chnl beta power of beta parameter in subglacial water flux formula (in chan-

nels)
config SGH chnl conduc coeff conductivity coefficient (in channels)
config SGH chnl creep -
coefficient

creep closure coefficient (in channels)

config SGH incipient -
channel width

width of sheet beneath/around channel that contributes to melt
within the channel

config SGH include pressure -
melt

whether to include the pressure melt term in the rate of channel
opening

config SGH shmip forcing calculate time-varying forcing specified by SHMIP experiments C
or D

74

Name Description (Continued)
config SGH basal melt source for the basalMeltInput term. ’file’ takes whatever field was

input and performs no calculation. ’thermal’ uses the grounded-
BasalMassBal field calculated by the thermal model. ’basal heat’
calculates a melt rate assuming the entirety of the basal heat flux
(basalFrictionFlux+basalHeatFlux) goes to melting ice at the bed.
This is calculated in the SGH module and is independent of any
calculations in the thermal model.

15.12 AM globalStats

The AM globalStats namelist record controls options assocated with the global statistics analysis
members.

Name Description

config AM globalStats enable If true, landice analysis member globalStats is called.
config AM globalStats -
compute interval

Timestamp determining how often analysis member computations
should be performed.

config AM globalStats -
stream name

Name of the stream that the globalStats analysis member should
be tied to.

config AM globalStats -
compute on startup

Logical flag determining if analysis member computations occur on
start-up.

config AM globalStats write -
on startup

Logical flag determining if an analysis member write occurs on
start-up.

15.13 AM regionalStats

The AM regionalStats namelist record controls options assocated with the regional statistics anal-
ysis members.

Name Description

config AM regionalStats enable If true, landice analysis member regionalStats is called.
config AM regionalStats -
compute interval

Timestamp determining how often analysis member computations
should be performed.

config AM regionalStats -
stream name

Name of the stream that the regionalStats analysis member should
be tied to.

config AM regionalStats -
compute on startup

Logical flag determining if analysis member computations occur on
start-up.

config AM regionalStats -
write on startup

Logical flag determining if an analysis member write occurs on
start-up.

75

76

Chapter 16

Dimensions

Name Units Description

nCells unitless The number of polygons in the primary grid.
nEdges unitless The number of edge midpoints in either the primary or dual grid.
maxEdges unitless The largest number of edges any polygon within the grid has.
maxEdges2 unitless Two times the largest number of edges any polygon within the grid

has.
nVertices unitless The total number of cells in the dual grid. Also the number of

corners in the primary grid.
ONE unitless The number one as a dimension.
TWO unitless The number two as a dimension.
R3 unitless The number three as a dimension.
vertexDegree unitless The number of cells or edges touching each vertex.
nVertLevels unitless The number of levels in the vertical direction. All vertical levels

share the same horizontal locations.
nVertInterfaces unitless The number of interfaces in the vertical direction.
maxTracersAdvect unitless The maximum number of tracers to be advected.
nRegions unitless The number of regions used for AM regionalStats
nRegionGroups unitless The number of region groups used for AM regionalStats
maxRegionsInGroupunitless The maximum number of regions in a region group used for

AM regionalStats

77

Chapter 17

Variable definitions

Embedded links point to more detailed variable information in the appendix.

17.1 mesh

The mesh data type contains a single time level. The fields inside the mesh structure are not
assumed to be time dependent. This data structure contains fields that describe the mesh, and the
connectivity of the mesh. Most of the fields contained in this structure are shared throughout all
MPAS cores. Additionally, a few Land Ice specific variables (that are time-independent) are stored
here, but may be moved in the future.

Name Description
latCell Latitude location of cell centers in radians.
lonCell Longitude location of cell centers in radians.
xCell X Coordinate in cartesian space of cell centers.
yCell Y Coordinate in cartesian space of cell centers.
zCell Z Coordinate in cartesian space of cell centers.
indexToCellID List of global cell IDs.
latEdge Latitude location of edge midpoints in radians.
lonEdge Longitude location of edge midpoints in radians.
xEdge X Coordinate in cartesian space of edge midpoints.
yEdge Y Coordinate in cartesian space of edge midpoints.
zEdge Z Coordinate in cartesian space of edge midpoints.
indexToEdgeID List of global edge IDs.
latVertex Latitude location of vertices in radians.
lonVertex Longitude location of vertices in radians.
xVertex X Coordinate in cartesian space of vertices.
yVertex Y Coordinate in cartesian space of vertices.
zVertex Z Coordinate in cartesian space of vertices.
indexToVertexID List of global vertex IDs.
nEdgesOnCell Number of edges that border each cell.
nEdgesOnEdge Number of edges that surround each of the cells that straddle each

edge. These edges are used to reconstruct the tangential velocities.
cellsOnEdge List of cells that straddle each edge.
edgesOnCell List of edges that border each cell.

78

Name Description (Continued)
edgesOnEdge List of edges that border each of the cells that straddle each edge.
cellsOnCell List of cells that neighbor each cell.
verticesOnCell List of vertices that border each cell.
verticesOnEdge List of vertices that straddle each edge.
edgesOnVertex List of edges that share a vertex as an endpoint.
cellsOnVertex List of cells that share a vertex.
weightsOnEdge Reconstruction weights associated with each of the edgesOnEdge.
dvEdge Length of each edge, computed as the distance between ver-

ticesOnEdge.
dcEdge Length of each edge, computed as the distance between cell-

sOnEdge.
angleEdge Angle the edge normal makes with local eastward direction.
areaCell Area of each cell in the primary grid.
areaTriangle Area of each cell (triangle) in the dual grid.
kiteAreasOnVertex Area of the portions of each dual cell that are part of each cellsOn-

Vertex.
meshDensity The value of the generating density function at each cell center.
localVerticalUnitVectors Unit surface normal vectors defined at cell centers.
edgeNormalVectors Normal vector defined at an edge.
cellTangentPlane The two vectors that define a tangent plane at a cell center.
coeffs reconstruct Coefficients to reconstruct velocity vectors at cell centers.
layerThicknessFractions Fractional thickness of each sigma layer
layerCenterSigma Sigma (fractional) level at center of each layer
layerInterfaceSigma Sigma (fractional) level at interface between each layer (including

top and bottom)
edgeSignOnCell Sign of edge contributions to a cell for each edge on cell. Used for

bit-reproducible loops. Represents directionality of vector connect-
ing cells.

edgeSignOnVertex Sign of edge contributions to a vertex for each edge on vertex.
Used for bit-reproducible loops. Represents directionality of vector
connecting vertices.

cellProcID processor number for each cell
baryCellsOnVertex Cell center indices to use for interpolating from cell centers to ver-

tex locations. Note these are local indices!
baryWeightsOnVertex Weights to interpolate from cell centers to vertex locations. Each

weight is used with the corresponding cell center index indentified
by baryCellsOnVertex.

wachspressWeightVertex Wachspress weights used to interpolate from vertices to cell centers.
xtime model time, with format ’YYYY-MM-DD HH:MM:SS’
deltat time step length, in seconds. Value on a given time is the value

used between the previous time level and the current time level.
allowableDtACFL The maximum allowable time step based on the advective CFL con-

dition. Value on a given time is the value appropriate for between
the previous time level and the current time level.

allowableDtDCFL The maximum allowable time step based on the diffusive CFL con-
dition. Value on a given time is the value appropriate for between
the previous time level and the current time level.

simulationStartTime start time of first simulation, with format ’YYYY-MM-
DD HH:MM:SS’

daysSinceStart Time since simulationStartTime in days, for plotting
timestepNumber time step number. initial time is 0.

79

17.2 geometry

The geometry data structure contains fields related to ice sheet geometry.

Name Description
bedTopography Elevation of ice sheet bed. Once isostasy is added to the model,

this should become a state variable.
thickness ice thickness
layerThickness layer thickness
lowerSurface elevation at bottom of ice
upperSurface elevation at top of ice
layerThicknessEdge layer thickness on cell edges
dHdt diagnostic field of rate of thickness change with time (dH/dt). This

includes all processes (flux divergence, SMB, BMB, calving, etc.)
because it is calculated as the new thickness minus the old thickness
divided by the time step.

thicknessOld ice thickness from previous time level (only used to calculate thick-
nessTendency)

dynamicThickening diagnostic field of dynamic thickening rate (calculated as negative
of flux divergence)

cellMask bitmask indicating various properties about the ice sheet on
cells. cellMask only needs to be a restart field if con-
fig allow additional advance = false (to keep the mask of initial
ice extent)

edgeMask bitmask indicating various properties about the ice sheet on edges.
vertexMask bitmask indicating various properties about the ice sheet on ver-

tices.
sfcMassBal applied surface mass balance
basalMassBal applied basal mass balance
groundedBasalMassBal Basal mass balance on grounded regions
floatingBasalMassBal Basal mass balance on floating regions
calvingThickness thickness of ice that calves on a given timestep (less than or equal

to ice thickness)
eigencalvingParameter proportionality constant K2+- used in eigencalving formulation
calvingVelocity rate of calving front retreat due to calving, represented as a veloc-

ity normal to the calving front (in the x-y plane). This retreat rate
is converted from a flux to a rate in the code requiredCalvingVol-
umeRate.

requiredCalvingVolumeRate total volume of ice that needs to be removed based on eigencalving
rate at this margin cell

uncalvedVolume volume of ice that was left uncalved from required calving flux due
to only applying flux over immediate neighbors (diagnostic field to
assess if this limitation is a problem)

basalWaterThickness thickness of basal water
restoreThickness thickness of ice added when the config restore calving front option

is set to .true. (in order to maintain the calving front at its initial
position)

80

Name Description (Continued)
normalSlopeEdge normal surface slope on edges
apparentDiffusivity apparent diffusivity at cell centers (estimated based on the local

ice flux and surface slope)
upperSurfaceVertex elevation at top of ice on vertices
tangentSlopeEdge tangent surface slope on edges
slopeEdge surface slope magnitude on edges

17.3 velocity

The velocity data structure includes fields related to ice velocity and dynamics.

Name Description
flowParamA flow law parameter, A, used by shallow-ice velocity solver
normalVelocity horizonal velocity, normal component to an edge, layer interface
layerNormalVelocity horizonal velocity, normal component to an edge, layer midpoint
normalVelocityInitial horizonal velocity, normal component to an edge, computed at ini-

tialization
uReconstructX x-component of velocity reconstructed on cell centers. Also, for

higher-order dycores, on input: value of the x-component of veloc-
ity that should be applied where dirichletVelocityMask==1.

uReconstructY y-component of velocity reconstructed on cell centers. Also, for
higher-order dycores, on input: value of the y-component of veloc-
ity that should be applied where dirichletVelocityMask==1.

uReconstructZ z-component of velocity reconstructed on cell centers
uReconstructZonal zonal velocity reconstructed on cell centers
uReconstructMeridional meridional velocity reconstructed on cell centers
surfaceSpeed ice surface speed reconstructed at cell centers
basalSpeed ice basal speed reconstructed at cell centers
beta input value of basal traction parameter for sliding law used with

first-order momentum balance solver (NOTE non-SI units)
betaSolve value of basal traction parameter for sliding law used with first-

order momentum balance solver (NOTE non-SI units); differs from
beta due to any necessary adjustments made for internal consis-
tency (e.g., zeroed out where the ice is found to be floating)

exx x-component of surface strain rate
eyy y-component of surface strain rate
exy shear component of surface strain rate
eTheta orientation of principal surface strain rate
eyx shear component of surface strain rate
eMax magnitude of first principal surface strain rate
eMin magnitude of second principal surface strain rate
anyDynamicVertexMaskChanged flag needed by external velocity solvers that indicates if the region

to solve on the block’s domain has changed (treated as a logical)
dirichletVelocityMask mask of where Dirichlet boundary conditions should be applied to

the velocity solution. 1 means apply a Dirichlet boundary condi-
tion, 0 means do not. (higher-order dycores only)

81

Name Description (Continued)
dirichletMaskChanged flag needed by external velocity solvers that indicates if the Dirich-

let boundary condition mask has changed (treated as a logical)
floatingEdges edges which are floating have a value of 1. non floating edges have

a value of 0.

17.4 observations

The observations data structure includes fields related to observations of ice sheet state. None of
these are currently used internally by the model, but can be written out in Exodus format to be
used as input to Albany’s optimization capability.

Name Description
observedSurfaceVelocityX X-component of observed surface velocity
observedSurfaceVelocityY Y-component of observed surface velocity
observedSurfaceVelocity-
Uncertainty

uncertainty in observed surface velocity magnitude

observedThicknessTendency observed tendency in thickness (dH/dt)
observedThicknessTendency-
Uncertainty

uncertainty in observed tendency in thickness (dH/dt)

sfcMassBalUncertainty uncertainty in observed surface mass balance
thicknessUncertainty uncertainty in observed thickness
floatingBasalMassBalUncertainty uncertainty in observed floating basal mass balance

17.5 thermal

The thermal data structure includes fields related to ice temperature and thermodynamics.

Name Description
temperature interior ice temperature
waterfrac interior ice water fraction
enthalpy interior ice enthalpy
surfaceAirTemperature air temperature at the ice sheet surface
surfaceTemperature temperature at upper ice service
basalTemperature temperature at lower ice surface
pmpTemperature pressure melt temperature
basalPmpTemperature pressure melt temperature at lower ice surface
surfaceConductiveFlux conductive heat flux at the upper ice surface (positive downward)
basalConductiveFlux conductive heat flux at the lower ice surface (positive downward)
basalHeatFlux basal heat flux into the ice (positive upward)

82

Name Description (Continued)
basalFrictionFlux basal frictional heat flux into the ice (positive upward)
heatDissipation interior heat dissipation rate, divided by rhoi*cp ice

17.6 scratch

The scratch data structure includes reusable fields that are used as temporary arrays within the
code.

Name Description
iceCellMask mask set to 1 in cells where some criterion is satisfied and 0 other-

wise
iceCellMask2 mask set to 1 in cells where some criterion is satisfied and 0 other-

wise
iceCellMask3 mask set to 1 in cells where some criterion is satisfied and 0 other-

wise
iceEdgeMask mask set to 1 for edges adjacent to ice-covered cells and 0 otherwise
workLevelCell generic work array with dimensions of (nVertLevels nCells)
workLevelEdge generic work array with dimensions of (nVertLevels nEdges)
workLevelVertex generic work array with dimensions of (nVertLevels nVertices)
workCell generic work array with dimensions of (nCells)
workCell2 generic work array with dimensions of (nCells)
workCell3 generic work array with dimensions of (nCells)
workTracerCell generic work array with dimensions of (maxTracersAdvect nCells)
workTracerCell2 generic work array with dimensions of (maxTracersAdvect nCells)
workTracerLevelCell generic work array with dimensions of (maxTracersAdvect

nVertLevels nCells)
workTracerLevelCell2 generic work array with dimensions of (maxTracersAdvect

nVertLevels nCells)
slopeCellX x-component of slope on cell centers
slopeCellY y-component of slope on cell centers
vertexIndices local indices of each vertex

17.7 regions

The regions data structure includes fields related to regions defined for use with regional statistics
analysis members.

Name Description
regionCellMasks masks set to 1 in cells that fall within a given region and 0 otherwise

83

17.8 hydro

The hydro data structure includes fields related to the subglacial hydrology model.

Name Description
waterThickness water layer thickness in subglacial hydrology system
waterThicknessOld water layer thickness in subglacial hydrology system from previous

time step
waterThicknessTendency rate of change in water layer thickness in subglacial hydrology sys-

tem
tillWaterThickness water layer thickness in subglacial till
tillWaterThicknessOld water layer thickness in subglacial till from previous time step
waterPressure pressure in subglacial hydrology system
waterPressureOld pressure in subglacial hydrology system from previous time step
waterPressureTendency tendency in pressure in subglacial hydrology system
basalMeltInput basal meltwater input to subglacial hydrology system
externalWaterInput external water input to subglacial hydrology system
frictionAngle subglacial till friction angle
effectivePressure effective ice pressure in subglacial hydrology system
hydropotential hydropotential in subglacial hydrology system
waterFlux total water flux in subglacial hydrology system
waterFluxMask mask indicating how to handle fluxes on each edge: 0=calcu-

late based on hydropotential gradient; 1=allow outflow based
on hydropotential gradient, but no inflow (NOT YET IMPLE-
MENTED); 2=zero flux

waterFluxAdvec advective water flux in subglacial hydrology system
waterFluxDiffu diffusive water flux in subglacial hydrology system
waterVelocity water velocity in subglacial hydrology system
waterVelocityCellX subglacial water velocity reconstructed on cell centers, x-

component
waterVelocityCellY subglacial water velocity reconstructed on cell centers, y-

component
effectiveConducEdge effective Darcy hydraulic conductivity on edges in subglacial hy-

drology system
waterThicknessEdge water layer thickness on edges in subglacial hydrology system
waterThicknessEdgeUpwind water layer thickness of cell upwind of edge in subglacial hydrology

system
diffusivity diffusivity of water sheet in subglacial hydrology system
hydropotentialBase hydropotential in subglacial hydrology system without water thick-

ness contribution
hydropotentialBaseVertex hydropotential without water thickness contribution

on vertices. Only used for some choices of con-
fig SGH tangent slope calculation.

hydropotentialBaseSlopeNormal normal component of gradient of hydropotentialBase
hydropotentialBaseSlopeTangent tangent component of gradient of hydropotentialBase
gradMagPhiEdge magnitude of the gradient of hydropotentialBase, on Edges

84

Name Description (Continued)
waterPressureSlopeNormal normal component of gradient of waterPressure in subglacial hy-

drology system
divergence flux divergence of water in subglacial hydrology system
openingRate rate of cavity opening in subglacial hydrology system
closingRate rate of ice creep closure in subglacial hydrology system
zeroOrderSum sum of zero order terms in subglacial hydrology system
deltatSGHadvec advective CFL limited time step length in subglacial hydrology

system
deltatSGHdiffu diffusive CFL limited time step length in subglacial hydrology sys-

tem
deltatSGHpressure time step length limited by pressure equation scheme in subglacial

hydrology system
deltatSGH time step used for evolving subglacial hydrology system
channelArea area of channel in subglacial hydrology system
channelDischarge discharge through channel in subglacial hydrology system
channelVelocity water velocity in channel in subglacial hydrology system
channelMelt melt rate in channel in subglacial hydrology system
channelPressureFreeze freezing rate in subglacial channel due to water pressure gradient

(positive=freezing, negative=melting)
flowParamAChannel flow parameter A on edges used for channel in subglacial hydrology

system
channelEffectivePressure effective pressure in the channel in subglacial hydrology system
channelClosingRate closing rate from creep of the channel in subglacial hydrology sys-

tem
channelOpeningRate opening rate from melt of the channel in subglacial hydrology sys-

tem
channelChangeRate rate of change of channel area in subglacial hydrology system
deltatSGHadvecChannel time step length limited by channel advection
deltatSGHdiffuChannel time step length limited by channel diffusion
divergenceChannel divergence due to channel flow in subglacial hydrology system
channelAreaChangeCell change in channel area within each cell, averaged over cell area
channelDiffusivity diffusivity in channel in subglacial hydrology system

17.9 globalStatsAM

The globalStatsAM data structure includes fields related to the global statistics analysis members.

Name Description
totalIceVolume total ice sheet volume
volumeAboveFloatation total ice sheet volume above floatation
totalIceArea total ice sheet area
floatingIceVolume total floating ice sheet volume
floatingIceArea total floating ice sheet area
groundedIceVolume total grounded ice sheet volume
groundedIceArea total grounded ice sheet area

85

Name Description (Continued)
iceThicknessMean spatially averaged ice thickness
iceThicknessMax maximum ice thickness in domain
iceThicknessMin minimum ice thickness in domain
totalSfcMassBal total, area integrated surface mass balance. Positive values repre-

sent ice gain.
avgNetAccumulation average sfcMassBal, as a thickness rate. Positive values represent

ice gain.
totalBasalMassBal total, area integrated basal mass balance. Positive values represent

ice gain.
totalGroundedBasalMassBal total, area integrated grounded basal mass balance. Positive values

represent ice gain.
avgGroundedBasalMelt average groundedBasalMassBal value, as a thickness rate. Positive

values represent ice loss.
totalFloatingBasalMassBal total, area integrated floating basal mass balance. Positive values

represent ice gain.
avgSubshelfMelt average floatingBasalMassBal value, as a thickness rate. Positive

values represent ice loss.
totalCalvingFlux total, area integrated mass loss due to calving. Positive values

represent ice loss.
groundingLineFlux total mass flux across all grounding lines. Note that flux from float-

ing to grounded ice makes a negative contribution to this metric.
surfaceSpeedMax maximum surface speed in the domain
basalSpeedMax maximum basal speed in the domain

17.10 regionalStatsAM

The regionalStatsAM data structure includes fields related to the regional statistics analysis mem-
bers.

Name Description
regionalIceArea total ice sheet area within region
regionalIceVolume total ice sheet volume within region
regionalVolumeAboveFloatation total ice sheet volume above floatation
regionalGroundedIceArea total grounded ice sheet area within region
regionalGroundedIceVolume total grounded ice sheet volume within region
regionalFloatingIceArea total floating ice sheet area within region
regionalFloatingIceVolume total floating ice sheet volume within region
regionalIceThicknessMin min ice thickness within region
regionalIceThicknessMax max ice thickness within region
regionalIceThicknessMean mean ice thickness within region
regionalSumSfcMassBal area-integrated surface mass balance within region
regionalAvgNetAccumulation average sfcMassBal, as a thickness rate. Positive values represent

ice gain.
regionalSumBasalMassBal area-integrated basal mass balance within region
regionalSumGroundedBasalMass-
Bal

total, area integrated grounded basal mass balance. Positive values
represent ice gain.

86

Name Description (Continued)
regionalAvgGroundedBasalMelt average groundedBasalMassBal value, as a thickness rate. Positive

values represent ice loss.
regionalSumFloatingBasalMass-
Bal

total, area integrated floating basal mass balance. Positive values
represent ice gain.

regionalAvgSubshelfMelt average floatingBasalMassBal value, as a thickness rate. Positive
values represent ice loss.

regionalSumCalvingFlux area-integrated calving flux within region
regionalSumGroundingLineFlux total mass flux across all grounding lines (note that flux from float-

ing to grounded ice makes a negative contribution to this metric)
regionalSurfaceSpeedMax maximum surface speed in the domain
regionalBasalSpeedMax maximum basal speed in the domain

17.11 Run-time input/output streams

Chapter 5 provides a detailed overview of the implementation of run-time input/output streams in
MPAS. Within the Land Ice core, the following streams are defined at build time:

17.11.1 A note about time strings

MPAS commonly uses time strings of the format ’YYYY-MM-DD HH:MM:SS’. Note that items
in the format string may be dropped from the left if not needed. E.g., 01-00 00:00:00 can be used
instead of 0000-01-00 00:00:00 to indicate one month. Similarly, components on either side of the
underscore may be replaced with a single integer representing the adjacent unit. e.g. 0000-00-01 0
and 0000-00-01 00:00:00 are identical for representing an interval of one day.

17.11.2 input

This is an immutable stream defining the fields required for input. It is only read at the initial time.
Input files may have other fields in them, but only the fields specified in this stream definition are
actually read. Default name is landice grid.nc.

The input stream consists of the following members. All fields are optional, and some are only
utilized by the model if certain model components are enabled (e.g., subglacial hydrology model).

• stream name=”basicmesh”

• var name=”thickness”

• var name=”bedTopography”

• var name=”temperature”

• var name=”normalVelocity”

• var name=”sfcMassBal”

• var name=”floatingBasalMassBal”

• var name=”surfaceAirTemperature”

• var name=”basalHeatFlux”

87

• var name=”eigencalvingParameter”

• var name=”beta”

• var name=”dirichletVelocityMask”

• var name=”uReconstructX”

• var name=”uReconstructY”

• var name=”basalMeltInput”

• var name=”externalWaterInput”

• var name=”waterThickness”

• var name=”waterPressure”

• var name=”channelArea”

• var name=”waterFluxMask”

17.11.3 output

This is a mutable stream defining the fields that will be output. Because it is mutable, the list of
fields for output may be modified at run time by editing the streams.landice file. Default name
is output.nc. Default clobber mode is replace files, which will overwrite existing output
files.

The output stream consists of the following members by default:

• stream name=”basicmesh”

• var name=”layerCenterSigma”

• var name=”layerInterfaceSigma”

• var name=”xtime”

• var name=”simulationStartTime”

• var name=”daysSinceStart”

• var name=”deltat”

• var name=”allowableDtACFL”

• var name=”allowableDtDCFL”

• var name=”thickness”

• var name=”lowerSurface”

• var name=”upperSurface”

• var name=”cellMask”

• var name=”edgeMask”

88

• var name=”normalVelocity”

• var name=”uReconstructX”

• var name=”uReconstructY”

17.11.4 restart

This is an immutable stream defining the fields required for restart. It is both an input and output
stream. The model writes restart files with a single time level in them periodically. If a restart from
one of these checkpoints is desired, set config do restart to .true. and set config start time

to file in namelist.landice. The model will take the start time from the value in the text file
specified by config restart timestamp name (default name is “restart timestamp”), and use the
associated .nc file to restart the model from that checkpoint.

Default name is restart.$Y-$M-$D $h.$m.$s.nc with a new file for each checkpoint. Default
clobber mode is replace files, which will overwrite existing output.

All fields required to restart the model are included in restart files automatically, so the user
does not need to keep track of what fields are required for restart. On a restart, only the restart
file is read, and the original input file is not used. For reference the restart fields are below. Some
of these are only included conditionally based on the model configuration.

• stream name=”basicmesh”

• var name=”xtime”

• var name=”simulationStartTime”

• var name=”thickness”

• var name=”temperature”

• var name=”surfaceAirTemperature”

• var name=”basalHeatFlux”

• var name=”cellMask”

• var name=”bedTopography”

• var name=”sfcMassBal”

• var name=”floatingBasalMassBal”

• var name=”eigencalvingParameter”

• var name=”normalVelocity”

• var name=”uReconstructX”

• var name=”uReconstructY”

• var name=”beta”

• var name=”dirichletVelocityMask”

89

• var name=”basalMeltInput”

• var name=”externalWaterInput”

• var name=”waterThickness”

• var name=”waterPressure”

• var name=”channelArea”

• var name=”waterFluxMask”

17.11.5 basicmesh

This is an immutable stream that specifies the list of fields that make up the MPAS mesh speci-
fication. It is provided as a convenience for including mesh fields in other streams without having
to list them all explicitly.

17.11.6 Other streams

As described in Chapter 5, additional streams may be added by the user at run-time. One common
example would be a “forcing” stream that gets read at each time level while the model runs. This
can be accomplished by creating an input stream with input interval set to a time interval. If
the model does not find the current time in the forcing file, it will read the latest value before the
current time instead (piecewise constant forcing).

90

Chapter 18

Land Ice Visualization

This chapter discusses visualization tools that are specific to the Land Ice core. For instructions
on visualization tools that may be used by all cores, such as Paraview, see Chapter 6.

18.1 Python

Python visualization scripts are used in some test cases. In order to use these scripts, the following
python modules are required:

• matplotlib, see http://matplotlib.org

• numpy, see http://www.numpy.org

• pylab, see www.scipy.org

• netCDF4, see http://code.google.com/p/netcdf4-python

Common ways to install these packages are through Anaconda (https://anaconda.org/), En-
thought Python Distribution (https://www.enthought.com/products/epd), or package managers
for your operating system.

91

http://matplotlib.org
http://www.numpy.org
www.scipy.org
http://code.google.com/p/netcdf4-python
https://anaconda.org/
https://www.enthought.com/products/epd

Chapter 19

Known Issues

• The barycentric interpolation used to calculate surface elevation at vertices gives garbage
values for vertices associated with obtuse triangles on the dual mesh. Therefore, the model
will only work properly for meshes with no obtuse triangles. Currently there is no error
message when this occurs, so users must be aware of this constraint. Future work will improve
the barycentric interpolation method to work for obtuse triangles.

• Paraview plots periodic fields in a messy way with lines connecting the periodic cells across
the domain.

• Paraview gives the following fatal error with some Land Ice output files: ”NetCDF: Start+count
exceeds dimension bound”.

• Paraview will not recognize fields without a vertical dimension (e.g. thickness will not be
recognized) in versions earlier than 4.1.

92

Part III

Bibliography

93

Bibliography

Adams, B., L. Bauman, W. Bohnhoff, K. Dalby, M. Ebeida, J. Eddy, M. Eldred, P. Hough, K. Hu,
J. Jakeman, L. Swiler, and D. Vigil, 2013: DAKOTA, A Multilevel Parallel Object-Oriented
Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and
Sensitivity Analysis: Version 5.4 User’s Manual. Sandia Technical Report SAND2010-2183 .

Albrecht, T., M. Martin, M. Haseloff, R. Winkelmann, and a. Levermann, 2011: Parameterization
for subgrid-scale motion of ice-shelf calving fronts. The Cryosphere, 5, 35–44, doi:10.5194/tc-5-
35-2011.
URL http://www.the-cryosphere.net/5/35/2011/

Arakawa, A. and V. R. Lamb, 1977: Computational Design of the Basic Dynamical Processes of
the UCLA General Circulation Model . Academic Press, Inc., New York, 93 pp.

Asay-Davis, X. S., S. L. Cornford, G. Durand, B. K. Galton-Fenzi, R. M. Gladstone, G. Hilmar Gud-
mundsson, T. Hattermann, D. M. Holland, D. Holland, P. R. Holland, D. F. Martin, P. Mathiot,
F. Pattyn, and H. Seroussi, 2016: Experimental design for three interrelated marine ice sheet and
ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and
MISOMIP v. 1 (MISOMIP1). Geoscientific Model Development , 9, 2471–2497, doi:10.5194/gmd-
9-2471-2016.

Aschwanden, A., E. Bueler, C. Khroulev, and H. Blatter, 2012: An enthalpy formulation for glaciers
and ice sheets. Journal Of Glaciology , 58, 441–457.

Åström, J. A., D. Vallot, M. Schäfer, E. Z. Welty, S. O’neel, T. C. Bartholomaus, Y. Liu, T. I.
Riikilä, T. zwinger, J. Timonen, and J. C. Moore, 2014: Termini of calving glaciers as self-
organized critical systems. Nature Geoscience.

Bassis, J. N. and Y. Ma, 2015: Earth and Planetary Science Letters. Earth And Planetary Science
Letters, 409, 203–211.

Bindschadler, R., 1983: The importance of pressurized subglacial water in separation and sliding
at the glacier bed. Journal of Glaciology , 29, 3–19.

Bindschadler, R. A., S. Nowicki, A. Abe-Ouchi, A. Aschwanden, H. Choi, J. Fastook, G. Granzow,
R. Greve, G. Gutowski, U. Herzfeld, C. Jackson, J. Johnson, C. Khroulev, A. Levermann, W. H.
Lipscomb, M. A. Martin, M. Morlighem, B. R. Parizek, D. Pollard, S. F. Price, D. Ren, F. Saito,
T. Sato, H. Seddik, H. Seroussi, K. Takahashi, R. Walker, and W. L. Wang, 2013: Ice-sheet model
sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE
project). Journal Of Glaciology , 59, 195–224.

Blatter, H., 1995: Velocity and Stress-Fields in Grounded Glaciers - a Simple Algorithm for In-
cluding Deviatoric Stress Gradients. Journal Of Glaciology , 41, 333–344.

94

http://www.the-cryosphere.net/5/35/2011/

Bondzio, J. H., H. Seroussi, M. Morlighem, T. Kleiner, M. Rückamp, A. Humbert, and E. Y. Larour,
2016: Modelling calving front dynamics using a level-set method : application to Jakobshavn
Isbræ , West Greenland. The Cryosphere, 10, 497–510, doi:10.5194/tc-10-497-2016.

Borstad, C., A. Khazendar, B. Scheuchl, M. Morlighem, E. Larour, and E. Rignot, 2016: A con-
stitutive framework for predicting weakening and reduced buttressing of ice shelves based on
observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophysical Re-
search Letters, 43, 2027–2035, doi:10.1002/2015GL067365.
URL http://doi.wiley.com/10.1002/2015GL067365

Brinkerhoff, D. J. and J. V. Johnson, 2013: Data assimilation and prognostic whole ice sheet
modelling with the variationally derived, higher order, open source, and fully parallel ice sheet
model VarGlaS. The Cryosphere, 7, 1161–1184, doi:10.5194/tc-7-1161-2013.
URL http://www.the-cryosphere.net/7/1161/2013/

Bueler, E. and J. Brown, 2009: Shallow shelf approximation as a “sliding law” in a thermomechan-
ically coupled ice sheet model. Journal of Geophysical Research, 114, 1–21.

Bueler, E., J. Brown, and C. Lingle, 2007: Exact solutions to the thermomechanically coupled
shallow-ice approximation: effective tools for verification. Journal of Glaciology , 53, 499–516,
doi:10.3189/002214307783258396.
URL http://openurl.ingenta.com/content/xref?genre=article{&}issn=

0022-1430{&}volume=53{&}issue=182{&}spage=499

Bueler, E., C. S. Lingle, J. a. Kallen-Brown, D. N. Covey, and L. N. Bowman, 2005: Exact
solutions and verification of numerical models for isothermal ice sheets. Journal of Glaciology ,
51, 291–306, doi:10.3189/172756505781829449.
URL http://openurl.ingenta.com/content/xref?genre=article{&}issn=

0022-1430{&}volume=51{&}issue=173{&}spage=291

Bueler, E. and W. van Pelt, 2015: Mass-conserving subglacial hydrology in the Parallel Ice Sheet
Model version 0.6. Geoscientific Model Development , 8, 1613–1635.

Butler, H., M. Daly, A. Doyle, S. Gillies, S. Hagen, and T. Schaub, 2016: The GeoJSON Format.
Technical report, Hobu Inc.
URL https://www.rfc-editor.org/rfc/rfc7946.txt

Clarke, G. K., 2005: Subglacial Processes. Annual Review of Earth and Planetary Sciences, 33,
247–276, doi:10.1146/annurev.earth.33.092203.122621.
URL http://www.annualreviews.org/doi/abs/10.1146/annurev.earth.33.092203.122621

Cornford, S. L., D. F. Martin, D. T. Graves, D. F. Ranken, A. M. Le Brocq, R. M. Gladstone, A. J.
Payne, E. G. Ng, and W. H. Lipscomb, 2013: Adaptive mesh, finite volume modeling of marine
ice sheets. Journal of Computational Physics, 232, 529–549.

Cuffey, K. and Paterson, 2010: The Physics of Glaciers. Butterworth-Heinneman, Amsterdam, 4th
edition, 704 pp.

Demeshko, I., J. Watkins, I. K. Tezaur, O. Guba, W. F. Spotz, A. G. Salinger, R. P. Pawlowski,
and M. A. Heroux, 2018: Toward performance portability of the albany finite element analy-
sis code using the kokkos library. The International Journal of High Performance Computing
Applications, 0, 1094342017749957, doi:10.1177/1094342017749957.

95

http://doi.wiley.com/10.1002/2015GL067365
http://www.the-cryosphere.net/7/1161/2013/
http://openurl.ingenta.com/content/xref?genre=article{&}issn=0022-1430{&}volume=53{&}issue=182{&}spage=499
http://openurl.ingenta.com/content/xref?genre=article{&}issn=0022-1430{&}volume=53{&}issue=182{&}spage=499
http://openurl.ingenta.com/content/xref?genre=article{&}issn=0022-1430{&}volume=51{&}issue=173{&}spage=291
http://openurl.ingenta.com/content/xref?genre=article{&}issn=0022-1430{&}volume=51{&}issue=173{&}spage=291
https://www.rfc-editor.org/rfc/rfc7946.txt
http://www.annualreviews.org/doi/abs/10.1146/annurev.earth.33.092203.122621

Dennis, J. M., J. Edwards, R. Loy, R. Jacob, A. A. Mirin, A. P. Craig, and M. Vertenstein, 2012:
An application-level parallel I/O library for Earth system models. The International Journal of
High Performance Computing Applications, 26, 43–53, doi:10.1177/1094342011428143.

Dukowicz, J. K., S. F. Price, and W. H. Lipscomb, 2010: Consistent approximations and boundary
conditions for ice-sheet dynamics from a principle of least action. Journal of Glaciology , 56,
480–496, doi:10.3189/002214310792447851.
URL http://openurl.ingenta.com/content/xref?genre=article{&}issn=

0022-1430{&}volume=56{&}issue=197{&}spage=480

Edwards, H. C., C. R. Trott, and D. Sunderland, 2014a: Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns. Journal of Parallel and Distributed
Computing , 74, 3202 – 3216, doi:https://doi.org/10.1016/j.jpdc.2014.07.003, domain-Specific
Languages and High-Level Frameworks for High-Performance Computing.
URL http://www.sciencedirect.com/science/article/pii/S0743731514001257

Edwards, T. L., X. fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoff-
man, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz, 2014b: Effect
of uncertainty in surface mass balance–elevation feedback on projections of the future sea level
contribution of the Greenland ice sheet. The Cryosphere, 8, 195–208.

Egholm, D. L. and S. B. Nielsen, 2010: An adaptive finite volume solver for ice sheets and glaciers.
Journal of Geophysical Research, 115, F01006, doi:10.1029/2009JF001394.
URL http://doi.wiley.com/10.1029/2009JF001394

Engwirda, D., 2017a: JIGSAW-GEO (1.0): Locally orthogonal staggered unstructured grid gen-
eration for general circulation modelling on the sphere. Geoscientific Model Development , 10,
2117–2140, doi:10.5194/gmd-10-2117-2017.

— 2017b: JIGSAW(GEO): Unstructured grid generation for geophysical modelling.
URL https://github.com/dengwirda/jigsaw-geo-matlab

Feldmann, J. and A. Levermann, 2015: Collapse of the West Antarctic Ice Sheet after local desta-
bilization of the Amundsen Basin. Proceedings of the National Academy of Sciences, 112, 14191–
14196, doi:10.1073/pnas.1512482112.

Flowers, G. E., 2015: Modelling water flow under glaciers and ice sheets. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 471, 20140907.

Flowers, G. E. and G. K. Clarke, 2002: A multicomponent coupled model of glacier hy-
drology 1. Theory and synthetic examples. Journal of Geophysical Research, 107, 2287,
doi:10.1029/2001JB001122.
URL http://doi.wiley.com/10.1029/2001JB001122

Fowler, A. C. and D. A. Larson, 1978: On the flow of polythermal glaciers I. Model and preliminary
analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
363, 217–242, doi:10.1098/rspa.1983.0054.

Fyke, J. G., A. J. Weaver, D. Pollard, M. Eby, L. Carter, and A. Mackintosh, 2011: A new coupled
ice sheet/climate model: description and sensitivity to model physics under Eemian, Last Glacial
Maximum, late Holocene and modern climate conditions. Geoscientific Model Development , 4,
117–136.

96

http://openurl.ingenta.com/content/xref?genre=article{&}issn=0022-1430{&}volume=56{&}issue=197{&}spage=480
http://openurl.ingenta.com/content/xref?genre=article{&}issn=0022-1430{&}volume=56{&}issue=197{&}spage=480
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://doi.wiley.com/10.1029/2009JF001394
https://github.com/dengwirda/jigsaw-geo-matlab
http://doi.wiley.com/10.1029/2001JB001122

Gagliardini, O., D. Cohen, P. R̊aback, and T. Zwinger, 2007: Finite-element modeling of
subglacial cavities and related friction law. Journal of Geophysical Research, 112, F02027,
doi:10.1029/2006JF000576.
URL http://www.agu.org/pubs/crossref/2007/2006JF000576.shtml

Gagliardini, O., T. Zwinger, F. Gillet-Chaulet, G. Durand, L. Favier, B. De Fleurian, R. Greve,
M. Malinen, C. Martin, P. R̊aback, J. Ruokolainen, M. Sacchettini, M. Schäfer, H. Seddik, and
J. Thies, 2013: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model.
Geoscientific Model Development , 6, 1299–1318.

Gladstone, R. M., V. Lee, a. Vieli, and a. J. Payne, 2010: Grounding line migration in an adaptive
mesh ice sheet model. Journal of Geophysical Research, 115, F04014, doi:10.1029/2009JF001615.
URL http://doi.wiley.com/10.1029/2009JF001615

Glen, J. W., 1955: The Creep of Polycrystalline Ice. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 228, 519–538, doi:10.1098/rspa.1955.0066.
URL http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1955.0066

Goldberg, D. N., 2011: A variationally derived, depth-integrated approximation to a higher-order
glaciological flow model. Journal Of Glaciology , 57, 157–170.

Halfar, P., 1981: On the dynamics of the ice sheets. Journal of Geophysical Research, 86, 11065–
11072, doi:10.1029/JC088iC10p06043.
URL http://doi.wiley.com/10.1029/JC088iC10p06043

— 1983: On the Dynamics of the Ice Sheets 2. Journal of Geophysical Research, 88, 6043–6051.

Heroux, M., R. Bartlett, V. Howle, E. Vicki, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,
R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams,
and K. Stanley, 2005: An overview of the Trilinos project. ACM Trans. Math. Softw., 31, 397–
423.

Hewitt, I. J., 2011: Modelling distributed and channelized subglacial drainage: the spacing of
channels. Journal of Glaciology , 57, 302–314, doi:10.3189/002214311796405951.
URL http://openurl.ingenta.com/content/xref?genre=article{&}issn=

0022-1430{&}volume=57{&}issue=202{&}spage=302

— 2013: Seasonal changes in ice sheet motion due to melt water lubrication. Earth And Planetary
Science Letters, 371-372, 16–25.

Hindmarsh, R. C. and A. J. Payne, 1996: Time-step limits for stable solutions of the ice-sheet
equation. Annals of Glaciology , 23, 74–85.

Hoffman, M. and S. Price, 2014: Feedbacks between coupled subglacial hydrology and glacier
dynamics. Journal Of Geophysical Research-Earth Surface, 119, 414–436.

Hoffman, M. J., M. Perego, S. F. Price, W. H. Lipscomb, D. Jacobsen, I. Tezaur, A. G. Salinger,
R. Tuminaro, and T. Zhang, 2018: MPAS-Albany Land Ice (MALI): A variable resolution ice
sheet model for Earth system modeling using Voronoi grids. Geoscientific Model Development
Discussions, in review, 1–47, doi:10.5194/gmd-2018-78.
URL https://www.geosci-model-dev-discuss.net/gmd-2018-78/

97

http://www.agu.org/pubs/crossref/2007/2006JF000576.shtml
http://doi.wiley.com/10.1029/2009JF001615
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1955.0066
http://doi.wiley.com/10.1029/JC088iC10p06043
http://openurl.ingenta.com/content/xref?genre=article{&}issn=0022-1430{&}volume=57{&}issue=202{&}spage=302
http://openurl.ingenta.com/content/xref?genre=article{&}issn=0022-1430{&}volume=57{&}issue=202{&}spage=302
https://www.geosci-model-dev-discuss.net/gmd-2018-78/

Hutter, K., 1983: Theoretical glaciology; material science of ice and the mechanics of glaciers and
ice sheets. Reidel Publishing Co., Terra Scientific Publishing Co., Tokyo.

Huybrechts, P., T. Payne, and T. E. I. Group, 1996: The EISMINT benchmarks for testing ice-sheet
models. Annals of Glaciology , 23, 1–12.

IPCC, 2007: Climate Change 2007 - The Physical Science Basis: Working Group I Contribution
to the Fourth Assessment Report of the IPCC . Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA.

— 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
URL www.climatechange2013.org

Jiménez, S., R. Duddu, and J. Bassis, 2017: An updated-Lagrangian damage mechanics formulation
for modeling the creeping flow and fracture of ice sheets. Comput. Methods Appl. Mech. Engrg.,
313, 406–432.

Larour, E., H. Seroussi, M. Morlighem, and E. Rignot, 2012: Continental scale, high order, high
spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). Journal of
Geophysical Research, 117, F01022, doi:10.1029/2011JF002140.
URL http://www.agu.org/pubs/crossref/2012/2011JF002140.shtml

Leguy, G. R., 2015: The Effect of a Basal-friction Parameterization on Grounding-line Dynamics
in Ice-sheet Models. Ph.D. thesis, New Mexico Institute of Mining and Technology, 169 pp.

Leng, W., L. Ju, M. Gunzburger, S. Price, and T. Ringler, 2012: A parallel high-order accurate finite
element nonlinear Stokes ice sheet model and benchmark experiments. Journal of Geophysical
Research, 117.

Levermann, A., T. Albrecht, R. Winkelmann, M. A. Martin, M. Haseloff, and I. Joughin, 2012:
Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. The Cryosphere,
6, 273–286, doi:10.5194/tc-6-273-2012.
URL http://www.the-cryosphere.net/6/273/2012/

Lipscomb, W. H., J. G. Fyke, M. Vizcáıno, W. J. Sacks, J. Wolfe, M. Vertenstein, A. Craig,
E. Kluzek, and D. M. Lawrence, 2013: Implementation and Initial Evaluation of the Glimmer
Community Ice Sheet Model in the Community Earth System Model. Journal of Climate, 26,
7352–7371.

Little, C. M., M. Oppenheimer, R. B. Alley, V. Balaji, G. K. C. Clarke, T. L. Delworth, R. Hallberg,
D. M. Holland, C. L. Hulbe, S. Jacobs, J. V. Johnson, H. Levy, W. H. Lipscomb, S. J. Marshall,
B. R. Parizek, A. J. Payne, G. A. Schmidt, R. J. Stouffer, D. G. Vaughan, and M. Winton, 2007:
Toward a new generation of ice sheet models. Eos, Transactions American Geophysical Union,
88, 578–579, doi:10.1029/2007EO520002.
URL http://dx.doi.org/10.1029/2007EO520002

Morland, L. W. and I. R. Johnson, 1980: Steady motion of ice sheets. Journal of Glaciology , 25,
229–246.

98

www.climatechange2013.org
http://www.agu.org/pubs/crossref/2012/2011JF002140.shtml
http://www.the-cryosphere.net/6/273/2012/
http://dx.doi.org/10.1029/2007EO520002

Nowicki, S., R. A. Bindschadler, et al., 2013a: Insights into spatial sensitivities of ice mass response
to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. Journal of
Geophysical Research, 118, 1002–1024.

— 2013b: Insights into spatial sensitivities of ice mass response to environmental change from
the SeaRISE ice sheet modeling project II: Greenland. Journal of Geophysical Research, 118,
1025–1044.

Pattyn, F., 2003: A new three-dimensional higher-order thermomechanical ice sheet model: Basic
sensitivity, ice stream development, and ice flow across subglacial lakes. Journal of Geophysical
Research, 108, 1–15, doi:10.1029/2002JB002329.
URL http://www.agu.org/pubs/crossref/2003/2002JB002329.shtml

Pattyn, F., L. Perichon, A. Aschwanden, B. Breuer, B. de Smedt, O. Gagliardini, G. H. Gudmunds-
son, R. C. a. Hindmarsh, A. Hubbard, J. V. Johnson, T. Kleiner, Y. Konovalov, C. Martin, a. J.
Payne, D. Pollard, S. Price, M. Rückamp, F. Saito, O. Souček, S. Sugiyama, and T. Zwinger,
2008: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIPHOM).
The Cryosphere, 2, 95–108, doi:10.5194/tc-2-95-2008.
URL http://www.the-cryosphere.net/2/95/2008/

Pattyn, F. et al., 2013: Grounding-line migration in plan-view marine ice-sheet models: results of
the ice2sea MISMIP3d intercomparison. Journal Of Glaciology , 59, 410–422.

Pawlowski, R. P., E. T. Phipps, A. G. Salinger, S. J. Owen, C. M. Siefert, and M. L. Staten, 2012:
Automating embedded analysis capabilities and managing software complexity in multiphysics
simulation, Part II: Application to partial differential equations. Scientific Programming , 20,
327–345, doi:10.3233/SPR-2012-0351.

Payne, A. J., P. Huybrechts, R. Calov, J. L. Fastook, R. Greve, S. J. Marshall, I. Marsiat, C. Ritz,
L. Tarasov, and M. P. A. Thomassen, 2000: Results from the EISMINT model intercomparison:
The effects of thermomechanical coupling. Journal of Glaciology , 46, 227–238.

Perego, M., M. Gunzburger, and J. Burkardt, 2012: Parallel finite-element implementation for
higher-order ice-sheet models. Journal of Glaciology , 58, 76–88, doi:10.3189/2012JoG11J063.

Petersen, M. R., X. Asay-Davis, D. Jacobsen, P. Jones, M. Maltrud, T. D. Ringler, A. K. Turner,
L. Van Roekel, M. Veneziani, J. Wolfe, and P. J. Wolfram, 2018: An evaluation of the ocean and
sea ice climate of E3SM using MPAS and interannual CORE-II forcing. Journal of Advances in
Modeling Earth Systems, in prep.

Petersen, M. R., D. W. Jacobsen, T. D. Ringler, M. W. Hecht, and M. E. Maltrud, 2015: Evaluation
of the arbitrary Lagrangian-Eulerian vertical coordinate method in the MPAS-Ocean model.
Ocean Modelling , 86, 93–113, doi:10.1016/j.ocemod.2014.12.004.
URL http://dx.doi.org/10.1016/j.ocemod.2014.12.004

Price, S., G. Flowers, and C. Schoof, 2011: Improving Hydrology in Land Ice Models. Eos, 92, 164.

Ricciuto, D., K. Sargsyan, and P. Thornton, 2018: The Impact of Parametric Uncertainties on
Biogeochemistry in the E3SM Land Model. JAMES , doi:10.1002/2017MS000962.

Ridley, J. K., P. Huybrechts, and J. M. Gregory, 2005: Elimination of the Greenland ice sheet in a
high CO2 climate. Journal of Climate, 18, 3409–3427.

99

http://www.agu.org/pubs/crossref/2003/2002JB002329.shtml
http://www.the-cryosphere.net/2/95/2008/
http://dx.doi.org/10.1016/j.ocemod.2014.12.004

Ringler, T., M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and M. Maltrud,
2013: A multi-resolution approach to global ocean modeling. Ocean Modelling , 69, 211–232,
doi:10.1016/j.ocemod.2013.04.010.
URL http://dx.doi.org/10.1016/j.ocemod.2013.04.010

Ringler, T. D., D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, and W. Skamarock, 2011: Exploring
a Multiresolution Modeling Approach within the Shallow-Water Equations. Monthly Weather
Review , 139, 3348–3368, doi:10.1175/MWR-D-10-05049.1.

Saito, F., A. Abe-ouchi, and H. Blatter, 2006: European Ice Sheet Modelling Initiative (EISMINT)
model intercomparison experiments with first-order mechanics. Journal of Geophysical Research,
111, 1–9, doi:10.1029/2004JF000273.

Salinger, A. G., R. A. Bartlett, A. M. Bradley, Q. Chen, I. P. Demeshko, X. Gao, G. A. Hansen,
A. Mota, R. P. Muller, E. Nielsen, J. T. Ostien, R. P. Pawlowski, M. Perego, E. T. Phipps,
W. Sun, and I. K. Tezaur, 2016: Albany: Using component-based design to develop a flexible,
generic multiphysics analysis core. International Journal for Multiscale Computational Engineer-
ing , 14, 415–438.

Schoof, C., 2005: The effect of cavitation on glacier sliding. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science, 461, 609.

— 2010: Ice-sheet acceleration driven by melt supply variability. Nature, 468, 803–806,
doi:10.1038/nature09618.
URL http://www.nature.com/nature/journal/v468/n7325/full/nature09618.html

Schoof, C. and I. Hewitt, 2013: Ice-sheet dynamics. Annual Review of Fluid Mechanics, 45, 217–
239.

Schoof, C., I. J. Hewitt, and M. A. Werder, 2012: Flotation and free surface flow in a model for
subglacial drainage. Part 1. Distributed drainage. Journal of Fluid Mechanics, 702, 126–156,
doi:10.1017/jfm.2012.165.
URL http://www.journals.cambridge.org/abstract{_}S0022112012001656

Schoof, C. and R. C. A. Hindmarsh, 2010: Thin-Film Flows with Wall Slip: An Asymptotic
Analysis of Higher Order Glacier Flow Models. The Quarterly Journal of Mechanics and Applied
Mathematics, 63, 73–114.

Seroussi, H., M. Morlighem, E. Larour, E. Rignot, and a. Khazendar, 2014: Hydrostatic grounding
line parameterization in ice sheet models. The Cryosphere, 8, 2075–2087, doi:10.5194/tc-8-2075-
2014.
URL http://www.the-cryosphere.net/8/2075/2014/

Shannon, S. R., A. J. Payne, I. D. Bartholomew, M. R. Van Den Broeke, T. L. Edwards, X. Fettweis,
O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, M. J. Hoffman, P. Huybrechts, D. W. F. Mair,
P. W. Nienow, M. Perego, S. F. Price, C. J. P. P. Smeets, A. J. Sole, R. S. W. van de Wal, and
T. Zwinger, 2013: Enhanced basal lubrication and the contribution of the Greenland ice sheet
to future sea-level rise. Proceedings Of The National Academy Of Sciences Of The United States
Of America, 110, 14156–14161.

100

http://dx.doi.org/10.1016/j.ocemod.2013.04.010
http://www.nature.com/nature/journal/v468/n7325/full/nature09618.html
http://www.journals.cambridge.org/abstract{_}S0022112012001656
http://www.the-cryosphere.net/8/2075/2014/

Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012:
A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-
Grid Staggering. Monthly Weather Review , 140, 3090–3105, doi:10.1175/MWR-D-11-00215.1.
URL http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-11-00215.1

Tezaur, I. K., M. Perego, A. G. Salinger, R. S. Tuminaro, and S. Price, 2015a: Albany/FELIX: a
parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built
for advanced analysis. Geoscientific Model Development , 8, 1–24, doi:10.5194/gmd-8-1-2015.

Tezaur, I. K., R. S. Tuminaro, M. Perego, A. G. Salinger, and S. F. Price, 2015b: On the Scalability
of the Albany/FELIX first-order Stokes Approximation ice Sheet Solver for Large-Scale Simu-
lations of the Greenland and Antarctic ice Sheets. Procedia Computer Science, 51, 2026–2035,
doi:10.1016/j.procs.2015.05.467.
URL http://linkinghub.elsevier.com/retrieve/pii/S1877050915012752

Tulaczyk, S., W. Barclay, and F. Engelhardt, 2000: Basal mechanics of Ice Stream B, West Antarc-
tica: 1. Till mechanics. Journal of Geophysical Research, 105, 463–481.

Tuminaro, R., M. perego, I. Tezaur, A. Salinger, and S. F. Price, 2016: A matrix depen-
dent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling.
SIAM Journal on Scientific Computing , 38, c504–c532.

Turner, A. K., W. H. Lipscomb, E. C. Hunke, D. W. Jacobsen, N. Jeffery, T. D. Ringler, and
J. D. Wolfe, 2018: MPAS-Seaice: a new variable resolution sea-ice model. Journal of Advances
in Modeling Earth Systems, submitted.

van der Veen, C. J., 2013: Fundamentals of Glacier Dynamics. CRC Press, Boca Raton, FL, 2nd
edition, 389 pp.

Vizcáıno, M., U. Mikolajewicz, M. Gröger, E. Maier-Reimer, G. Schurgers, and A. M. E. Winguth,
2008: Long-term ice sheet–climate interactions under anthropogenic greenhouse forcing simulated
with a complex Earth System Model. Climate Dynamics, 31, 665–690.

Vizcáıno, M., U. Mikolajewicz, J. Jungclaus, and G. Schurgers, 2009: Climate modification by
future ice sheet changes and consequences for ice sheet mass balance. Climate Dynamics, 34,
301–324.

Werder, M. A., I. J. Hewitt, C. G. Schoof, and G. E. Flowers, 2013: Modeling channelized and dis-
tributed subglacial drainage in two dimensions. Journa of Geophysical Research - Earth Surface,
118.

Zhu, Q., W. Riley, J. Tang, N. Collier, F. Hoffman, J. Randerson, X. Yang, and G. Bisht, 2018:
Representing carbon, nitrogen, and phosphorus interaction in the E3SM Land Model v1: Model
development and global benchmarking. JAMES , in review.

101

http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-11-00215.1
http://linkinghub.elsevier.com/retrieve/pii/S1877050915012752

Part IV

Appendices

102

Appendix A

Namelist options

Embedded links point to information in chapter 15

A.1 velocity solver

A.1.1 config velocity solver

Type: character

Units: unitless

Default Value: sia

Possible Values: ’sia’, ’L1L2’, ’FO’, ’Stokes’, ’simple’, ’none’

Table A.1: config velocity solver: Selection of the method for solving ice velocity. ’L1L2’,
’FO’, and ’Stokes’ require compiling with external dycores. ’none’ skips the
calculation of velocity so the velocity field will be 0 or set to a field read from
an input file. ’simple’ gives a simple prescribed velocity field computed at ini-
tialization.

A.1.2 config sia tangent slope calculation

Type: character

Units: unitless

Default Value: from vertex barycentric

Possible Values: ’from vertex barycentric’, ’from vertex barycentric kiteareas’,
’from normal slope’

103

Table A.2: config sia tangent slope calculation: Selection of the method for calculating
the tangent component of surface slope at edges needed by the SIA veloc-
ity solver. ’from vertex barycentric’ interpolates upperSurface values from
cell centers to vertices using the barycentric interpolation routine in opera-
tors (mpas cells to points using baryweights) and then calculates the slope
between vertices. It works for obtuse triangles, but will not work correctly
across the edges of periodic meshes. ’from vertex barycentric kiteareas’ in-
terpolates upperSurface values from cell centers to vertices using barycentric
interpolation based on kiterea values and then calculates the slope between
vertices. It will work across the edges of periodic meshes, but will not work
correctly for obtuse triangles. ’from normal slope’ uses the vector operator
mpas tangential vector 1d to calculate the tangent slopes from the normal
slopes on the edges of the adjacent cells. It will work for any mesh configura-
tion, but is the least accurate method.

A.1.3 config flowParamA calculation

Type: character

Units: unitless

Default Value: constant

Possible Values: ’constant’, ’PB1982’, ’CP2010’

Table A.3: config flowParamA calculation: Selection of the method for calculating
the flow law parameter A. If ’constant’ is selected, the value is set to con-
fig default flowParamA. The other options are calculated from the tempera-
ture field. This calculation only applies if config velocity solver is set to ’sia’.
For the ’FO’ velocity solver, this is set in the albany input.xml file.

A.1.4 config do velocity reconstruction for external dycore

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.4: config do velocity reconstruction for external dycore: By default, external,
higher-order dycores return the uReconstructX and uReconstructY fields
(which are the native locations of their FEM solution). If this option is set to
.true., uReconstructX and uReconstructY will be calculated by MPAS using
framework’s vector reconstruction routines based on the values of normalVe-
locity supplied by the external dycore. This provides a way to test the calcula-
tion of normalVelocity in the interface.

104

A.1.5 config simple velocity type

Type: character

Units: unitless

Default Value: uniform

Possible Values: ’uniform’, ’radial’

Table A.5: config simple velocity type: Selection of the type of simple velocity field
computed at initialization when config velocity solver = ’simple’. See
mode forward/mpas li velocity simple.F for details of what the options do.

A.1.6 config use glp

Type: logical

Units: unitless

Default Value: .true.

Possible Values: .true. or .false.

Table A.6: config use glp: If true, then apply Albany’s grounding line parameterization

A.1.7 config beta use effective pressure

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.7: config beta use effective pressure: If true, then multiply beta by effective pres-
sure before passing to Albany. This allows, e.g., a Weertman basal friction law
with an effective pressure term. Note that basal friction still needs to be se-
lected in Albany xml file.

A.2 advection

A.2.1 config thickness advection

Type: character

Units: unitless

105

Default Value: fo

Possible Values: ’fo’, ’none’

Table A.8: config thickness advection: Selection of the method for advecting thickness
(’fo’ = first-order upwinding).

A.2.2 config tracer advection

Type: character

Units: unitless

Default Value: none

Possible Values: ’fo’, ’none’

Table A.9: config tracer advection: Selection of the method for advecting tracers.

A.3 calving

A.3.1 config calving

Type: character

Units: unitless

Default Value: none

Possible Values: ’none’, ’floating’, ’topographic threshold’, ’thick-
ness threshold’, ’eigencalving’

Table A.10: config calving: Selection of the method for calving ice (as defined further be-
low).

A.3.2 config calving topography

Type: real

Units: m

Default Value: -500.0

Possible Values: Any non-positive real value

Table A.11: config calving topography: Defines the topographic height below which ice
calves (for topographic threshold option).

106

A.3.3 config calving thickness

Type: real

Units: m of ice

Default Value: 100.0

Possible Values: Any positive real value

Table A.12: config calving thickness: Defines the ice thickness below which ice calves (for
thickness threshold option).

A.3.4 config calving eigencalving parameter source

Type: character

Units: none

Default Value: scalar

Possible Values: ’data’ (’eigencalvingParameter’ field read
from input file), ’scalar’ (specified by con-
fig calving eigencalving parameter scalar value)

Table A.13: config calving eigencalving parameter source: Source of the eigencalving pa-
rameter value

A.3.5 config calving eigencalving parameter scalar value

Type: real

Units: m s

Default Value: 3.14e16

Possible Values: any positive real number

Table A.14: config calving eigencalving parameter scalar value: Value of
eigencalving parameter if taken as a scalar by option con-
fig calving eigencalving parameter source. (Default value is 1.0e9 m a
converted to units used here.)

A.3.6 config data calving

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

107

Table A.15: config data calving: Select whether or not to configure calving in a ’data’
model mode (calc. calving flux but do not update ice geometry)

A.3.7 config calving timescale

Type: real

Units: s

Default Value: 0.0

Possible Values: Any non-negative real value

Table A.16: config calving timescale: Defines the timescale for calving. The fraction of
eligible ice that calves is min(dt/calving timescale, 1.0). A value of 0 means
that all eligible ice calves.

A.3.8 config restore calving front

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.17: config restore calving front: If true, then restore the calving front to its
initial position. If ice grows beyond the initial extent, it is removed. If ice
shrinks to an extent behind the initial extent, those locations are filled with
thin ice (defined as 1/10th the value of config dynamic thickness). Note that
this violates conservation of mass and energy.

A.4 thermal solver

A.4.1 config thermal solver

Type: character

Units: unitless

Default Value: none

Possible Values: ’none’, ’temperature’, ’enthalpy’

Table A.18: config thermal solver: Selection of the method for the vertical thermal solver
(possible values are described further below).

108

A.4.2 config thermal calculate bmb

Type: logical

Units: unitless

Default Value: .true.

Possible Values: .true. or .false.

Table A.19: config thermal calculate bmb: Determines if basal and internal melting cal-
culated by the thermal solver should contribute to basal mass balance or be
ignored.

A.4.3 config temperature init

Type: character

Units: unitless

Default Value: file

Possible Values: ’sfc air temperature’, ’linear’, ’file’

Table A.20: config temperature init: Selection of the method for initializing the ice tem-
perature (as described further below).

A.4.4 config thermal thickness

Type: real

Units: m of ice

Default Value: 1.0

Possible Values: Any positive real value

Table A.21: config thermal thickness: Defines the minimum ice thickness for conducting
thermal calculations. Ice thinner than this value is ignored by the thermal
solver.

A.4.5 config surface air temperature source

Type: character

Units: unitless

Default Value: file

Possible Values: ’constant’, ’file’, ’lapse’

109

Table A.22: config surface air temperature source: Selection of the method for
setting the surface air temperature. ’constant’ uses the value set by
config surface air temperature value. ’file’ reads the field from an
input or forcing file or ESM coupler. ’lapse’ uses the value of con-
fig surface air temperature value at elevation 0 with a lapse rate applied
from config surface air temperature lapse rate.

A.4.6 config surface air temperature value

Type: real

Units: Kelvin

Default Value: 273.15

Possible Values: Any positive real value

Table A.23: config surface air temperature value: Constant value of the surface air tem-
perature.

A.4.7 config surface air temperature lapse rate

Type: real

Units: K m−1

Default Value: 0.01

Possible Values: Any real value

Table A.24: config surface air temperature lapse rate: Lapse rate to apply to surface air
temperature when config surface air temperature source=’lapse’. Positive
values lead to colder temperatures at higher elevations.

A.4.8 config basal heat flux source

Type: character

Units: unitless

Default Value: file

Possible Values: ’constant’, ’file’ ’constant’ uses the value set by con-
fig basal heat flux value. ’file’ reads the field from an input
or forcing file or ESM coupler.

Table A.25: config basal heat flux source: Selection of the method for setting the basal
heat flux.

110

A.4.9 config basal heat flux value

Type: real

Units: W m−2

Default Value: 0.0

Possible Values: Any positive real value

Table A.26: config basal heat flux value: Constant value of the basal heat flux (positive
upward).

A.4.10 config basal mass bal float

Type: character

Units: unitless

Default Value: none

Possible Values: ’none’, ’file’, ’constant’, ’mismip’, ’seroussi’

Table A.27: config basal mass bal float: Selection of the method for computing the basal
mass balance of floating ice. ’none’ sets the basalMassBal field to 0 every-
where. ’file’ uses without modification whatever value was read in through an
input or forcing file or the value set by an ESM coupler. ’constant’, ’mismip’,
’seroussi’ use hardcoded fields defined in the code.

A.4.11 config basal mass bal seroussi amplitude

Type: real

Units: m

Default Value: 0.0

Possible Values: any positive real value

Table A.28: config basal mass bal seroussi amplitude: amplitude on the depth adjustment
applied to the Seroussi subglacial melt parameterization

A.4.12 config basal mass bal seroussi period

Type: real

Units: a

Default Value: 1.0

111

Possible Values: any positive real value

Table A.29: config basal mass bal seroussi period: period of the periodic depth adjust-
ment applied to the Seroussi subglacial melt parameterization

A.4.13 config basal mass bal seroussi phase

Type: real

Units: cycles

Default Value: 0.0

Possible Values: any positive real value

Table A.30: config basal mass bal seroussi phase: phase of the periodic depth adjustment
applied to the Seroussi subglacial melt parameterization. Units are cycles,
i.e., 0-1

A.4.14 config bmlt float flux

Type: real

Units: W m−2

Default Value: 0.0

Possible Values: Any positive real value

Table A.31: config bmlt float flux: Value of the constant heat flux applied to the base of
floating ice (positive upward).

A.4.15 config bmlt float xlimit

Type: real

Units: m

Default Value: 0.0

Possible Values: Any positive real value

Table A.32: config bmlt float xlimit: x value defining region where bmlt float flux is ap-
plied; melt only where abs(x) is greater than xlimit.

112

A.5 physical parameters

A.5.1 config ice density

Type: real

Units: kg m−3

Default Value: 910.0

Possible Values: Any positive real value

Table A.33: config ice density: ice density to use (assumed constant and uniform)

A.5.2 config ocean density

Type: real

Units: kg m−3

Default Value: 1028.0

Possible Values: Any positive real value

Table A.34: config ocean density: ocean density to use for calculating floatation (assumed
constant and uniform)

A.5.3 config sea level

Type: real

Units: m above datum

Default Value: 0.0

Possible Values: Any real value

Table A.35: config sea level: sea level to use for calculating floatation (assumed constant
and uniform)

A.5.4 config default flowParamA

Type: real

Units: s−1 Pa−n

Default Value: 3.1709792e-24

Possible Values: Any positive real value

113

Table A.36: config default flowParamA: Defines the default value of the flow law param-
eter A to be used if it is not being calculated from ice temperature. This
value will be used by either the sia or FO velocity solver if they are respec-
tively configured to use a scalar A value. Defaults to the SI representation of
1.0e-16 yr−1 Pa−3.

A.5.5 config enhancementFactor

Type: real

Units: none

Default Value: 1.0

Possible Values: Any positive real value

Table A.37: config enhancementFactor: multiplier on the flow parameter A

A.5.6 config flowLawExponent

Type: real

Units: none

Default Value: 3.0

Possible Values: Any real value

Table A.38: config flowLawExponent: Defines the value of the Glen flow law exponent, n.
This value will be used by either the sia or FO velocity solver. A value other
than 3.0 is untested.

A.5.7 config dynamic thickness

Type: real

Units: m of ice

Default Value: 10.0

Possible Values: Any positive real value

Table A.39: config dynamic thickness: Defines the ice thickness below which dynamics
are not calculated (and hence ice velocity is set to 0).

114

A.6 time integration

A.6.1 config dt

Type: character

Units: unitless

Default Value: 0001-00-00 00:00:00

Possible Values: Any time interval of the format ’YYYY-MM-
DD HH:MM:SS’, but limited by CFL condition.

Table A.40: config dt: Length of model time step defined as a time interval.

A.6.2 config time integration

Type: character

Units: unitless

Default Value: forward euler

Possible Values: ’forward euler’

Table A.41: config time integration: Time integration method (currently, only forward
Euler is supported).

A.6.3 config adaptive timestep

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.42: config adaptive timestep: Determines if the time step should be adjusted
based on the CFL condition or should be steady in time. If true, the con-
fig dt * options are ignored.

A.6.4 config min adaptive timestep

Type: real

Units: s

Default Value: 0.0

Possible Values: Any non-negative real value.

115

Table A.43: config min adaptive timestep: The minimum allowable time step in seconds.
If the CFL condition dictates the time step should be shorter than this, then
the model aborts.

A.6.5 config max adaptive timestep

Type: real

Units: s

Default Value: 3.15e9

Possible Values: Any non-negative real value.

Table A.44: config max adaptive timestep: The maximum allowable time step in seconds.
If the allowable time step determined by the adaptive CFL calculation is
longer than this, then the model will specify config max adaptive timestep
as the time step instead. Defaults to 100 years (in seconds).

A.6.6 config adaptive timestep CFL fraction

Type: real

Units: none

Default Value: 0.25

Possible Values: Any positive real value less than 1.0.

Table A.45: config adaptive timestep CFL fraction: A multiplier on the minimum allow-
able time step calculated from the CFL condition. (Setting to 1.0 may be
unstable, so smaller values are recommended.)

A.6.7 config adaptive timestep include DCFL

Type: logical

Units: none

Default Value: .false.

Possible Values: .true. or .false.

Table A.46: config adaptive timestep include DCFL: Option of whether to include the
diffusive CFL condition in the determination of the maximum allowable
timestep. The diffusive CFL condition at any location is estimated based on
the local ice flux and surface slope.

116

A.6.8 config adaptive timestep force interval

Type: character

Units: unitless

Default Value: 1000-00-00 00:00:00

Possible Values: Any time interval of the format ’YYYY-MM-
DD HH:MM:SS’. (items in the format string may be
dropped from the left if not needed, and the components on
either side of the underscore may be replaced with a single
integer representing the rightmost unit)

Table A.47: config adaptive timestep force interval: If adaptive timestep is enabled, the
model will ensure a timestep ends at multiples of this interval. This is use-
ful for ensuring that model output is written at a specific desired interval
(rather than the closest time after) or when running coupled to an earth sys-
tem model that expects a certain interval.

A.7 time management

A.7.1 config do restart

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.48: config do restart: Determines if the initial conditions should be read from
a restart file, or an input file. To perform a restart, set this to true in the
namelist.input file. The restart time will be read from config start time
(which can be set to ’file’ to have the restart time read automatically from
the file defined by config restart timestamp name). A restart will read every-
thing from the restart file - no information is read from the ’input’ stream. It
will perform a run normally, except velocity will not be solved on a restart.

A.7.2 config restart timestamp name

Type: character

Units: unitless

Default Value: restart timestamp

Possible Values: Path to a file.

117

Table A.49: config restart timestamp name: Path to the filename for restart timestamps
to be read and written from.

A.7.3 config start time

Type: character

Units: unitless

Default Value: 0000-01-01 00:00:00

Possible Values: ’YYYY-MM-DD HH:MM:SS’ (items in the format string
may be dropped from the left if not needed, and the com-
ponents on either side of the underscore may be replaced
with a single integer representing the rightmost unit)

Table A.50: config start time: Timestamp describing the initial time of the simulation. If
it is set to ’file’, the initial time is read from the filename specified by con-
fig restart timestamp name (defaults to ’restart timestamp’).

A.7.4 config stop time

Type: character

Units: unitless

Default Value: 0000-01-01 00:00:00

Possible Values: ’YYYY-MM-DD HH:MM:SS’ or ’none’ (items in the format
string may be dropped from the left if not needed, and the
components on either side of the underscore may be replaced
with a single integer representing the rightmost unit)

Table A.51: config stop time: Timestamp describing the final time of the simulation. If it
is set to ’none’ the final time is determined from config start time and con-
fig run duration. If config run duration is also specified, it takes precedence
over config stop time. Set config stop time to be equal to config start time
(and config run duration to ’none’) to perform a diagnostic solve only.

A.7.5 config run duration

Type: character

Units: unitless

Default Value: none

118

Possible Values: ’YYYY-MM-DD HH:MM:SS’ or ’none’ (items in the format
string may be dropped from the left if not needed, and the
components on either side of the underscore may be replaced
with a single integer representing the rightmost unit)

Table A.52: config run duration: Timestamp describing the length of the simulation.
If it is set to ’none’ the duration is determined from config start time and
config stop time. config run duration overrides inconsistent values of con-
fig stop time. If a time value is specified for config run duration, it must be
greater than 0.

A.7.6 config calendar type

Type: character

Units: unitless

Default Value: gregorian noleap

Possible Values: ’gregorian’, ’gregorian noleap’

Table A.53: config calendar type: Selection of the type of calendar that should be used in
the simulation.

A.8 io

A.8.1 config stats interval

Type: integer

Units: unitless

Default Value: 0

Possible Values: Any positive integer value greater than or equal to 0.

Table A.54: config stats interval: Integer specifying interval (number of timesteps) for
writing global/local statistics. If set to 0, then statistics are not written (ex-
cept perhaps at startup, as determined by ’config write stats on startup’).
Applies to statistics written to log file and not analysis member output writ-
ten to netCDF files.

A.8.2 config write stats on startup

Type: logical

Units: unitless

119

Default Value: .false.

Possible Values: .true. or .false.

Table A.55: config write stats on startup: Logical flag determining if statistics should be
written prior to the first time step. Applies to statistics written to log file
and not analysis member output written to netCDF files.

A.8.3 config stats cell ID

Type: integer

Units: unitless

Default Value: 1

Possible Values: Any positive integer value greater than or equal to 0.

Table A.56: config stats cell ID: global ID for the cell selected for local statis-
tics/diagnostics. Applies to statistics written to log file and not analysis
member output written to netCDF files.

A.8.4 config write output on startup

Type: logical

Units: unitless

Default Value: .true.

Possible Values: .true. or .false.

Table A.57: config write output on startup: Logical flag determining if an output file
should be written prior to the first time step.

A.8.5 config pio num iotasks

Type: integer

Units: unitless

Default Value: 0

Possible Values: Any positive integer value greater than or equal to 0.

120

Table A.58: config pio num iotasks: Integer specifying how many IO tasks should be used
within the PIO library. A value of 0 causes all MPI tasks to also be IO tasks.
IO tasks are required to write contiguous blocks of data to a file. Optimal
performance is typically found by having 1-2 tasks per node performing I/O.
To do so, config pio num iotasks must be manually set in conjunction with
config pio stride as appropriate for the processor layout used. For example,
running on 240 processors on a machine with 24 processors per node, setting
config pio num iotasks=20 and config pio stride=12 would configure two I/O
tasks per node.

A.8.6 config pio stride

Type: integer

Units: unitless

Default Value: 1

Possible Values: Any positive integer value greater than 0.

Table A.59: config pio stride: Integer specifying the stride of each IO task. See con-
fig pio num iotasks for details.

A.8.7 config year digits

Type: integer

Units: unitless

Default Value: 4

Possible Values: Any positive integer value greater than 0.

Table A.60: config year digits: Integer specifying the number of digits used to represent
the year in time strings.

A.8.8 config output external velocity solver data

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.61: config output external velocity solver data: If .true., external velocity solvers
(if enabled) will write their own output data in addition to any MPAS out-
put that is configured.

121

A.8.9 config write albany ascii mesh

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.62: config write albany ascii mesh: Logical flag determining if ascii mesh files
will be created. These files are written in a format that can be used by the
standalone Albany velocity solver for optimization. If .true., the model ini-
tializes, writes the mesh files, and then terminates.

A.9 decomposition

A.9.1 config num halos

Type: integer

Units: unitless

Default Value: 2

Possible Values: Any positive interger value.

Table A.63: config num halos: Determines the number of halo cells extending from a
blocks owned cells (Called the 0-Halo). The default first-order upwinding
advection requires a minimum of 2. Note that a minimum of 3 is required
for incremental remapping advection on a quad mesh or for FCT advection
(neither of which is currently supported for land ice).

A.9.2 config block decomp file prefix

Type: character

Units: unitless

Default Value: graph.info.part.

Possible Values: Any path/prefix to a block decomposition file.

Table A.64: config block decomp file prefix: Defines the prefix for the block decomposi-
tion file. Can include a path. The number of blocks is appended to the end
of the prefix at run-time.

122

A.9.3 config number of blocks

Type: integer

Units: unitless

Default Value: 0

Possible Values: Any integer >= 0.

Table A.65: config number of blocks: Determines the number of blocks a simulation
should be run with. If it is set to 0, the number of blocks is the same as the
number of MPI tasks at run-time.

A.9.4 config explicit proc decomp

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.66: config explicit proc decomp: Determines if an explicit processor decomposi-
tion should be used. This is only useful if multiple blocks per processor are
used.

A.9.5 config proc decomp file prefix

Type: character

Units: unitless

Default Value: graph.info.part.

Possible Values: Any path/prefix to a processor decomposition file.

Table A.67: config proc decomp file prefix: Defines the prefix for the processor decompo-
sition file. This file is only read if config explicit proc decomp is .true. The
number of processors is appended to the end of the prefix at run-time.

A.10 debug

A.10.1 config print thickness advection info

Type: logical

Units: unitless

Default Value: .false.

123

Possible Values: .true. or .false.

Table A.68: config print thickness advection info: Prints additional information about
thickness advection.

A.10.2 config print calving info

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.69: config print calving info: Prints additional information about calving physics
(if enabled).

A.10.3 config print thermal info

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.70: config print thermal info: Prints additional information about thermal calcu-
lations (if enabled).

A.10.4 config always compute fem grid

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.71: config always compute fem grid: Always compute finite-element grid infor-
mation for external dycores rather than only doing so when the ice extent
changes.

A.10.5 config print velocity cleanup details

124

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.72: config print velocity cleanup details: After velocity is calculated there are a
few checks for appropriate values in certain geometric configurations. Setting
this option to .true. will cause detailed information about those adjustments
to be printed.

A.11 subglacial hydro

A.11.1 config SGH

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.73: config SGH: activate subglacial hydrology model

A.11.2 config SGH adaptive timestep fraction

Type: real

Units: unitless

Default Value: 1.0

Possible Values: positive real number

Table A.74: config SGH adaptive timestep fraction: fraction of adaptive CFL timestep to
use

A.11.3 config SGH max adaptive timestep

Type: real

Units: s

Default Value: 3.15e9

Possible Values: Any non-negative real value.

125

Table A.75: config SGH max adaptive timestep: The maximum allowable time
step in seconds. If the allowable time step determined by the adaptive
CFL calculation is longer than this, then the model will specify con-
fig SGH max adaptive timestep as the time step instead. Defaults to 100
years (in seconds).

A.11.4 config SGH tangent slope calculation

Type: character

Units: unitless

Default Value: from normal slope

Possible Values: ’from vertex barycentric’, ’from vertex barycentric kiteareas’,
’from normal slope’

Table A.76: config SGH tangent slope calculation: Selection of the method for calculat-
ing the tangent component of slope at edges. ’from vertex barycentric’ in-
terpolates scalar values from cell centers to vertices using the barycentric
interpolation routine in operators (mpas cells to points using baryweights)
and then calculates the slope between vertices. It works for obtuse tri-
angles, but will not work correctly across the edges of periodic meshes.
’from vertex barycentric kiteareas’ interpolates scalar values from cell
centers to vertices using barycentric interpolation based on kiterea val-
ues and then calculates the slope between vertices. It will work across the
edges of periodic meshes, but will not work correctly for obtuse triangles.
’from normal slope’ uses the vector operator mpas tangential vector 1d to
calculate the tangent slopes from the normal slopes on the edges of the adja-
cent cells. It will work for any mesh configuration, but is the least accurate
method.

A.11.5 config SGH pressure calc

Type: character

Units: unitless

Default Value: cavity

Possible Values: ’cavity’, ’overburden’

Table A.77: config SGH pressure calc: Selection of the method for calculating water pres-
sure. ’cavity’ closes the hydrology equations by assuming cavities are always
completely full. ’overburden’ assumes water pressure is always equal to ice
overburden pressure.

126

A.11.6 config SGH alpha

Type: real

Units: unitless

Default Value: 1.25

Possible Values: positive real number

Table A.78: config SGH alpha: power of alpha parameter in subglacial water flux formula

A.11.7 config SGH beta

Type: real

Units: unitless

Default Value: 1.5

Possible Values: positive real number

Table A.79: config SGH beta: power of beta parameter in subglacial water flux formula

A.11.8 config SGH conduc coeff

Type: real

Units: m(2 ∗ beta− alpha) s(2 ∗ beta− 3) kg(1− beta)

Default Value: 0.001

Possible Values: positive real number

Table A.80: config SGH conduc coeff: conductivity coefficient for subglacial water flux

A.11.9 config SGH till drainage

Type: real

Units: m s−1

Default Value: 3.1709792e-11

Possible Values: positive real number. Default value is 0.001 m/yr in SI units.

Table A.81: config SGH till drainage: background subglacial till drainage rate

A.11.10 config SGH advection

127

Type: character

Units: none

Default Value: fo

Possible Values: ’fo’,’fct’

Table A.82: config SGH advection: Advection method for SGH. ’fo’=first-order upwind;
’fct’=flux-corrected transport. FCT currently not enabled.

A.11.11 config SGH bed roughness

Type: real

Units: m−1

Default Value: 0.5

Possible Values: positive real number

Table A.83: config SGH bed roughness: cavitation coefficient

A.11.12 config SGH bed roughness max

Type: real

Units: m

Default Value: 0.1

Possible Values: positive real number

Table A.84: config SGH bed roughness max: bed roughness scale

A.11.13 config SGH creep coefficient

Type: real

Units: none

Default Value: 0.04

Possible Values: positive real number

Table A.85: config SGH creep coefficient: creep closure coefficient

A.11.14 config SGH englacial porosity

Type: real

128

Units: none

Default Value: 0.01

Possible Values: positive real number

Table A.86: config SGH englacial porosity: notional englacial porosity

A.11.15 config SGH till max

Type: real

Units: m

Default Value: 2.0

Possible Values: positive real number

Table A.87: config SGH till max: maximum water thickness in subglacial till

A.11.16 config SGH chnl active

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.88: config SGH chnl active: activate channels in subglacial hydrology model

A.11.17 config SGH chnl alpha

Type: real

Units: unitless

Default Value: 1.25

Possible Values: positive real number

Table A.89: config SGH chnl alpha: power of alpha parameter in subglacial water flux
formula (in channels)

A.11.18 config SGH chnl beta

Type: real

Units: unitless

129

Default Value: 1.5

Possible Values: positive real number

Table A.90: config SGH chnl beta: power of beta parameter in subglacial water flux for-
mula (in channels)

A.11.19 config SGH chnl conduc coeff

Type: real

Units: m(2 ∗ beta− alpha) s(2 ∗ beta− 3) kg(1− beta)

Default Value: 0.1

Possible Values: positive real number

Table A.91: config SGH chnl conduc coeff: conductivity coefficient (in channels)

A.11.20 config SGH chnl creep coefficient

Type: real

Units: none

Default Value: 0.04

Possible Values: positive real number

Table A.92: config SGH chnl creep coefficient: creep closure coefficient (in channels)

A.11.21 config SGH incipient channel width

Type: real

Units: m

Default Value: 2.0

Possible Values: positive real number

Table A.93: config SGH incipient channel width: width of sheet beneath/around channel
that contributes to melt within the channel

A.11.22 config SGH include pressure melt

Type: logical

Units: none

130

Default Value: .true.

Possible Values: .true. or .false.

Table A.94: config SGH include pressure melt: whether to include the pressure melt term
in the rate of channel opening

A.11.23 config SGH shmip forcing

Type: character

Units: none

Default Value: none

Possible Values: ’none’, ’C1’-’C4’, ’D1’-’D5’

Table A.95: config SGH shmip forcing: calculate time-varying forcing specified by SHMIP
experiments C or D

A.11.24 config SGH basal melt

Type: character

Units: none

Default Value: file

Possible Values: ’file’, ’thermal’, ’basal heat’

Table A.96: config SGH basal melt: source for the basalMeltInput term. ’file’ takes what-
ever field was input and performs no calculation. ’thermal’ uses the ground-
edBasalMassBal field calculated by the thermal model. ’basal heat’ calcu-
lates a melt rate assuming the entirety of the basal heat flux (basalFric-
tionFlux+basalHeatFlux) goes to melting ice at the bed. This is calculated
in the SGH module and is independent of any calculations in the thermal
model.

A.12 AM globalStats

A.12.1 config AM globalStats enable

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

131

Table A.97: config AM globalStats enable: If true, landice analysis member globalStats is
called.

A.12.2 config AM globalStats compute interval

Type: character

Units: unitless

Default Value: output interval

Possible Values: Any valid time stamp, ’dt’, or ’output interval’

Table A.98: config AM globalStats compute interval: Timestamp determining how often
analysis member computations should be performed.

A.12.3 config AM globalStats stream name

Type: character

Units: unitless

Default Value: globalStatsOutput

Possible Values: Any existing stream name or ’none’

Table A.99: config AM globalStats stream name: Name of the stream that the global-
Stats analysis member should be tied to.

A.12.4 config AM globalStats compute on startup

Type: logical

Units: unitless

Default Value: .true.

Possible Values: .true. or .false.

Table A.100: config AM globalStats compute on startup: Logical flag determining if anal-
ysis member computations occur on start-up.

A.12.5 config AM globalStats write on startup

Type: logical

Units: unitless

132

Default Value: .true.

Possible Values: .true. or .false.

Table A.101: config AM globalStats write on startup: Logical flag determining if an anal-
ysis member write occurs on start-up.

A.13 AM regionalStats

A.13.1 config AM regionalStats enable

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.102: config AM regionalStats enable: If true, landice analysis member regional-
Stats is called.

A.13.2 config AM regionalStats compute interval

Type: character

Units: unitless

Default Value: output interval

Possible Values: Any valid time stamp, ’dt’, or ’output interval’

Table A.103: config AM regionalStats compute interval: Timestamp determining how
often analysis member computations should be performed.

A.13.3 config AM regionalStats stream name

Type: character

Units: unitless

Default Value: regionalStatsOutput

Possible Values: Any existing stream name or ’none’

Table A.104: config AM regionalStats stream name: Name of the stream that the region-
alStats analysis member should be tied to.

133

A.13.4 config AM regionalStats compute on startup

Type: logical

Units: unitless

Default Value: .true.

Possible Values: .true. or .false.

Table A.105: config AM regionalStats compute on startup: Logical flag determining if
analysis member computations occur on start-up.

A.13.5 config AM regionalStats write on startup

Type: logical

Units: unitless

Default Value: .true.

Possible Values: .true. or .false.

Table A.106: config AM regionalStats write on startup: Logical flag determining if an
analysis member write occurs on start-up.

134

Appendix B

Variable definitions

Embedded links point to information in chapter 17

B.1 mesh

B.1.1 latCell

Type: real

Units: radians

Dimension: nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % latCell

Table B.1: latCell: Latitude location of cell centers in radians.

B.1.2 lonCell

Type: real

Units: radians

Dimension: nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % lonCell

Table B.2: lonCell: Longitude location of cell centers in radians.

B.1.3 xCell

Type: real

Units: unitless

Dimension: nCells

135

Persistence: persistent

Location in code: domain % blocklist % mesh % xCell

Table B.3: xCell: X Coordinate in cartesian space of cell centers.

B.1.4 yCell

Type: real

Units: unitless

Dimension: nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % yCell

Table B.4: yCell: Y Coordinate in cartesian space of cell centers.

B.1.5 zCell

Type: real

Units: unitless

Dimension: nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % zCell

Table B.5: zCell: Z Coordinate in cartesian space of cell centers.

B.1.6 indexToCellID

Type: integer

Units: unitless

Dimension: nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % indexToCellID

Table B.6: indexToCellID: List of global cell IDs.

B.1.7 latEdge

136

Type: real

Units: radians

Dimension: nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % latEdge

Table B.7: latEdge: Latitude location of edge midpoints in radians.

B.1.8 lonEdge

Type: real

Units: radians

Dimension: nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % lonEdge

Table B.8: lonEdge: Longitude location of edge midpoints in radians.

B.1.9 xEdge

Type: real

Units: unitless

Dimension: nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % xEdge

Table B.9: xEdge: X Coordinate in cartesian space of edge midpoints.

B.1.10 yEdge

Type: real

Units: unitless

Dimension: nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % yEdge

Table B.10: yEdge: Y Coordinate in cartesian space of edge midpoints.

137

B.1.11 zEdge

Type: real

Units: unitless

Dimension: nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % zEdge

Table B.11: zEdge: Z Coordinate in cartesian space of edge midpoints.

B.1.12 indexToEdgeID

Type: integer

Units: unitless

Dimension: nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % indexToEdgeID

Table B.12: indexToEdgeID: List of global edge IDs.

B.1.13 latVertex

Type: real

Units: radians

Dimension: nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % latVertex

Table B.13: latVertex: Latitude location of vertices in radians.

B.1.14 lonVertex

Type: real

Units: radians

Dimension: nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % lonVertex

Table B.14: lonVertex: Longitude location of vertices in radians.

138

B.1.15 xVertex

Type: real

Units: unitless

Dimension: nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % xVertex

Table B.15: xVertex: X Coordinate in cartesian space of vertices.

B.1.16 yVertex

Type: real

Units: unitless

Dimension: nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % yVertex

Table B.16: yVertex: Y Coordinate in cartesian space of vertices.

B.1.17 zVertex

Type: real

Units: unitless

Dimension: nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % zVertex

Table B.17: zVertex: Z Coordinate in cartesian space of vertices.

B.1.18 indexToVertexID

Type: integer

Units: unitless

Dimension: nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % indexToVertexID

Table B.18: indexToVertexID: List of global vertex IDs.

139

B.1.19 nEdgesOnCell

Type: integer

Units: unitless

Dimension: nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % nEdgesOnCell

Table B.19: nEdgesOnCell: Number of edges that border each cell.

B.1.20 nEdgesOnEdge

Type: integer

Units: unitless

Dimension: nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % nEdgesOnEdge

Table B.20: nEdgesOnEdge: Number of edges that surround each of the cells that strad-
dle each edge. These edges are used to reconstruct the tangential velocities.

B.1.21 cellsOnEdge

Type: integer

Units: unitless

Dimension: TWO nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % cellsOnEdge

Table B.21: cellsOnEdge: List of cells that straddle each edge.

B.1.22 edgesOnCell

Type: integer

Units: unitless

Dimension: maxEdges nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % edgesOnCell

Table B.22: edgesOnCell: List of edges that border each cell.

140

B.1.23 edgesOnEdge

Type: integer

Units: unitless

Dimension: maxEdges2 nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % edgesOnEdge

Table B.23: edgesOnEdge: List of edges that border each of the cells that straddle each
edge.

B.1.24 cellsOnCell

Type: integer

Units: unitless

Dimension: maxEdges nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % cellsOnCell

Table B.24: cellsOnCell: List of cells that neighbor each cell.

B.1.25 verticesOnCell

Type: integer

Units: unitless

Dimension: maxEdges nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % verticesOnCell

Table B.25: verticesOnCell: List of vertices that border each cell.

B.1.26 verticesOnEdge

Type: integer

Units: unitless

Dimension: TWO nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % verticesOnEdge

141

Table B.26: verticesOnEdge: List of vertices that straddle each edge.

B.1.27 edgesOnVertex

Type: integer

Units: unitless

Dimension: vertexDegree nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % edgesOnVertex

Table B.27: edgesOnVertex: List of edges that share a vertex as an endpoint.

B.1.28 cellsOnVertex

Type: integer

Units: unitless

Dimension: vertexDegree nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % cellsOnVertex

Table B.28: cellsOnVertex: List of cells that share a vertex.

B.1.29 weightsOnEdge

Type: real

Units: unitless

Dimension: maxEdges2 nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % weightsOnEdge

Table B.29: weightsOnEdge: Reconstruction weights associated with each of the
edgesOnEdge.

B.1.30 dvEdge

Type: real

Units: m

142

Dimension: nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % dvEdge

Table B.30: dvEdge: Length of each edge, computed as the distance between ver-
ticesOnEdge.

B.1.31 dcEdge

Type: real

Units: m

Dimension: nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % dcEdge

Table B.31: dcEdge: Length of each edge, computed as the distance between cell-
sOnEdge.

B.1.32 angleEdge

Type: real

Units: radians

Dimension: nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % angleEdge

Table B.32: angleEdge: Angle the edge normal makes with local eastward direction.

B.1.33 areaCell

Type: real

Units: m2

Dimension: nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % areaCell

Table B.33: areaCell: Area of each cell in the primary grid.

143

B.1.34 areaTriangle

Type: real

Units: m2

Dimension: nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % areaTriangle

Table B.34: areaTriangle: Area of each cell (triangle) in the dual grid.

B.1.35 kiteAreasOnVertex

Type: real

Units: m2

Dimension: vertexDegree nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % kiteAreasOnVertex

Table B.35: kiteAreasOnVertex: Area of the portions of each dual cell that are part of
each cellsOnVertex.

B.1.36 meshDensity

Type: real

Units: unitless

Dimension: nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % meshDensity

Table B.36: meshDensity: The value of the generating density function at each cell cen-
ter.

B.1.37 localVerticalUnitVectors

Type: real

Units: unitless

Dimension: R3 nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % localVerticalUnitVectors

Table B.37: localVerticalUnitVectors: Unit surface normal vectors defined at cell centers.

144

B.1.38 edgeNormalVectors

Type: real

Units: unitless

Dimension: R3 nEdges

Persistence: persistent

Location in code: domain % blocklist % mesh % edgeNormalVectors

Table B.38: edgeNormalVectors: Normal vector defined at an edge.

B.1.39 cellTangentPlane

Type: real

Units: unitless

Dimension: R3 TWO nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % cellTangentPlane

Table B.39: cellTangentPlane: The two vectors that define a tangent plane at a cell cen-
ter.

B.1.40 coeffs reconstruct

Type: real

Units: unitless

Dimension: R3 maxEdges nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % coeffs reconstruct

Table B.40: coeffs reconstruct: Coefficients to reconstruct velocity vectors at cell centers.

B.1.41 layerThicknessFractions

Type: real

Units: none

Dimension: nVertLevels

Persistence: persistent

Location in code: domain % blocklist % mesh % layerThicknessFractions

145

Table B.41: layerThicknessFractions: Fractional thickness of each sigma layer

B.1.42 layerCenterSigma

Type: real

Units: none

Dimension: nVertLevels

Persistence: persistent

Location in code: domain % blocklist % mesh % layerCenterSigma

Table B.42: layerCenterSigma: Sigma (fractional) level at center of each layer

B.1.43 layerInterfaceSigma

Type: real

Units: none

Dimension: nVertInterfaces

Persistence: persistent

Location in code: domain % blocklist % mesh % layerInterfaceSigma

Table B.43: layerInterfaceSigma: Sigma (fractional) level at interface between each layer
(including top and bottom)

B.1.44 edgeSignOnCell

Type: integer

Units: unitless

Dimension: maxEdges nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % edgeSignOnCell

Table B.44: edgeSignOnCell: Sign of edge contributions to a cell for each edge on cell.
Used for bit-reproducible loops. Represents directionality of vector connect-
ing cells.

B.1.45 edgeSignOnVertex

146

Type: integer

Units: unitless

Dimension: maxEdges nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % edgeSignOnVertex

Table B.45: edgeSignOnVertex: Sign of edge contributions to a vertex for each edge on
vertex. Used for bit-reproducible loops. Represents directionality of vector
connecting vertices.

B.1.46 cellProcID

Type: integer

Units: unitless

Dimension: nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % cellProcID

Table B.46: cellProcID: processor number for each cell

B.1.47 baryCellsOnVertex

Type: integer

Units: unitless

Dimension: R3 nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % baryCellsOnVertex

Table B.47: baryCellsOnVertex: Cell center indices to use for interpolating from cell cen-
ters to vertex locations. Note these are local indices!

B.1.48 baryWeightsOnVertex

Type: real

Units: unitless

Dimension: R3 nVertices

Persistence: persistent

Location in code: domain % blocklist % mesh % baryWeightsOnVertex

147

Table B.48: baryWeightsOnVertex: Weights to interpolate from cell centers to vertex lo-
cations. Each weight is used with the corresponding cell center index indenti-
fied by baryCellsOnVertex.

B.1.49 wachspressWeightVertex

Type: real

Units: unitless

Dimension: maxEdges nCells

Persistence: persistent

Location in code: domain % blocklist % mesh % wachspressWeightVertex

Table B.49: wachspressWeightVertex: Wachspress weights used to interpolate from ver-
tices to cell centers.

B.1.50 xtime

Type: text

Units: unitless

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % mesh % xtime

Table B.50: xtime: model time, with format ’YYYY-MM-DD HH:MM:SS’

B.1.51 deltat

Type: real

Units: s

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % mesh % deltat

Table B.51: deltat: time step length, in seconds. Value on a given time is the value used
between the previous time level and the current time level.

B.1.52 allowableDtACFL

148

Type: real

Units: s

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % mesh % allowableDtACFL

Table B.52: allowableDtACFL: The maximum allowable time step based on the advective
CFL condition. Value on a given time is the value appropriate for between
the previous time level and the current time level.

B.1.53 allowableDtDCFL

Type: real

Units: s

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % mesh % allowableDtDCFL

Table B.53: allowableDtDCFL: The maximum allowable time step based on the diffusive
CFL condition. Value on a given time is the value appropriate for between
the previous time level and the current time level.

B.1.54 simulationStartTime

Type: text

Units: unitless

Dimension:

Persistence: persistent

Location in code: domain % blocklist % mesh % simulationStartTime

Table B.54: simulationStartTime: start time of first simulation, with format ’YYYY-MM-
DD HH:MM:SS’

B.1.55 daysSinceStart

Type: real

Units: days

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % mesh % daysSinceStart

149

Table B.55: daysSinceStart: Time since simulationStartTime in days, for plotting

B.1.56 timestepNumber

Type: integer

Units: none

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % mesh % timestepNumber

Table B.56: timestepNumber: time step number. initial time is 0.

B.2 geometry

B.2.1 bedTopography

Type: real

Units: m above datum

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % bedTopography

Table B.57: bedTopography: Elevation of ice sheet bed. Once isostasy is added to the
model, this should become a state variable.

B.2.2 thickness

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % thickness

Table B.58: thickness: ice thickness

B.2.3 layerThickness

150

Type: real

Units: m

Dimension: nVertLevels nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % layerThickness

Table B.59: layerThickness: layer thickness

B.2.4 lowerSurface

Type: real

Units: m above datum

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % lowerSurface

Table B.60: lowerSurface: elevation at bottom of ice

B.2.5 upperSurface

Type: real

Units: m above datum

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % upperSurface

Table B.61: upperSurface: elevation at top of ice

B.2.6 layerThicknessEdge

Type: real

Units: m

Dimension: nVertLevels nEdges Time

Persistence: persistent

Location in code: domain % blocklist % geometry % layerThicknessEdge

Table B.62: layerThicknessEdge: layer thickness on cell edges

151

B.2.7 dHdt

Type: real

Units: m a−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % dHdt

Table B.63: dHdt: diagnostic field of rate of thickness change with time (dH/dt). This
includes all processes (flux divergence, SMB, BMB, calving, etc.) because
it is calculated as the new thickness minus the old thickness divided by the
time step.

B.2.8 thicknessOld

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % thicknessOld

Table B.64: thicknessOld: ice thickness from previous time level (only used to calculate
thicknessTendency)

B.2.9 dynamicThickening

Type: real

Units: m a−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % dynamicThickening

Table B.65: dynamicThickening: diagnostic field of dynamic thickening rate (calculated
as negative of flux divergence)

B.2.10 cellMask

Type: integer

Units: none

Dimension: nCells Time

152

Persistence: persistent

Location in code: domain % blocklist % geometry % cellMask

Table B.66: cellMask: bitmask indicating various properties about the ice sheet on cells.
cellMask only needs to be a restart field if config allow additional advance =
false (to keep the mask of initial ice extent)

B.2.11 edgeMask

Type: integer

Units: none

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % geometry % edgeMask

Table B.67: edgeMask: bitmask indicating various properties about the ice sheet on
edges.

B.2.12 vertexMask

Type: integer

Units: none

Dimension: nVertices Time

Persistence: persistent

Location in code: domain % blocklist % geometry % vertexMask

Table B.68: vertexMask: bitmask indicating various properties about the ice sheet on ver-
tices.

B.2.13 sfcMassBal

Type: real

Units: kg m−2 s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % sfcMassBal

Table B.69: sfcMassBal: applied surface mass balance

153

B.2.14 basalMassBal

Type: real

Units: kg m−2 s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % basalMassBal

Table B.70: basalMassBal: applied basal mass balance

B.2.15 groundedBasalMassBal

Type: real

Units: kg m−2 s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % groundedBasalMassBal

Table B.71: groundedBasalMassBal: Basal mass balance on grounded regions

B.2.16 floatingBasalMassBal

Type: real

Units: kg m−2 s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % floatingBasalMassBal

Table B.72: floatingBasalMassBal: Basal mass balance on floating regions

B.2.17 calvingThickness

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % calvingThickness

Table B.73: calvingThickness: thickness of ice that calves on a given timestep (less than
or equal to ice thickness)

154

B.2.18 eigencalvingParameter

Type: real

Units: m s

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % eigencalvingParameter

Table B.74: eigencalvingParameter: proportionality constant K2+- used in eigencalving
formulation

B.2.19 calvingVelocity

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % calvingVelocity

Table B.75: calvingVelocity: rate of calving front retreat due to calving, represented as
a velocity normal to the calving front (in the x-y plane). This retreat rate is
converted from a flux to a rate in the code requiredCalvingVolumeRate.

B.2.20 requiredCalvingVolumeRate

Type: real

Units: m3 s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % requiredCalvingVolumeR-
ate

Table B.76: requiredCalvingVolumeRate: total volume of ice that needs to be removed
based on eigencalving rate at this margin cell

B.2.21 uncalvedVolume

Type: real

155

Units: m3

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % uncalvedVolume

Table B.77: uncalvedVolume: volume of ice that was left uncalved from required calving
flux due to only applying flux over immediate neighbors (diagnostic field to
assess if this limitation is a problem)

B.2.22 basalWaterThickness

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % basalWaterThickness

Table B.78: basalWaterThickness: thickness of basal water

B.2.23 restoreThickness

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % restoreThickness

Table B.79: restoreThickness: thickness of ice added when the config restore calving front
option is set to .true. (in order to maintain the calving front at its initial po-
sition)

B.2.24 normalSlopeEdge

Type: real

Units: m m−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % geometry % normalSlopeEdge

Table B.80: normalSlopeEdge: normal surface slope on edges

156

B.2.25 apparentDiffusivity

Type: real

Units: m2 s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % geometry % apparentDiffusivity

Table B.81: apparentDiffusivity: apparent diffusivity at cell centers (estimated based on
the local ice flux and surface slope)

B.2.26 upperSurfaceVertex

Type: real

Units: m above datum

Dimension: nVertices Time

Persistence: persistent

Location in code: domain % blocklist % geometry % upperSurfaceVertex

Table B.82: upperSurfaceVertex: elevation at top of ice on vertices

B.2.27 tangentSlopeEdge

Type: real

Units: m m−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % geometry % tangentSlopeEdge

Table B.83: tangentSlopeEdge: tangent surface slope on edges

B.2.28 slopeEdge

Type: real

Units: m m−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % geometry % slopeEdge

157

Table B.84: slopeEdge: surface slope magnitude on edges

B.3 velocity

B.3.1 flowParamA

Type: real

Units: s−1 Pa−n

Dimension: nVertLevels nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % flowParamA

Table B.85: flowParamA: flow law parameter, A, used by shallow-ice velocity solver

B.3.2 normalVelocity

Type: real

Units: m s−1

Dimension: nVertInterfaces nEdges Time

Persistence: persistent

Location in code: domain % blocklist % velocity % normalVelocity

Table B.86: normalVelocity: horizonal velocity, normal component to an edge, layer inter-
face

B.3.3 layerNormalVelocity

Type: real

Units: m s−1

Dimension: nVertLevels nEdges Time

Persistence: persistent

Location in code: domain % blocklist % velocity % layerNormalVelocity

Table B.87: layerNormalVelocity: horizonal velocity, normal component to an edge, layer
midpoint

158

B.3.4 normalVelocityInitial

Type: real

Units: m s−1

Dimension: nVertInterfaces nEdges Time

Persistence: persistent

Location in code: domain % blocklist % velocity % normalVelocityInitial

Table B.88: normalVelocityInitial: horizonal velocity, normal component to an edge, com-
puted at initialization

B.3.5 uReconstructX

Type: real

Units: m s−1

Dimension: nVertInterfaces nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % uReconstructX

Table B.89: uReconstructX: x-component of velocity reconstructed on cell centers. Also,
for higher-order dycores, on input: value of the x-component of velocity that
should be applied where dirichletVelocityMask==1.

B.3.6 uReconstructY

Type: real

Units: m s−1

Dimension: nVertInterfaces nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % uReconstructY

Table B.90: uReconstructY: y-component of velocity reconstructed on cell centers. Also,
for higher-order dycores, on input: value of the y-component of velocity that
should be applied where dirichletVelocityMask==1.

B.3.7 uReconstructZ

Type: real

Units: m s−1

Dimension: nVertInterfaces nCells Time

159

Persistence: persistent

Location in code: domain % blocklist % velocity % uReconstructZ

Table B.91: uReconstructZ: z-component of velocity reconstructed on cell centers

B.3.8 uReconstructZonal

Type: real

Units: m s−1

Dimension: nVertInterfaces nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % uReconstructZonal

Table B.92: uReconstructZonal: zonal velocity reconstructed on cell centers

B.3.9 uReconstructMeridional

Type: real

Units: m s−1

Dimension: nVertInterfaces nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % uReconstructMeridional

Table B.93: uReconstructMeridional: meridional velocity reconstructed on cell centers

B.3.10 surfaceSpeed

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % surfaceSpeed

Table B.94: surfaceSpeed: ice surface speed reconstructed at cell centers

B.3.11 basalSpeed

160

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % basalSpeed

Table B.95: basalSpeed: ice basal speed reconstructed at cell centers

B.3.12 beta

Type: real

Units: Pa yr m−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % beta

Table B.96: beta: input value of basal traction parameter for sliding law used with first-
order momentum balance solver (NOTE non-SI units)

B.3.13 betaSolve

Type: real

Units: Pa yr m−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % betaSolve

Table B.97: betaSolve: value of basal traction parameter for sliding law used with first-
order momentum balance solver (NOTE non-SI units); differs from beta due
to any necessary adjustments made for internal consistency (e.g., zeroed out
where the ice is found to be floating)

B.3.14 exx

Type: real

Units: s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % exx

Table B.98: exx: x-component of surface strain rate

161

B.3.15 eyy

Type: real

Units: s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % eyy

Table B.99: eyy: y-component of surface strain rate

B.3.16 exy

Type: real

Units: s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % exy

Table B.100: exy: shear component of surface strain rate

B.3.17 eTheta

Type: real

Units: radians

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % eTheta

Table B.101: eTheta: orientation of principal surface strain rate

B.3.18 eyx

Type: real

Units: s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % eyx

Table B.102: eyx: shear component of surface strain rate

162

B.3.19 eMax

Type: real

Units: s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % eMax

Table B.103: eMax: magnitude of first principal surface strain rate

B.3.20 eMin

Type: real

Units: s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % velocity % eMin

Table B.104: eMin: magnitude of second principal surface strain rate

B.3.21 anyDynamicVertexMaskChanged

Type: integer

Units: none

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % velocity % anyDynamicVertex-
MaskChanged

Table B.105: anyDynamicVertexMaskChanged: flag needed by external velocity solvers
that indicates if the region to solve on the block’s domain has changed
(treated as a logical)

B.3.22 dirichletVelocityMask

Type: integer

Units: none

Dimension: nVertInterfaces nCells Time

163

Persistence: persistent

Location in code: domain % blocklist % velocity % dirichletVelocityMask

Table B.106: dirichletVelocityMask: mask of where Dirichlet boundary conditions should
be applied to the velocity solution. 1 means apply a Dirichlet boundary con-
dition, 0 means do not. (higher-order dycores only)

B.3.23 dirichletMaskChanged

Type: integer

Units: none

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % velocity % dirichletMaskChanged

Table B.107: dirichletMaskChanged: flag needed by external velocity solvers that indi-
cates if the Dirichlet boundary condition mask has changed (treated as a
logical)

B.3.24 floatingEdges

Type: integer

Units: unitless

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % velocity % floatingEdges

Table B.108: floatingEdges: edges which are floating have a value of 1. non floating edges
have a value of 0.

B.4 observations

B.4.1 observedSurfaceVelocityX

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % observations % observedSurfaceVeloc-
ityX

164

Table B.109: observedSurfaceVelocityX: X-component of observed surface velocity

B.4.2 observedSurfaceVelocityY

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % observations % observedSurfaceVeloc-
ityY

Table B.110: observedSurfaceVelocityY: Y-component of observed surface velocity

B.4.3 observedSurfaceVelocityUncertainty

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % observations % observedSurfaceVeloc-
ityUncertainty

Table B.111: observedSurfaceVelocityUncertainty: uncertainty in observed surface veloc-
ity magnitude

B.4.4 observedThicknessTendency

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % observations % observedThicknessTen-
dency

Table B.112: observedThicknessTendency: observed tendency in thickness (dH/dt)

B.4.5 observedThicknessTendencyUncertainty

165

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % observations % observedThicknessTen-
dencyUncertainty

Table B.113: observedThicknessTendencyUncertainty: uncertainty in observed tendency
in thickness (dH/dt)

B.4.6 sfcMassBalUncertainty

Type: real

Units: kg m−2 s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % observations % sfcMassBalUncertainty

Table B.114: sfcMassBalUncertainty: uncertainty in observed surface mass balance

B.4.7 thicknessUncertainty

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % observations % thicknessUncertainty

Table B.115: thicknessUncertainty: uncertainty in observed thickness

B.4.8 floatingBasalMassBalUncertainty

Type: real

Units: kg m−2 s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % observations % floatingBasalMass-
BalUncertainty

Table B.116: floatingBasalMassBalUncertainty: uncertainty in observed floating basal
mass balance

166

B.5 thermal

B.5.1 temperature

Type: real

Units: K

Dimension: nVertLevels nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % temperature

Table B.117: temperature: interior ice temperature

B.5.2 waterfrac

Type: real

Units: unitless

Dimension: nVertLevels nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % waterfrac

Table B.118: waterfrac: interior ice water fraction

B.5.3 enthalpy

Type: real

Units: J m−3

Dimension: nVertLevels nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % enthalpy

Table B.119: enthalpy: interior ice enthalpy

B.5.4 surfaceAirTemperature

Type: real

Units: K

Dimension: nCells Time

Persistence: persistent

167

Location in code: domain % blocklist % thermal % surfaceAirTemperature

Table B.120: surfaceAirTemperature: air temperature at the ice sheet surface

B.5.5 surfaceTemperature

Type: real

Units: K

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % surfaceTemperature

Table B.121: surfaceTemperature: temperature at upper ice service

B.5.6 basalTemperature

Type: real

Units: K

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % basalTemperature

Table B.122: basalTemperature: temperature at lower ice surface

B.5.7 pmpTemperature

Type: real

Units: K

Dimension: nVertLevels nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % pmpTemperature

Table B.123: pmpTemperature: pressure melt temperature

B.5.8 basalPmpTemperature

Type: real

Units: K

168

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % basalPmpTemperature

Table B.124: basalPmpTemperature: pressure melt temperature at lower ice surface

B.5.9 surfaceConductiveFlux

Type: real

Units: W m−2

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % surfaceConductiveFlux

Table B.125: surfaceConductiveFlux: conductive heat flux at the upper ice surface (posi-
tive downward)

B.5.10 basalConductiveFlux

Type: real

Units: W m−2

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % basalConductiveFlux

Table B.126: basalConductiveFlux: conductive heat flux at the lower ice surface (positive
downward)

B.5.11 basalHeatFlux

Type: real

Units: W m−2

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % basalHeatFlux

Table B.127: basalHeatFlux: basal heat flux into the ice (positive upward)

169

B.5.12 basalFrictionFlux

Type: real

Units: W m−2

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % basalFrictionFlux

Table B.128: basalFrictionFlux: basal frictional heat flux into the ice (positive upward)

B.5.13 heatDissipation

Type: real

Units: deg s−1

Dimension: nVertLevels nCells Time

Persistence: persistent

Location in code: domain % blocklist % thermal % heatDissipation

Table B.129: heatDissipation: interior heat dissipation rate, divided by rhoi*cp ice

B.6 scratch

B.6.1 iceCellMask

Type: integer

Units: none

Dimension: nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % iceCellMask

Table B.130: iceCellMask: mask set to 1 in cells where some criterion is satisfied and 0
otherwise

B.6.2 iceCellMask2

Type: integer

Units: none

Dimension: nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % iceCellMask2

170

Table B.131: iceCellMask2: mask set to 1 in cells where some criterion is satisfied and 0
otherwise

B.6.3 iceCellMask3

Type: integer

Units: none

Dimension: nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % iceCellMask3

Table B.132: iceCellMask3: mask set to 1 in cells where some criterion is satisfied and 0
otherwise

B.6.4 iceEdgeMask

Type: integer

Units: none

Dimension: nEdges

Persistence: scratch

Location in code: domain % blocklist % scratch % iceEdgeMask

Table B.133: iceEdgeMask: mask set to 1 for edges adjacent to ice-covered cells and 0
otherwise

B.6.5 workLevelCell

Type: real

Units: none

Dimension: nVertLevels nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % workLevelCell

Table B.134: workLevelCell: generic work array with dimensions of (nVertLevels nCells)

B.6.6 workLevelEdge

171

Type: real

Units: none

Dimension: nVertLevels nEdges

Persistence: scratch

Location in code: domain % blocklist % scratch % workLevelEdge

Table B.135: workLevelEdge: generic work array with dimensions of (nVertLevels
nEdges)

B.6.7 workLevelVertex

Type: real

Units: none

Dimension: nVertLevels nVertices

Persistence: persistent

Location in code: domain % blocklist % scratch % workLevelVertex

Table B.136: workLevelVertex: generic work array with dimensions of (nVertLevels nVer-
tices)

B.6.8 workCell

Type: real

Units: none

Dimension: nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % workCell

Table B.137: workCell: generic work array with dimensions of (nCells)

B.6.9 workCell2

Type: real

Units: none

Dimension: nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % workCell2

Table B.138: workCell2: generic work array with dimensions of (nCells)

172

B.6.10 workCell3

Type: real

Units: none

Dimension: nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % workCell3

Table B.139: workCell3: generic work array with dimensions of (nCells)

B.6.11 workTracerCell

Type: real

Units: none

Dimension: maxTracersAdvect nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % workTracerCell

Table B.140: workTracerCell: generic work array with dimensions of (maxTracersAdvect
nCells)

B.6.12 workTracerCell2

Type: real

Units: none

Dimension: maxTracersAdvect nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % workTracerCell2

Table B.141: workTracerCell2: generic work array with dimensions of (maxTracersAdvect
nCells)

B.6.13 workTracerLevelCell

Type: real

Units: none

Dimension: maxTracersAdvect nVertLevels nCells

Persistence: scratch

173

Location in code: domain % blocklist % scratch % workTracerLevelCell

Table B.142: workTracerLevelCell: generic work array with dimensions of (maxTracer-
sAdvect nVertLevels nCells)

B.6.14 workTracerLevelCell2

Type: real

Units: none

Dimension: maxTracersAdvect nVertLevels nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % workTracerLevelCell2

Table B.143: workTracerLevelCell2: generic work array with dimensions of (maxTracer-
sAdvect nVertLevels nCells)

B.6.15 slopeCellX

Type: real

Units: none

Dimension: nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % slopeCellX

Table B.144: slopeCellX: x-component of slope on cell centers

B.6.16 slopeCellY

Type: real

Units: none

Dimension: nCells

Persistence: scratch

Location in code: domain % blocklist % scratch % slopeCellY

Table B.145: slopeCellY: y-component of slope on cell centers

B.6.17 vertexIndices

174

Type: integer

Units: none

Dimension: nVertices

Persistence: scratch

Location in code: domain % blocklist % scratch % vertexIndices

Table B.146: vertexIndices: local indices of each vertex

B.7 regions

B.7.1 regionCellMasks

Type: integer

Units: unitless

Dimension: nRegions nCells

Persistence: persistent

Location in code: domain % blocklist % regions % regionCellMasks

Table B.147: regionCellMasks: masks set to 1 in cells that fall within a given region and
0 otherwise

B.8 hydro

B.8.1 waterThickness

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterThickness

Table B.148: waterThickness: water layer thickness in subglacial hydrology system

B.8.2 waterThicknessOld

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

175

Location in code: domain % blocklist % hydro % waterThicknessOld

Table B.149: waterThicknessOld: water layer thickness in subglacial hydrology system
from previous time step

B.8.3 waterThicknessTendency

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterThicknessTendency

Table B.150: waterThicknessTendency: rate of change in water layer thickness in sub-
glacial hydrology system

B.8.4 tillWaterThickness

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % tillWaterThickness

Table B.151: tillWaterThickness: water layer thickness in subglacial till

B.8.5 tillWaterThicknessOld

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % tillWaterThicknessOld

Table B.152: tillWaterThicknessOld: water layer thickness in subglacial till from previous
time step

176

B.8.6 waterPressure

Type: real

Units: Pa

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterPressure

Table B.153: waterPressure: pressure in subglacial hydrology system

B.8.7 waterPressureOld

Type: real

Units: Pa

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterPressureOld

Table B.154: waterPressureOld: pressure in subglacial hydrology system from previous
time step

B.8.8 waterPressureTendency

Type: real

Units: Pa s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterPressureTendency

Table B.155: waterPressureTendency: tendency in pressure in subglacial hydrology sys-
tem

B.8.9 basalMeltInput

Type: real

Units: kg m−2 s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % basalMeltInput

Table B.156: basalMeltInput: basal meltwater input to subglacial hydrology system

177

B.8.10 externalWaterInput

Type: real

Units: kg m−2 s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % externalWaterInput

Table B.157: externalWaterInput: external water input to subglacial hydrology system

B.8.11 frictionAngle

Type: real

Units: None

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % frictionAngle

Table B.158: frictionAngle: subglacial till friction angle

B.8.12 effectivePressure

Type: real

Units: Pa

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % effectivePressure

Table B.159: effectivePressure: effective ice pressure in subglacial hydrology system

B.8.13 hydropotential

Type: real

Units: Pa

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % hydropotential

Table B.160: hydropotential: hydropotential in subglacial hydrology system

178

B.8.14 waterFlux

Type: real

Units: m2 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterFlux

Table B.161: waterFlux: total water flux in subglacial hydrology system

B.8.15 waterFluxMask

Type: integer

Units: none

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterFluxMask

Table B.162: waterFluxMask: mask indicating how to handle fluxes on each edge: 0=cal-
culate based on hydropotential gradient; 1=allow outflow based on hydropo-
tential gradient, but no inflow (NOT YET IMPLEMENTED); 2=zero flux

B.8.16 waterFluxAdvec

Type: real

Units: m2 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterFluxAdvec

Table B.163: waterFluxAdvec: advective water flux in subglacial hydrology system

B.8.17 waterFluxDiffu

Type: real

Units: m2 s−1

Dimension: nEdges Time

Persistence: persistent

179

Location in code: domain % blocklist % hydro % waterFluxDiffu

Table B.164: waterFluxDiffu: diffusive water flux in subglacial hydrology system

B.8.18 waterVelocity

Type: real

Units: m s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterVelocity

Table B.165: waterVelocity: water velocity in subglacial hydrology system

B.8.19 waterVelocityCellX

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterVelocityCellX

Table B.166: waterVelocityCellX: subglacial water velocity reconstructed on cell centers,
x-component

B.8.20 waterVelocityCellY

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterVelocityCellY

Table B.167: waterVelocityCellY: subglacial water velocity reconstructed on cell centers,
y-component

B.8.21 effectiveConducEdge

180

Type: real

Units: m2 s−1 Pa−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % effectiveConducEdge

Table B.168: effectiveConducEdge: effective Darcy hydraulic conductivity on edges in
subglacial hydrology system

B.8.22 waterThicknessEdge

Type: real

Units: m

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterThicknessEdge

Table B.169: waterThicknessEdge: water layer thickness on edges in subglacial hydrology
system

B.8.23 waterThicknessEdgeUpwind

Type: real

Units: m

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterThicknessEdgeUpwind

Table B.170: waterThicknessEdgeUpwind: water layer thickness of cell upwind of edge in
subglacial hydrology system

B.8.24 diffusivity

Type: real

Units: m2 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % diffusivity

Table B.171: diffusivity: diffusivity of water sheet in subglacial hydrology system

181

B.8.25 hydropotentialBase

Type: real

Units: Pa

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % hydropotentialBase

Table B.172: hydropotentialBase: hydropotential in subglacial hydrology system without
water thickness contribution

B.8.26 hydropotentialBaseVertex

Type: real

Units: Pa

Dimension: nVertices Time

Persistence: persistent

Location in code: domain % blocklist % hydro % hydropotentialBaseVertex

Table B.173: hydropotentialBaseVertex: hydropotential without water thick-
ness contribution on vertices. Only used for some choices of con-
fig SGH tangent slope calculation.

B.8.27 hydropotentialBaseSlopeNormal

Type: real

Units: Pa m−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % hydropotentialBaseSlopeNor-
mal

Table B.174: hydropotentialBaseSlopeNormal: normal component of gradient of hydropo-
tentialBase

B.8.28 hydropotentialBaseSlopeTangent

Type: real

182

Units: Pa m−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % hydropotentialBaseSlopeTan-
gent

Table B.175: hydropotentialBaseSlopeTangent: tangent component of gradient of hy-
dropotentialBase

B.8.29 gradMagPhiEdge

Type: real

Units: Pa m−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % gradMagPhiEdge

Table B.176: gradMagPhiEdge: magnitude of the gradient of hydropotentialBase, on
Edges

B.8.30 waterPressureSlopeNormal

Type: real

Units: Pa m−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % waterPressureSlopeNormal

Table B.177: waterPressureSlopeNormal: normal component of gradient of waterPressure
in subglacial hydrology system

B.8.31 divergence

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % divergence

Table B.178: divergence: flux divergence of water in subglacial hydrology system

183

B.8.32 openingRate

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % openingRate

Table B.179: openingRate: rate of cavity opening in subglacial hydrology system

B.8.33 closingRate

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % closingRate

Table B.180: closingRate: rate of ice creep closure in subglacial hydrology system

B.8.34 zeroOrderSum

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % zeroOrderSum

Table B.181: zeroOrderSum: sum of zero order terms in subglacial hydrology system

B.8.35 deltatSGHadvec

Type: real

Units: s

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % hydro % deltatSGHadvec

184

Table B.182: deltatSGHadvec: advective CFL limited time step length in subglacial hy-
drology system

B.8.36 deltatSGHdiffu

Type: real

Units: s

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % hydro % deltatSGHdiffu

Table B.183: deltatSGHdiffu: diffusive CFL limited time step length in subglacial hydrol-
ogy system

B.8.37 deltatSGHpressure

Type: real

Units: s

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % hydro % deltatSGHpressure

Table B.184: deltatSGHpressure: time step length limited by pressure equation scheme in
subglacial hydrology system

B.8.38 deltatSGH

Type: real

Units: s

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % hydro % deltatSGH

Table B.185: deltatSGH: time step used for evolving subglacial hydrology system

B.8.39 channelArea

185

Type: real

Units: m2

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelArea

Table B.186: channelArea: area of channel in subglacial hydrology system

B.8.40 channelDischarge

Type: real

Units: m3 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelDischarge

Table B.187: channelDischarge: discharge through channel in subglacial hydrology system

B.8.41 channelVelocity

Type: real

Units: m s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelVelocity

Table B.188: channelVelocity: water velocity in channel in subglacial hydrology system

B.8.42 channelMelt

Type: real

Units: kg m−1 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelMelt

Table B.189: channelMelt: melt rate in channel in subglacial hydrology system

186

B.8.43 channelPressureFreeze

Type: real

Units: kg m−1 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelPressureFreeze

Table B.190: channelPressureFreeze: freezing rate in subglacial channel due to water pres-
sure gradient (positive=freezing, negative=melting)

B.8.44 flowParamAChannel

Type: real

Units: Pa−3 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % flowParamAChannel

Table B.191: flowParamAChannel: flow parameter A on edges used for channel in sub-
glacial hydrology system

B.8.45 channelEffectivePressure

Type: real

Units: Pa

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelEffectivePressure

Table B.192: channelEffectivePressure: effective pressure in the channel in subglacial hy-
drology system

B.8.46 channelClosingRate

Type: real

Units: m2 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelClosingRate

187

Table B.193: channelClosingRate: closing rate from creep of the channel in subglacial hy-
drology system

B.8.47 channelOpeningRate

Type: real

Units: m2 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelOpeningRate

Table B.194: channelOpeningRate: opening rate from melt of the channel in subglacial
hydrology system

B.8.48 channelChangeRate

Type: real

Units: m2 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelChangeRate

Table B.195: channelChangeRate: rate of change of channel area in subglacial hydrology
system

B.8.49 deltatSGHadvecChannel

Type: real

Units: s

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % hydro % deltatSGHadvecChannel

Table B.196: deltatSGHadvecChannel: time step length limited by channel advection

B.8.50 deltatSGHdiffuChannel

188

Type: real

Units: s

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % hydro % deltatSGHdiffuChannel

Table B.197: deltatSGHdiffuChannel: time step length limited by channel diffusion

B.8.51 divergenceChannel

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % divergenceChannel

Table B.198: divergenceChannel: divergence due to channel flow in subglacial hydrology
system

B.8.52 channelAreaChangeCell

Type: real

Units: m s−1

Dimension: nCells Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelAreaChangeCell

Table B.199: channelAreaChangeCell: change in channel area within each cell, averaged
over cell area

B.8.53 channelDiffusivity

Type: real

Units: m2 s−1

Dimension: nEdges Time

Persistence: persistent

Location in code: domain % blocklist % hydro % channelDiffusivity

Table B.200: channelDiffusivity: diffusivity in channel in subglacial hydrology system

189

B.9 globalStatsAM

B.9.1 totalIceVolume

Type: real

Units: m3

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % totalIceVolume

Table B.201: totalIceVolume: total ice sheet volume

B.9.2 volumeAboveFloatation

Type: real

Units: m3

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % volumeAboveFloata-
tion

Table B.202: volumeAboveFloatation: total ice sheet volume above floatation

B.9.3 totalIceArea

Type: real

Units: m2

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % totalIceArea

Table B.203: totalIceArea: total ice sheet area

B.9.4 floatingIceVolume

Type: real

Units: m3

Dimension: Time

190

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % floatingIceVolume

Table B.204: floatingIceVolume: total floating ice sheet volume

B.9.5 floatingIceArea

Type: real

Units: m2

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % floatingIceArea

Table B.205: floatingIceArea: total floating ice sheet area

B.9.6 groundedIceVolume

Type: real

Units: m3

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % groundedIceVolume

Table B.206: groundedIceVolume: total grounded ice sheet volume

B.9.7 groundedIceArea

Type: real

Units: m2

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % groundedIceArea

Table B.207: groundedIceArea: total grounded ice sheet area

B.9.8 iceThicknessMean

Type: real

191

Units: m

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % iceThicknessMean

Table B.208: iceThicknessMean: spatially averaged ice thickness

B.9.9 iceThicknessMax

Type: real

Units: m

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % iceThicknessMax

Table B.209: iceThicknessMax: maximum ice thickness in domain

B.9.10 iceThicknessMin

Type: real

Units: m

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % iceThicknessMin

Table B.210: iceThicknessMin: minimum ice thickness in domain

B.9.11 totalSfcMassBal

Type: real

Units: kg yr−1

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % totalSfcMassBal

Table B.211: totalSfcMassBal: total, area integrated surface mass balance. Positive values
represent ice gain.

192

B.9.12 avgNetAccumulation

Type: real

Units: m yr−1

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % avgNetAccumulation

Table B.212: avgNetAccumulation: average sfcMassBal, as a thickness rate. Positive val-
ues represent ice gain.

B.9.13 totalBasalMassBal

Type: real

Units: kg yr−1

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % totalBasalMassBal

Table B.213: totalBasalMassBal: total, area integrated basal mass balance. Positive val-
ues represent ice gain.

B.9.14 totalGroundedBasalMassBal

Type: real

Units: kg yr−1

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % totalGrounded-
BasalMassBal

Table B.214: totalGroundedBasalMassBal: total, area integrated grounded basal mass
balance. Positive values represent ice gain.

B.9.15 avgGroundedBasalMelt

Type: real

Units: m yr−1

Dimension: Time

Persistence: persistent

193

Location in code: domain % blocklist % globalStatsAM % avgGrounded-
BasalMelt

Table B.215: avgGroundedBasalMelt: average groundedBasalMassBal value, as a thick-
ness rate. Positive values represent ice loss.

B.9.16 totalFloatingBasalMassBal

Type: real

Units: kg yr−1

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % totalFloating-
BasalMassBal

Table B.216: totalFloatingBasalMassBal: total, area integrated floating basal mass bal-
ance. Positive values represent ice gain.

B.9.17 avgSubshelfMelt

Type: real

Units: m yr−1

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % avgSubshelfMelt

Table B.217: avgSubshelfMelt: average floatingBasalMassBal value, as a thickness rate.
Positive values represent ice loss.

B.9.18 totalCalvingFlux

Type: real

Units: kg yr−1

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % totalCalvingFlux

Table B.218: totalCalvingFlux: total, area integrated mass loss due to calving. Positive
values represent ice loss.

194

B.9.19 groundingLineFlux

Type: real

Units: kg yr−1

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % groundingLineFlux

Table B.219: groundingLineFlux: total mass flux across all grounding lines. Note that
flux from floating to grounded ice makes a negative contribution to this
metric.

B.9.20 surfaceSpeedMax

Type: real

Units: m yr−1

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % surfaceSpeedMax

Table B.220: surfaceSpeedMax: maximum surface speed in the domain

B.9.21 basalSpeedMax

Type: real

Units: m yr−1

Dimension: Time

Persistence: persistent

Location in code: domain % blocklist % globalStatsAM % basalSpeedMax

Table B.221: basalSpeedMax: maximum basal speed in the domain

B.10 regionalStatsAM

B.10.1 regionalIceArea

Type: real

Units: m2

195

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalIceArea

Table B.222: regionalIceArea: total ice sheet area within region

B.10.2 regionalIceVolume

Type: real

Units: m3

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalIceVolume

Table B.223: regionalIceVolume: total ice sheet volume within region

B.10.3 regionalVolumeAboveFloatation

Type: real

Units: m3

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalVolume-
AboveFloatation

Table B.224: regionalVolumeAboveFloatation: total ice sheet volume above floatation

B.10.4 regionalGroundedIceArea

Type: real

Units: m2

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regional-
GroundedIceArea

Table B.225: regionalGroundedIceArea: total grounded ice sheet area within region

196

B.10.5 regionalGroundedIceVolume

Type: real

Units: m3

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regional-
GroundedIceVolume

Table B.226: regionalGroundedIceVolume: total grounded ice sheet volume within region

B.10.6 regionalFloatingIceArea

Type: real

Units: m2

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalFloating-
IceArea

Table B.227: regionalFloatingIceArea: total floating ice sheet area within region

B.10.7 regionalFloatingIceVolume

Type: real

Units: m3

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalFloating-
IceVolume

Table B.228: regionalFloatingIceVolume: total floating ice sheet volume within region

B.10.8 regionalIceThicknessMin

Type: real

Units: m

Dimension: nRegions Time

Persistence: persistent

197

Location in code: domain % blocklist % regionalStatsAM % regionalIceThick-
nessMin

Table B.229: regionalIceThicknessMin: min ice thickness within region

B.10.9 regionalIceThicknessMax

Type: real

Units: m

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalIceThick-
nessMax

Table B.230: regionalIceThicknessMax: max ice thickness within region

B.10.10 regionalIceThicknessMean

Type: real

Units: m

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalIceThick-
nessMean

Table B.231: regionalIceThicknessMean: mean ice thickness within region

B.10.11 regionalSumSfcMassBal

Type: real

Units: kg yr−1

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalSumSfc-
MassBal

Table B.232: regionalSumSfcMassBal: area-integrated surface mass balance within region

198

B.10.12 regionalAvgNetAccumulation

Type: real

Units: m yr−1

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalAvgNe-
tAccumulation

Table B.233: regionalAvgNetAccumulation: average sfcMassBal, as a thickness rate. Posi-
tive values represent ice gain.

B.10.13 regionalSumBasalMassBal

Type: real

Units: kg yr−1

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalSum-
BasalMassBal

Table B.234: regionalSumBasalMassBal: area-integrated basal mass balance within region

B.10.14 regionalSumGroundedBasalMassBal

Type: real

Units: kg yr−1

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalSum-
GroundedBasalMassBal

Table B.235: regionalSumGroundedBasalMassBal: total, area integrated grounded basal
mass balance. Positive values represent ice gain.

B.10.15 regionalAvgGroundedBasalMelt

Type: real

Units: m yr−1

Dimension: nRegions Time

199

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalAvg-
GroundedBasalMelt

Table B.236: regionalAvgGroundedBasalMelt: average groundedBasalMassBal value, as a
thickness rate. Positive values represent ice loss.

B.10.16 regionalSumFloatingBasalMassBal

Type: real

Units: kg yr−1

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalSumFloat-
ingBasalMassBal

Table B.237: regionalSumFloatingBasalMassBal: total, area integrated floating basal
mass balance. Positive values represent ice gain.

B.10.17 regionalAvgSubshelfMelt

Type: real

Units: m yr−1

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalAvgSub-
shelfMelt

Table B.238: regionalAvgSubshelfMelt: average floatingBasalMassBal value, as a thick-
ness rate. Positive values represent ice loss.

B.10.18 regionalSumCalvingFlux

Type: real

Units: kg yr−1

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalSumCalv-
ingFlux

Table B.239: regionalSumCalvingFlux: area-integrated calving flux within region

200

B.10.19 regionalSumGroundingLineFlux

Type: real

Units: kg yr−1

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalSum-
GroundingLineFlux

Table B.240: regionalSumGroundingLineFlux: total mass flux across all grounding lines
(note that flux from floating to grounded ice makes a negative contribution
to this metric)

B.10.20 regionalSurfaceSpeedMax

Type: real

Units: m yr−1

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalSurface-
SpeedMax

Table B.241: regionalSurfaceSpeedMax: maximum surface speed in the domain

B.10.21 regionalBasalSpeedMax

Type: real

Units: m yr−1

Dimension: nRegions Time

Persistence: persistent

Location in code: domain % blocklist % regionalStatsAM % regionalBasal-
SpeedMax

Table B.242: regionalBasalSpeedMax: maximum basal speed in the domain

201

	Support Policy
	Release History
	Additional Information
	MPAS-Land Ice Quick Start Guide
	I The MPAS Framework
	MPAS Framework Overview
	Building MPAS
	Prequisites
	Compiling I/O Libraries
	Compiling MPAS
	Cleaning
	Graph partitioning with METIS

	Grid Description
	Configuring Model Input and Output
	XML stream configuration files
	Optional stream attributes
	Stream definition examples

	Visualization
	ParaView

	II MPAS-Albany Land Ice
	MPAS-Albany Land Ice Introduction
	Background
	MALI Meshes
	Albany velocity solver

	Governing Equations
	Conservation of Momentum
	Reduced-order Equations
	Conservation of Mass
	Conservation of Energy

	Model Physics
	Subglacial Hydrology
	Iceberg Calving

	Model Analysis
	Verification and Validation
	Halfar analytic solution
	EISMINT
	ISMIP-HOM
	MISMIP3d

	Test Cases
	Halfar Dome
	EISMINT-1 Test Cases

	MALI within the Energy Exascale Earth System Model
	Model Configuration
	Namelist options
	velocity_solver
	advection
	calving
	thermal_solver
	physical_parameters
	time_integration
	time_management
	io
	decomposition
	debug
	subglacial_hydro
	AM_globalStats
	AM_regionalStats

	Dimensions
	Variable definitions
	mesh
	geometry
	velocity
	observations
	thermal
	scratch
	regions
	hydro
	globalStatsAM
	regionalStatsAM
	Run-time input/output streams

	Land Ice Visualization
	Python

	Known Issues

	III Bibliography
	IV Appendices
	Namelist options
	velocity_solver
	advection
	calving
	thermal_solver
	physical_parameters
	time_integration
	time_management
	io
	decomposition
	debug
	subglacial_hydro
	AM_globalStats
	AM_regionalStats

	Variable definitions
	mesh
	geometry
	velocity
	observations
	thermal
	scratch
	regions
	hydro
	globalStatsAM
	regionalStatsAM

