
Noname manuscript No.
(will be inserted by the editor)

A Learning-Based Relevance Filter for Isabelle/HOL

Jasmin Christian Blanchette · David Greenaway ·
Cezary Kaliszyk · Daniel Kühlwein · Josef Urban

the date of receipt and acceptance should be inserted later

In memoriam Piotr Rudnicki 1951–2012

Abstract Sledgehammer integrates automatic theorem provers in the proof assistant Isa-
belle/HOL. A key component, the fact selector, heuristically ranks the thousands of facts
(lemmas, definitions, or axioms) available and selects a subset, based on syntactic similar-
ity to the current proof goal. We introduce MaSh, an alternative that learns from successful
proofs. New challenges arose from our “zero click” vision: MaSh integrates seamlessly with
the users’ workflow, so that they benefit from machine learning without having to install
software, set up servers, or guide the learning. MaSh outperforms the old fact selector on
large formalizations.

1 Introduction

Sledgehammer [39] is a subsystem of the proof assistant Isabelle/HOL [37] that discharges
proof goals by harnessing off-the-shelf automatic theorem provers. It heuristically selects
a number of facts—lemmas, definitions, or axioms—from the thousands available in back-
ground libraries and the user’s formalization, translates the problem to the provers’ logics,
runs the provers, and reconstructs any machine-found proof in Isabelle (Section 2). The tool
is popular with both novice and expert users of the proof assistant.

Various aspects of Sledgehammer have been improved since its introduction, notably
the use of sound translation schemes [8], the addition of SMT solvers [7], and advances in
the provers themselves [9, 41, 55, etc.].

Jasmin Christian Blanchette
Inria Nancy – Grand-Est & LORIA, Villers-lès-Nancy, France
Max-Planck-Institut für Informatik, Saarbrücken, Germany

David Greenaway
NICTA and University of New South Wales, Sydney, Australia

Cezary Kaliszyk
University of Innsbruck, Austria

Daniel Kühlwein · Josef Urban
Radboud University, Nijmegen, the Netherlands

2 J. C. Blanchette et al.

One key component that had received little attention until recently is Sledgehammer’s
fact selector. Meng and Paulson [36] designed a selector, called MePo (Meng–Paulson), that
iteratively ranks and selects facts similar to the current proof (sub)goal, based on the sym-
bols they contain. Despite its simplicity, this selector greatly increases the success rate of
Sledgehammer: Most provers cannot cope with tens of thousands of formulas, and translat-
ing so many formulas would also slow down Sledgehammer. Moreover, the translation of
Isabelle’s higher-order constructs and types is optimized globally for a problem—smaller
problems make more optimizations possible, which helps the automatic provers.

Coinciding with the development of Sledgehammer and MePo, a line of research has
focused on applying machine learning to large-theory reasoning. Much of this work has been
done on the vast Mizar Mathematical Library (MML) [1], either in its original Mizar [15]
formulation or in first-order form as the Mizar Problems for Theorem Proving (MPTP) [49].
The MaLARea system [50, 53], the CASC LTB [43] competition, and the Mizar@Turing
[44] competition have been significant milestones. Comparative studies involving MPTP
[2,25,35] and the Flyspeck project [17,18] in HOL Light [19] have found that fact selectors
based on machine learning outperform and complement symbol-based approaches [27].

In the past decade, a number of learning-based selectors have been implemented and
have made an impact on the automated reasoning community. In this article, we describe a
fact selector that aims to bring the fruits of this research to Isabelle users. This tool, MaSh
(Machine Learning for Sledgehammer), offers an alternative to MePo by learning from suc-
cessful proofs, whether human-written or machine-generated.

Sledgehammer is a one-click technology—fact selection, translation, and reconstruction
are fully automatic. For MaSh, we had four main design objectives:

• Zero configuration: The tool should require no installation or configuration steps, even
for use with development versions of Isabelle.

• Zero click: Existing users of Sledgehammer should benefit from machine learning, both
for standard theories and for their custom developments, without having to change their
workflow.

• Zero maintenance: The tool should not add to the maintenance burden of Isabelle. In
particular, it should automatically cope with theory changes, without requiring users to
restart servers or update databases.

• Zero overhead: Machine learning should incur no overhead to those Isabelle users who
do not employ Sledgehammer.

By pursuing these “four zeros,” we hoped to reach as many users as possible and keep them
for as long as possible. These objectives have produced many new challenges.

MaSh’s heart is a pair of machine learning algorithms: sparse naive Bayes and k near-
est neighbors (Section 3). These algorithms make suggestions based on known proofs. The
program maintains a persistent state and supports incremental, nonmonotonic changes. Al-
though MaSh is part of Isabelle, the same approach could be used by other proof assistants,
automatic theorem provers, or applications with similar requirements.

The machine learning algorithms form the basis of the MaSh fact selector (Section 4).
When Sledgehammer is invoked, it exports new facts and their proofs to the machine learner
and queries it to obtain facts that are likely to be useful. The main technical difficulty is to
perform the learning in a fast and robust way without interfering with other activities of the
proof assistant. Power users can enhance the learning by letting automatic provers run for
hours on libraries, searching for simpler proofs than those already available.

A strong selector, MeSh, is obtained by combining MePo and MaSh. We compare the
three selectors on large formalizations covering many application areas of Isabelle, includ-

A Learning-Based Relevance Filter for Isabelle/HOL 3

ing mathematics, programming languages, and term rewriting (Section 5). A combination
of automatic provers and fact selectors achieves a success rate of over 66% at reproving
the lemmas contained in these formalizations. These empirical results are complemented
by Judgment Day, a benchmark suite that has tracked Sledgehammer’s development since
2010 (Section 6). In addition, we started applying our methods to the huge seL4 micro-
kernel formalization developed by Klein’s group at NICTA (Section 7). Performance varies
depending on the application area and on how much has been learned, but even with little
learning MeSh emerges as a leader.

An earlier version of this work was presented at the ITP 2013 conference [34]. Since
then, the naive Bayes algorithm has been ported from Python to Standard ML, to improve
efficiency and reliability. Like most of Isabelle, Sledgehammer itself is implemented in Stan-
dard ML. The k nearest neighbor algorithm has been added as an alternative to naive Bayes.
Both algorithms are now combined with inverse document frequency (IDF), a technique that
increases precision. The evaluation sections have been updated and extended, notably with
the addition of a large formalization of term rewriting to the benchmark suite. The micro-
kernel case study is new. Finally, the description of related work has been updated to keep
up with recent research.

2 Sledgehammer and MePo

Whenever Sledgehammer is invoked on a proof goal, MePo selects n facts φ1, . . . ,φn from the
thousands available, ordering them by decreasing estimated relevance. The selector keeps
track of a set of “known” symbols, initially consisting of all the goal’s symbols. It performs
the following steps iteratively, until n facts have been selected:

1. Compute each fact’s score, as roughly given by k/(k + u), where k is the number of
known symbols and u the number of unknown symbols occurring in the fact.

2. Select all facts with perfect scores as well as some of the remaining high-scoring facts,
and add all their symbols to the set of known symbols.

The implementation refines this approach in several ways. Chained facts (inserted into the
proof goal by means of the Isabelle keyword using, from, then, hence, or thus [56]) take
absolute priority; inside a structured Isabelle proof, local facts are preferred to global (top-
level) ones; first-order facts are preferred to higher-order ones; rare symbols are weighted
more heavily than common ones; and so on.

MePo tends to perform best on goals that contain some rare symbols; if all the symbols
are common, it discriminates poorly among the hundreds of facts that could be relevant.
There is also the issue of starvation: The selector, with its iterative expansion of the set of
known symbols, effectively performs a best-first search in a tree and may therefore ignore
some useful facts close to the tree’s root.

The supported automatic theorem provers include the first-order provers E [42], SPASS
[9], and Vampire [32] and the SMT (satisfiability modulo theories) solvers CVC4 [4], veriT
[11], and Z3 [12]. The provers are given the first m facts of the selected n facts φ1, . . . ,φn, for
some m≤ n. The order of the facts—the estimated relevance—is exploited by some provers
to guide the search. Sledgehammer’s default time limit is 30 s, but the automatic provers are
invoked repeatedly for shorter time periods, with different options and different number of
facts m; for example, SPASS is given as few as 50 facts in some time slices and as many
as 1000 in others. Excluding some facts restricts the search space, helping the prover find
longer proofs within the allotted time, but it also makes fewer proofs possible.

4 J. C. Blanchette et al.

Once a proof is found, Sledgehammer extracts the facts referenced in it and recur-
sively attempts to re-find a simpler proof using a strict subset of these facts, yielding a
minimized proof. Then it reconstructs the minimized proof in Isabelle by a suitable proof
text—typically a single call to the built-in resolution prover Metis [23], but sometimes a
detailed, structured proof [6, 40].

Example 1 Given the proof goal

map f xs = ys =⇒ zip (rev xs) (rev ys) = rev (zip xs ys)

MePo selects 1000 facts. The SPASS prover, among others, quickly finds a minimal proof
involving the 5th and 17th facts:

zip_rev: length xs = length ys =⇒ zip (rev xs) (rev ys) = rev (zip xs ys)
length_map: length (map f xs) = length xs

Example 2 MePo’s tendency to miss some useful facts is illustrated by the following proof
goal, taken from Paulson’s verification of cryptographic protocols [38]:

used []⊆ used evs

A straightforward proof relies on these four lemmas:

used_Nil: used [] =
⋃

B parts (initState B)
initState_into_used: X ∈ parts (initState B) =⇒ X ∈ used evs

subsetI: (
∧

x. x ∈ A =⇒ x ∈ B) =⇒ A⊆ B
UN_iff : b ∈

⋃
x∈A B x ←→ ∃x∈A. b ∈ B x

MePo ranks the first lemma 3742th due to the many symbols that do not appear in the goal
(
⋃

, parts, and initState); with such a high rank, the fact is not passed to any automatic
prover, and Sledgehammer fails to find a proof. In contrast, all four lemmas appear among
MaSh’s first 35 facts and MeSh’s first 77 facts, making Sledgehammer succeed.

3 The Machine Learning Engine

The core of MaSh is a pair of algorithms for fact selection with machine learning.1 The first
algorithm is an approximation of naive Bayes adapted to fact selection; the second one is
a version of k nearest neighbors. Both are implemented in Standard ML. External learning
algorithms, such as those provided by HOLYHammer [27], can be interfaced as well. By
default, MaSh simply combines the results of naive Bayes and k nearest neighbors.

3.1 Basic Concepts

Theorem proving concepts such as facts and proofs are treated by the learning algorithms in
an application-agnostic way:

• A fact φ is represented as a string. There are at most finitely many facts available.
• A feature f is also represented as a string. A positive weight w is attached to each feature.

1 The source code is distributed as part of Isabelle in src/HOL/Tools/Sledgehammer/sledgehammer_
mash.ML.

A Learning-Based Relevance Filter for Isabelle/HOL 5

• Visibility is a partial order ≺ on the available facts. A fact φ is visible from a fact χ if
φ≺ χ. The set par(φ) of parents of a fact φ consists of the immediate predecessors of φ
with respect to ≺, i.e., {χ | χ≺ φ ∧ @ψ. χ≺ ψ≺ φ}.

• A proof Π(φ) for φ is a set of facts visible from φ that can be used to “prove” it (in some
application-specific sense). These facts are also called φ’s dependencies.

Visibility captures the notion that facts appearing later in a proof development cannot
be used to prove earlier facts. In Isabelle, facts are organized in theories, whose dependen-
cies form a directed acyclic graph. The visibility relation is derived from the theory graph
combined with the linear order of facts inside each theory.

Each proof goal or fact φ is described abstractly by a finite set of features F(φ). The
features should be mathematically meaningful; for example, they may be the symbols oc-
curring in a logical formula. Machine learning proceeds from the hypothesis that facts with
similar features are likely to have similar proofs and uses this to estimate relevance.

3.2 Updates and Selection

MaSh maintains a persistent state on disk, consisting of all the learned information as a list
of tuples of the form (φ, par(φ), F(φ), Π(φ)). The parents par(φ) specify how to extend
the visibility relation for fact φ. The state is duplicated in memory while Isabelle is running.
Information about additional facts can be incorporated at any time, by extending the data
structure with new tuples.

The algorithms for fact selection take the set of features of the current proof goal and
the set of visible facts as arguments and return a predetermined number of suggested facts,
ordered by decreasing estimated relevance. The implementation of each algorithm is divided
in two parts: a part that is independent of the goal, and whose results can be cached, and a
part that must be performed each time MaSh is invoked on a new goal.

3.3 Sparse Naive Bayes

Let γ be a new goal and φ a visible fact. The sparse naive Bayes algorithm computes the
relevance of φ for proving γ as the probability

P
(
φ is used in γ’s proof

)
This probability is estimated by characterizing γ with its features F(γ) and rewriting the
above formula as

P
(
φ is used in a proof of ψ | ψ has features F(γ)

)
To compute this, we could use all available features, but for efficiency reasons we restrict
the computation to a smaller set of features. More precisely, let the extended features F(φ)
of a fact φ be the features of φ and of the facts that were proved using φ:2

F(φ) = F(φ) ∪
⋃
χ such that φ∈Π(χ) F(χ)

2 In general, we could extend the features recursively by following the dependency graph, but here we
perform only one iteration.

6 J. C. Blanchette et al.

After limiting the set of all available features to F(γ)∪ F(φ), the estimated probability
becomes

P
(
φ is used in a proof of ψ | features in F(γ) appear in ψ and features F(φ)−F(γ) do not

)
The features belonging to neither F(γ) nor F(φ) are ignored for the estimation. The learning
algorithm assumes that the features are independent and applies Bayes’s rule to transform
the conditional probability (up to a constant factor) to the following product of probabilities:

P(φ is used in ψ’s proof)

·∏ f∈F(γ)∩F(φ) P
(
ψ has feature f | φ is used in ψ’s proof

)
·∏ f∈F(γ)−F(φ) P

(
ψ has feature f | φ is not used in ψ’s proof

)
·∏ f∈F(φ)−F(γ) P

(
ψ does not have feature f | φ is used in ψ’s proof

)
The four probability expressions can be estimated from the known dependencies. To avoid
recomputing the same results over and over, the algorithm relies on two tables that are up-
dated whenever new facts are learned:

• s(φ, f) stores the number of times a fact φ occurs as a dependency of a fact described by
feature f ;

• t(φ) stores the number of times a fact φ occurs as a dependency.

Let K be the total number of known proofs. We have

P(φ is used in a proof of (any) ψ) =
t(φ)
K

P
(
ψ has feature f | φ is used in ψ’s proof

)
=

s(φ, f)
t(φ)

P
(
ψ does not have feature f | φ is used in ψ’s proof

)
= 1− s(φ, f)

t(φ)
≈ 1− s(φ, f)−1

t(φ)

To avoid a probability of 0, which would make the whole formula collapse, we subtract 1
from s(φ, f). The latter expression is greater than 0, since the feature is considered only
if it is associated with a fact. Finally, P

(
ψ has feature f | φ is not used in ψ’s proof

)
is the

a priori probability of φ being used in a proof. It corresponds to an unlikely event and is
estimated by a low, fixed probability (eσ4 in the expression below).

To avoid multiplying small numbers, which may lead to numerical instability due to the
limitations of floating-point arithmetic, the final formula takes the logarithm of probabilities.
Moreover, the divisor K is shared by all facts, so it can be omitted. Given that the weight for
feature f is w(f), this leads to the following expression to estimate the relevance of the fact
φ for goal γ on a logarithmic scale:

σ1 ln t(φ) + ∑ f∈F(γ)∩F(φ) w(f) ln
σ2 s(φ, f)

t(φ)

+ σ3 ∑ f∈F(φ)−F(γ) w(f) ln
(

1− s(φ, f)−1
t(φ)

)
+ σ4 ∑ f∈F(γ)−F(φ) w(f)

The fudge factors σ1 to σ4 determine the relative weightings of the formula’s four terms.
MaSh uses the values σ1 = 30, σ2 = 5, σ3 = 0.2, and σ4 =−18, which were experimentally
determined to produce good results.

A Learning-Based Relevance Filter for Isabelle/HOL 7

3.4 k Nearest Neighbors

The k nearest neighbors algorithm implemented in MaSh finds a fixed number k of visible
facts considered the most similar to the goal and uses their dependencies to estimate the
relevance of all facts. The nearness of two facts φ, χ is given by

n(φ,χ) = ∑ f∈F(φ)∩F(χ) w(f)τ1

(Higher values indicate nearer facts.) To find the neighbors of the goal, we first iterate over
the goal’s features, and for each feature we gather the facts f where s(φ, f) > 0. With ap-
propriate data structures, we can efficiently ignore all facts that have no features in common
with the goal.

Let N be the set consisting of the k nearest neighbors (the ones with highest nearness)
of the goal. The estimated relevance of each visible fact φ for the goal γ is given by(

τ2 ∑χ∈N |φ∈Π(χ)

n(χ,γ)
|Π(χ)|

)
+

{
n(φ,γ) if φ ∈ N
0 otherwise

The above is a slight extension of the standard formula. In the context of fact selection, there
are two kinds of information: The dependencies of a fact φ are useful for proving φ, and φ
is useful for proving itself. When combining this with the k nearest neighbors algorithm,
each neighbor of the goal positively affects all the dependencies of the neighbor (the left
summand above), and it positively affects the neighbor itself (the right summand). When
combining the two summands, we must take into account that typically a neighbor has many
dependencies, hence the |Π(χ)| divisor. MaSh uses τ1 = 6 and τ2 = 2.7 as fudge factors.

The relevance estimates can be computed efficiently for all the facts at once, by iterating
over the neighbors and updating the relevance for the facts corresponding to the dependen-
cies and the neighbors themselves. If the number of neighbors is small and the neighbors
have few or similar dependencies, the estimated relevance might be 0 for most facts. To
prevent this, the algorithm starts with k = 0 neighbors, and if too few facts have nonzero
relevance, it gradually increases the number k until enough facts emerge.

3.5 Feature Weights

The sparse naive Bayes and k nearest neighbors algorithms are parameterized by a weight
function w(f). Weights make it possible to give a higher priority to some features at the ex-
pense of others. In practice, it makes sense to assign higher weights to rare features, because
a match on a rare feature is more significant than a match on an ubiquitous feature [26]. For
example, suppose the user has just introduced a new function f and proved a few lemmas
about it. If the next goal involves both f and the empty list [], it makes sense to give priority
to the handful of lemmas about f, which are likely to be very relevant, than to the hundreds of
lemmas that refer to []. Even the memoryless selector MePo used this observation to obtain
better results.

The usual way to weight counted features in semantic text retrieval with respect to their
frequency is the inverse document frequency (IDF) [24, 26]. The weight of a feature f in a
set of facts Φ is defined as the logarithm of the inverse of the feature’s frequency in Φ:

w(f ,Φ) = ln
|Φ|∣∣{φ ∈Φ | f ∈ F(φ)}

∣∣

8 J. C. Blanchette et al.

This scheme is implemented in MaSh. A feature has weight ln |Φ| if it arises in a single
proof, ln2 if it arises in half of the proofs, and ln1 = 0 if it arises in all the proofs.

4 Integration in Sledgehammer

The abstract machinery described in Section 3 is used by Sledgehammer’s MaSh fact selec-
tor to provide suggestions whenever the user invokes Sledgehammer on a proof goal.

4.1 Learning from and for Isabelle

Facts, features, proofs, and visibility were introduced in Section 3.1 as empty shells. The
integration with Isabelle fills these concepts with content.

Facts. Communication with the learning engine requires a unique name for identifying
Isabelle facts. Each global fact in Isabelle carries a stable “name hint” that is identical or
very similar to its fully qualified user-visible name (e.g., List.list.map_2 for List.list.map(2)).
MaSh uses these hints as names. Local facts in a structured Isabelle proof are disambiguated
by appending the fact’s statement to its name hint.

Features. Machine learning operates not on the formulas directly but on sets of features.
The simplest scheme is to encode each symbol occurring in a formula as its own feature.
The experience with MePo is that other factors help—for example, the formula’s types and
type classes or the theory it belongs to. Earlier evaluations on MML and Flyspeck revealed
that it is also helpful to preserve parts of the formula’s structure, such as subterms [3,27,53].

The scheme adopted for MaSh is inspired by these precursors. For each term in the
formula (excluding the outer quantifiers, connectives, and equality), the nontrivial first-order
patterns up to a given depth are generated as features. Given a maximum depth of 2, the term
g (h x a), where x is a variable of type τ, yields the patterns

x a g _ g (h _ _)
h _ _ h x _ h _ a h x a

These are simplified and encoded into the following features:

τ a g g(h)
h h(τ) h(a) h(τ, a)

Variables are replaced by their types, since variable names have no fixed meaning.
The types occurring in a formula (excluding those of propositions and functions) are

also considered features and encoded using an analogous scheme to terms. Type variables
constrained by type classes give rise to features corresponding to the specified type classes
and their superclasses. Finally, two pieces of metainformation are encoded as features: the
theory to which the fact belongs and whether the fact is local.

Example 3 The lemma

transpose (map (map f) xss)=map (map f) (transpose xss)

from the theory of lists has the following features:

A Learning-Based Relevance Filter for Isabelle/HOL 9

map
map(fun)
map(map)
map(transpose)
map(map, transpose)

map(list_list)
map(map, list_list)
transpose
transpose(map)
transpose(list_list)

fun
list
list_list
List

The last three features correspond to the type α list, the type α list list, and the theory List.

Another heuristic used by MaSh is to consider the features of the chained facts. In Isa-
belle, the chained facts are effectively premises of the proof goal. When computing the
goal’s features, MaSh includes the features of the chained facts, but with half the weight
they would normally have, since chained facts are not quite as important as the goal itself.

Humans tend to group related lemmas together. MaSh exploits this by considering the
features of a few (up to 10) preceding facts, with an even lower weight (0.1) than for chained
facts. This is especially beneficial if the goal has very few features, in which case feature-
based comparison will be imprecise.

Proofs. MaSh predicts which facts are useful for proving the goal at hand by studying
successful proofs. There is an obvious source of successful proofs: All the facts in the loaded
theories are accompanied by proof terms that store the dependencies [5]. However, not all
available facts are equally suitable for learning. Many of them are derived automatically by
definitional commands (e.g., for (co)inductive predicates, (co)datatypes, and (co)recursive
functions) and proved using custom tactics, and there is not much to learn from those highly
technical lemmas. The most interesting lemmas are those stated and proved by humans.
Slightly abusing terminology, we call these Isar proofs, after Isabelle’s proof language.

Even for human-proved lemmas, a large fraction of the facts referenced by the proof
terms express basic properties of the logic, which are tautologies in their translated, first-
order form. Fortunately, these tautologies are easy to detect, since they contain only logical
symbols (equality, connectives, and quantifiers). The proofs are also polluted by decision
procedures; an extreme example is the Presburger arithmetic procedure, which routinely
pulls in over 200 dependencies. Proofs involving over 20 facts are considered unsuitable
and simply ignored.

Human-written Isar proofs are abundant, but they are not necessarily the best raw ma-
terial to learn from. They tend to involve more, different facts than Sledgehammer proofs.
Sometimes they rely on induction, which is beyond the scope of first-order provers; but even
excluding induction, there is evidence that the provers work better if the proofs used for
learning were produced by similar provers [33, 35]. A special mode of Sledgehammer runs
an automatic prover on all available facts to learn from machine-generated proofs. Users can
let it run for hours at a time on their favorite theories. The Isar proof facts are passed to the
provers together with a few dozens of MePo-selected facts, to enable finding of alternative
proofs. Whenever a prover succeeds, MaSh discards the Isar proof and learns from the new
minimized proof. Facts with large Isar proofs are processed first since they are more likely
to have significantly shorter alternative proofs.

Visibility. The loaded background theories and the user’s formalization, including local
lemmas, appear to Sledgehammer as a vast collection of facts. Each fact is tagged with its
own abstract theory value, of type theory in Standard ML, that captures the state of affairs
when it was introduced. Sledgehammer constructs the visibility graph by using the (very
fast) theory extension order E on the theory type.

10 J. C. Blanchette et al.

A complication arises because E lifted to facts is a preorder, whereas the graph must
encode a partial order �. Antisymmetry is violated when several facts are added to Isabelle
at the same time. Despite the simultaneity, one fact’s proof may depend on another’s; for
example, an inductive predicate’s definition p_def is used to derive introduction and elimi-
nation rules pI and pE, and yet they share the same theory object. Hence, some additional
work is needed when constructing � from E to ensure that p_def � pI and p_def � pE.

An alternative concept of visibility, as implemented in HOLYHammer, would be to lin-
earize the partial order to obtain a total order [14]. The proof suggested by the tool can then
refer to lemmas that are not currently available, requiring the user to add some directives to
import background theories.

4.2 Relevance Filters: MaSh and MeSh

When the user invokes Sledgehammer on a goal, the MaSh-based fact selector computes
the goal’s features and the visible facts and produces a list with as many suggestions as
desired, ordered by decreasing estimated relevance. This process usually takes a few hundred
milliseconds on modern hardware, which is reasonable for a proof tool that may run for
half a minute overall. In a separate thread, Sledgehammer looks for newly available facts,
which may take several seconds depending on how many new facts there are—these will
be considered next time Sledgehammer is run. This is consistent with our “zero overhead”
design goal: Learning being triggered by Sledgehammer invocations, MaSh does not waste
any CPU time or disk space for users who do not invoke the proof tool or who disabled
MaSh, relying on MePo instead.

Relying purely on MaSh for fact selection raises an issue: MaSh may not be aware of
all the available facts. In particular, it will be oblivious to the very latest facts, introduced
after Sledgehammer was invoked for the last time, and these are likely to be crucial for the
proof. If only a few facts are unknown, they can be processed quickly before the query is
performed (Section 4.3). But even then, these new facts will typically appear in few proofs,
regardless of how useful they may be.

As a general precaution, the raw MaSh data is enriched with a proximity selector, which
sorts the available facts by decreasing proximity in the proof text. Instead of a plain linear
combination of ranks, the enriched MaSh selector transforms ranks into probabilities and
takes their weighted average, with weight 0.8 for MaSh and 0.2 for proximity. The prob-
abilities are rough approximations based on experiments. Figure 1 shows the curves. For
example, the first suggestion given by MaSh is considered about 15 times more likely to
appear in a successful proof than the 50th. The curves were chosen based on statistics gath-
ered on large benchmarks of Sledgehammer proofs. These steep curves ensure that if a fact
is ranked very high by either MaSh or the proximity selector, it will be ranked very high in
the result.

This notion of combining selectors to define new selectors is taken one step further by
MeSh, a combination of MePo and MaSh inspired by experiments [35] combining machine
learning with the MePo-like SInE selector [21]. Both selectors are weighted 0.5, and both
use the probability curve of Figure 1(a). Ideally, the curves and parameters that control the
combination of selectors would be learned mechanically rather than hard-coded.

A Learning-Based Relevance Filter for Isabelle/HOL 11

1 34 67 100
0

j

Pr
ob

ab
ili

ty

(a) MaSh

1 34 67 100
0

j

(b) Proximity

Fig. 1 Estimated probability of the jth fact’s appearance in a proof

4.3 Automatic and Manual Control

All MaSh-related activities take place as a result of a Sledgehammer invocation. When
Sledgehammer is launched, it checks whether any new facts, unknown to the visibility graph,
are available. If there are fewer than 100, it learns from them right away, meaning that it
collects their features and dependencies, adds them to the persistent data, and runs the goal-
independent part of the machine learning algorithms. Otherwise, it launches a new thread
to perform the learning in the background. The first time, it may take about half a minute
to learn all the facts in the background theories (assuming about 10 000 facts). Subsequent
invocations are much faster.

If one of Sledgehammer’s automatic provers succeeds, MaSh immediately learns from
the proof. The discharged proof goal may have been only one among many subgoals in an
unstructured proof, in which case it has no name. Sledgehammer invents a fresh name for it
and stores it as an invisible fact. Although this anonymous goal cannot be used to discharge
other goals, MaSh benefits from learning the connection between the formula’s features and
its proof.

For users who feel the need for more control, there is an unlearn command that re-
sets MaSh’s persistent state; a learn_isar command that learns from the Isar proofs of
all available facts; and a learn_prover command that invokes an automatic prover on all
available facts, one at a time, replacing the Isar proofs with successful machine-generated
proofs whenever possible.

4.4 Nonmonotonic Theory Changes

MaSh’s model assumes that the set of facts and the visibility graph grow monotonically.
One concern that arises when deploying machine learning—as opposed to evaluating its
performance on fixed benchmarks—is that theories evolve nonmonotonically over time. In
the spirit of the “zero maintenance” design objective, it is left to the architecture around
MaSh to recover from such changes. The following scenarios were considered:

• A fact is deleted. The fact is kept in MaSh’s data structures but is silently ignored by
Sledgehammer whenever it is suggested by MaSh.

• A fact is renamed. Sledgehammer perceives this as the deletion of a fact and the addition
of another fact.

• A theory is renamed. Since theory names are encoded in fact names, renaming a theory
amounts to renaming all its facts.

12 J. C. Blanchette et al.

• Two facts are reordered. The visibility graph loses synchronization with reality. Sledge-
hammer may end up ignoring a fact suggested by MaSh because the fact is visible ac-
cording to the graph but invisible according to Isabelle.

• A fact χ′ is introduced between two facts φ and χ. MaSh offers no facility to change the
parent of χ, but this is not needed. It is enough to make the new fact χ′ a child of φ to
make it visible to future proof goals: When MaSh is invoked on a goal γ below χ in the
theory text, it will notice that both χ and χ′ are maximal nodes in the visibility graph
restricted to nodes visible from γ and use both as parents for γ, resulting in a diamond
configuration.

• The fact’s formula is modified. This occurs when users change the statement of a lemma,
but also when they rename or relocate a symbol. MaSh does not keep track of such
changes and may lose some of its predictive power.

• The fact’s proof is modified. Again, MaSh does not keep track of such changes and may
lose predictive power.

More elaborate schemes for tracking dependencies are possible. However, the benefits
are unclear: Presumably, the learning performed on older theories is valuable and should be
preserved, despite its deficiencies. This is analogous to teams of humans developing a large
formalization: Teammates should not forget everything they know each time a colleague
changes the name of some basic lemma. And should users notice a performance degradation
after a major refactoring, they can always invoke unlearn to restart from scratch. In any
event, we want to get more experience with MaSh before investing time and effort in more
sophisticated schemes.

5 Evaluation on Large Formalizations

In this section and the next one, we attempt to answer the main questions that existing
Sledgehammer users are likely to have: How do MaSh and MeSh compare with MePo? Does
machine learning really help? The answer takes the form of two evaluations, performed
using an unofficial version of Isabelle slightly older than the 2014 release. Our empirical
data are publicly available.3

The first evaluation measures the selectors’ ability to select meaningful facts from six
user formalizations—three from the Isabelle distribution, two from the Archive of Formal
Proofs [31], and one from a separate online archive:

Auth Cryptographic protocols Paulson [38]
IsaFoR Term rewriting Thiemann & Sternagel [45]
Jinja Java-like language Klein & Nipkow [30]
List Finite lists Nipkow [37]
Nominal2 Nominal binder syntax Urban & Kaliszyk [46]
Probability Measure and probability theory Hölzl & Heller [22]

These formalizations are large enough to exercise learning and provide meaningful numbers,
while not being so massive as to make experiments impractical. They are also representative
of large classes of mathematical and computer science applications. The largest among them,
IsaFoR, is a repository of results pertaining to term rewriting, including (non)termination,
(non)confluence, completion, and complexity.

3 http://www21.in.tum.de/~blanchet/mash2_data.tgz

http://www21.in.tum.de/~blanchet/mash2_data.tgz

A Learning-Based Relevance Filter for Isabelle/HOL 13

For each of the formalizations, the evaluation harness processes the lemmas sequentially
according to a linearization of the partial order induced by the theory graph and their location
in the theory texts. Each lemma is seen as a proof goal for which facts must be selected.
Previously proved lemmas, and the learning performed on their proofs, may be exploited—
this includes lemmas from imported background theories. This setup simulates a user who
systematically develops a formalization from beginning to end, trying out Sledgehammer on
each lemma before engaging in a manual proof.4

Figure 2 presents statistics on the formalizations. The second and third columns are
about the goals corresponding to each formalization’s user-entered lemmas; the fourth col-
umn is about all facts contained in the formalization, including those generated by defini-
tional commands and other tools; and the last two columns are about the entire formaliza-
tions including the libraries on which they build.

Number of Avg. dependencies Avg. features Total number of Total number of
Formalization goals per goal per fact facts (’000) features (’000)

Auth 739 5.3 42 15 17
IsaFoR 571 7.4 30 65 139
Jinja 749 5.8 33 17 27
List 863 6.7 14 13 15
Nominal2 432 5.9 19 15 19
Probability 1542 7.2 31 24 32

Together 4896 5.6 31 80 166

Fig. 2 Statistics on the evaluated formalizations

The evaluation is twofold. The first part computes how accurately the selectors can re-
find the facts referenced in the Isar proofs on which MaSh’s learning is based (Section 5.1).
The second part connects the selectors to automatic provers and measures actual success
rates (Section 5.2). The first part may seem artificial: After all, real users are interested
in any proof that discharges the goal at hand, not a specific known proof. The predictive
approach’s greatest virtue is that it does not require invoking automatic provers; evaluating
the impact of parameters is a matter of seconds instead of hours. MePo itself has been fine-
tuned using similar techniques. For MaSh, the approach also helps ascertain whether it is
learning the learning materials well.

5.1 Machine Learning Metrics

Three standard metrics—full recall, area under the receiver operating characteristic curve
(AUC), and coverage—will be useful, in a generalized form. For a given goal, a fact selector
(MePo, MaSh, or MeSh) ranks the N available facts and selects the n≤ N best ranked facts
φ1, . . . ,φn, in decreasing order of estimated relevance, with rank(φi) = i and rank(φ) = n+1
otherwise. The parameter n is fixed at 1024 in the experiments below. The standard metrics
correspond to the n = N case.

4 Earlier evaluations of Sledgehammer, starting with Böhme and Nipkow’s Judgment Day experiments
[10], always operated on individual (sub)goals, guided by the notion that lemmas can be too difficult to be
proved outright by automatic provers. However, lemmas appear to provide the right level of challenge for
modern automation, and they tend to exhibit less redundancy than a sequence of similar subgoals.

14 J. C. Blanchette et al.

MaSh MeSh
Formalization MePo NB kNN NB kNN

Auth 647 104 143 96 112
IsaFoR 1332 513 604 517 570
Jinja 839 244 306 229 256
List 1083 234 263 259 271
Nominal2 1045 220 276 229 264
Probability 1324 434 422 393 395

Fig. 3 Average full recall

MaSh MeSh
Formalization MePo NB kNN NB kNN

Auth 86.8 98.1 97.3 98.4 98.0
IsaFoR 64.0 93.7 92.1 92.9 92.1
Jinja 77.6 96.9 95.7 97.0 96.5
List 71.6 96.8 96.5 96.5 96.4
Nominal2 72.1 97.0 96.2 96.9 96.4
Probability 65.4 94.1 94.8 94.8 94.8

Fig. 4 Average AUC (%)

Let Φ = {φ1, . . . ,φn}. The known proof Π serves as a reference point against which the
selected facts Φ and their ranks are judged. Ideally, the selected facts should include as many
facts from the proof as possible, with as low (i.e., good) ranks as possible.

Definition 1 (Full Recall) The full recall is the smallest nonnegative number k such that
Π⊆ {φ1, . . . ,φk}, or n+1 if no such number exists.

Definition 2 (AUC) The area under the receiver operating characteristic curve (AUC) is
defined as ∣∣{(φ,χ) ∈Π× (Φ−Π) | rank(φ) < rank(χ)}

∣∣
|Π| · |Φ−Π|

Definition 3 (Coverage) Given k ≤ n, the k-coverage is defined as

|{φ1, . . . ,φk}∩Π|
min{k, |Π|}

Full recall tells how many facts must be selected to ensure that all necessary facts are
included—ideally as few as possible. The AUC focuses on the ranks: It gives the probability
that, given a randomly drawn “good” fact (a fact from the proof) and a randomly drawn
“bad” fact (a selected fact that does not appear in the proof), the good fact is ranked before
the bad fact. AUC values closer to 1 (100%) are preferable. Finally, k-coverage gives a
finer-grained view than full recall.

Figures 3 to 5 show the average full recall, the average AUC, and the average rank of
necessary dependencies over all goals from the six formalizations. Figure 6 plots the average
k-coverage for IsaFoR. Naive Bayes (NB) and k nearest neighbors (kNN) are considered
separately.

MaSh clearly outperforms MePo on this kind of benchmarks. Depending on the bench-
mark, MeSh is sometimes hampered by its MePo component and sometimes helped by it.
The data also show important variations between formalizations: IsaFoR and Probability are
particularly difficult, possibly because they are larger than the other ones, whereas Auth is
comparatively easy.

However, one should be cautious when interpreting these data points. Isar proofs are not
necessarily representative of machine-generated proofs. Because several proofs are possible,
a failure to re-find the facts referenced in an existing Isar proof does not necessarily amount
to a failure to find a proof at all. Since MaSh learns from Isar proofs, it is not surprising that
it excels at selecting the facts that arise in that kind of proof. Ultimately, we must run actual
provers if we want a fair evaluation of MePo against MaSh.

A Learning-Based Relevance Filter for Isabelle/HOL 15

MaSh MeSh
Formalization MePo NB kNN NB kNN

Auth 267 41 58 35 42
IsaFoR 735 132 164 149 165
Jinja 439 66 90 63 73
List 578 67 75 74 77
Nominal2 571 63 80 67 77
Probability 708 123 109 109 109

Fig. 5 Average rank of necessary dependencies

20 40 60 80 100

20

40

60

80

Number of facts k

k-
C

ov
er

ag
e

(%
)

MaSh-NB
MaSh-kNN
MeSh-NB
MeSh-kNN
MePo

Fig. 6 Average coverage for IsaFoR

5.2 Success Rates of Automatic Theorem Provers

Next comes the “in vivo” part of the evaluation, with actual provers replacing machine
learning metrics. The objective is to see how MePo, MaSh, and MeSh compare in a realistic
setting. We use a collection of automatic provers for this. As we noted in a similar study [6],

It is important to bear in mind that the evaluation is not a competition between
the provers. Different provers are invoked with different problems and options, and
although we have tried to optimize the setup for each, we might have missed an
important configuration option. Each number must be seen as a lower bound on the
potential of the prover.

The experiments were conducted on a 64-bit Linux server equipped with 12-core AMD
Opteron 6174 processors running at 2.2 GHz.

Before carrying out more experiments, we first evaluated 15 provers on 1200 randomly
selected problems. The results are show in Figure 7. Based on this, we selected four provers
for the rest of the evaluation: CVC4 1.4, Epar 1.8b (a version of E with strategies computed
by BliStr [47]), Vampire 2.6, and Z3 4.3.2.

For each goal from the formalizations, 15 problems were generated, with 16, 23 (≈ 24.5),
32, . . . , 1024, 1448 (≈ 210.5), and 2048 facts as axioms. Sledgehammer’s translation is pa-
rameterized by many options, whose defaults vary from prover to prover and, because of
time slicing, even from one prover invocation to another. As a reasonable uniform configu-
ration for the experiments, types are encoded via the so-called polymorphic “featherweight”

16 J. C. Blanchette et al.

Prover Proved Disproved Uniq.

CVC4 1.4 372 0 5
E 1.8 304 26 0
Epar 1.8a 365 33 0
Epar 1.8b 381 28 1
Epar 1.8c 381 33 3
Epar 1.8d 378 33 2
iProver 1 234 15 1
SPASS 3.5 274 0 0
Vampire 1.8 356 9 1
Vampire 2.6 382 12 2
Vampire 3.0 367 9 2
Z3 3.2 360 14 1
Z3 4.0 360 14 1
Z3 4.0q 310 14 0
Z3 4.3.2 363 14 2

Any prover 476 49 –

Fig. 7 Initial evaluation of provers on 1200 problems from all formalizations and fact selectors

guard-based encoding (the most efficient complete scheme [8]), and λ-abstractions via λ-
lifting (as opposed to the more complete but more explosive SK combinators).

16 32 64 128 256 512 1024 2048

20

30

40

50

Number of facts

Su
cc

es
s

ra
te

(%
)

MeSh-NB
MeSh-kNN
MaSh-NB
MaSh-kNN
MePo

Fig. 8 Success rates per fact selector

Figure 8 plots the success rates of the four-prover combination on these problems for
each fact selector. Two versions of MaSh and MeSh are compared. A problem is considered
solved if it is solved within 10 s by any of them, using only one thread.

We observe the following:

• MaSh clearly outperforms MePo, especially in the range from 32 to 512 facts. For 64-
fact problems, the gap between MaSh and MePo is over 12 percentage points.

• MaSh’s peak is both higher than MePo’s (48.2% for MaSh-NB vs. 38.9% for MePo) and
occurs for smaller problems (181 vs. 724 facts), reflecting the intuition that selecting
fewer facts more carefully should increase the success rate.

A Learning-Based Relevance Filter for Isabelle/HOL 17

• MeSh is slightly stronger than MaSh. The effect is especially marked for the problems
with fewer facts.

Figure 9 presents the same results but focuses on the provers, taking the union of the
fact selectors and formalizations. Similarly, Figure 10 focuses on the formalizations, taking
the union of the provers and fact selectors. The curves have somewhat different shapes for
the individual provers and formalizations, but the general picture remains the same.

Another measure of MaSh and MeSh’s power is the total number of goals solved for any
number of facts. Figures 11 to 13 explore different combinations of fact selectors, provers,
and formalizations. Given a prover and a fact selector, a goal is considered solved if any of
the 15 problems generated for different number of facts is solved. With MePo alone, 48.5%
of the goals are solved; adding MaSh and MeSh increases this number to 66.1%.

Finally, Figure 14 presents combinations of provers, fact selectors, and number of facts
that should be close to the optimal way to occupy 12 processor cores for 10 s, or 4 cores for
30 s. The combinations are listed as a greedy sequence: Each row is the optimal addition
to the previous rows, and the last column is the cumulative success rate of all rows up to
and including the current row. The 12 combination together have a success rate of 58.9%,
compared with 66.1% for all 300 possible combinations.

16 32 64 128 256 512 1024 2048

20

30

40

50

Number of facts

Su
cc

es
s

ra
te

(%
)

Vampire 2.6
Epar 1.8b
CVC4 1.4
Z3 4.3.2

Fig. 9 Success rates per prover

6 Judgment Day

The Judgment Day benchmark suite [10] currently consist of 1230 proof goals arising in
seven Isabelle theories, covering among them areas as diverse as the fundamental theorem
of algebra, the completeness of a Hoare logic, and Jinja’s type soundness. The evaluation
harness invokes Sledgehammer on each goal. The hardware setup consists of Linux servers
equipped with Intel Core2 Duo CPUs running at 2.40 GHz. The time limit is 30 s for proof
search. In case of success, the search is followed by brute-force minimization and recon-
struction in Isabelle. MaSh is trained on nearly 14 000 Isar proofs from the background
libraries imported by the seven theories under evaluation.

18 J. C. Blanchette et al.

16 32 64 128 256 512 1024 2048

20

40

60

80

Number of facts

Su
cc

es
s

ra
te

(%
)

Auth
Nominal2
List
Jinja
IsaFoR
Probability

Fig. 10 Success rates per formalization

Fact selector CVC4 1.4 Epar 1.8b Vampire 2.6 Z4 4.3.2 Any prover

MaSh-kNN 47.0 50.4 51.4 48.0 60.0
MaSh-NB 47.9 51.0 52.0 49.1 60.3
MeSh-kNN 46.7 48.9 50.8 50.2 59.6
MeSh-NB 46.8 49.0 51.0 51.3 60.2
MePo 38.2 40.8 41.3 40.5 48.5

Fig. 11 Success rates per fact selector and prover

Fact selector Auth IsaFoR Jinja List Nominal2 Probability Any formalization

MaSh-kNN 83.0 49.6 66.8 62.9 71.3 44.9 60.0
MaSh-NB 82.0 49.7 68.4 64.1 70.1 44.9 60.3
MeSh-kNN 80.5 49.0 66.6 62.2 70.4 45.7 59.6
MeSh-NB 81.6 50.8 67.7 62.5 70.8 45.4 60.2
MePo 72.4 36.3 55.9 52.6 60.9 32.2 48.5

Any selector 84.3 56.4 73.6 68.0 76.4 53.5 66.1

Fig. 12 Success rates per fact selector and formalization

Prover Auth IsaFoR Jinja List Nominal2 Probability Any formalization

CVC4 1.4 74.0 42.4 58.5 58.2 66.7 43.5 54.9
Epar 1.8b 75.0 46.9 61.3 59.0 69.0 41.1 55.6
Vampire 2.6 79.3 45.9 61.7 59.1 69.4 43.2 56.9
Z4 4.3.2 82.3 51.8 65.6 62.0 65.5 39.0 57.5
Any prover 84.3 56.4 73.6 68.0 76.4 53.5 66.1

Fig. 13 Success rates per prover and formalization

The comparison comprises the main superposition-based provers and SMT solvers inte-
grated with Sledgehammer: CVC4 1.5 prerelease (revision 7b72e4d), E 1.8, SPASS 3.8ds,
Vampire 3.0, veriT smtcomp2014 postrelease (0a723b4), and Z3 4.3.2 prerelease (revision
a10c318). Each prover is invoked with its own options and problems, including prover-
specific features (e.g., arithmetic for CVC4, veriT, and Z3). Time slicing is enabled: The
30 s slot is split into several slices, each corresponding to somewhat different problems

A Learning-Based Relevance Filter for Isabelle/HOL 19

Number Success
Prover of facts rate (%)

Epar 1.8b 256 32.6
Z3 4.3.2 724 36.9
Vampire 2.6 2048 39.5
Z3 4.3.2 91 41.7
Vampire 2.6 64 42.9
CVC4 1.4 256 43.6
CVC4 1.4 64 44.2
Z3 4.3.2 2048 44.7
Epar 1.8b 724 45.1
Z3 4.3.2 181 45.5
Z3 4.3.2 16 45.8
Vampire 2.6 91 46.0

(a) MePo only

Number Success
Fact selector Prover of facts rate (%)

MeSh-kNN Vampire 2.6 128 40.1
MaSh-NB Z4 4.3.2 91 47.4
MaSh-NB Epar 1.8b 256 50.5
MeSh-NB Z4 4.3.2 64 52.7
MaSh-kNN CVC4 1.4 181 54.1
MeSh-kNN Z4 4.3.2 256 55.4
MaSh-NB Vampire 2.6 512 56.2
MaSh-NB Epar 1.8b 45 57.0
MaSh-kNN Z4 4.3.2 45 57.6
MeSh-kNN CVC4 1.4 91 58.1
MaSh-NB Epar 1.8b 23 58.5
MePo Z4 4.3.2 64 58.9

(b) All fact selectors

Fig. 14 Greedy sequence of 12 combinations of fact selectors, provers, and number of facts

Prover MePo MaSh MeSh Any selector

CVC4 1.5pre 679 749 783 830
E 1.8 622 601 665 726
SPASS 3.8ds 678 684 739 789
Vampire 3.0 703 698 740 789
veriT 2014post 543 556 590 655
Z3 4.3.2pre 638 668 703 788

Any prover 801 885 919 943

Fig. 15 Number of successful Sledgehammer invocations per prover on 1230 Judgment Day goals

and prover options. For MeSh, some of the slices use MePo or MaSh directly to promote
complementarity.

The results are summarized in Figure 15. As expected, MeSh performs very well: Run-
ning all six provers in parallel for 30 s solves 14.7% more goals with MeSh than with MePo
(919 vs. 801), corresponding to 9.6 percentage points. In particular, CVC4 yields truly re-
markable results.5 The overall success rate, for all six provers and all three fact selectors in
parallel, is 76.7%.

The other main observation is that MaSh somewhat underperforms, especially in the
light of the evaluation of Section 5. The overall numbers look reasonable, but it is hard
to explain why MaSh is beaten by MePo for E and Vampire and does not exactly shine
for SPASS. One hypothesis is that MaSh might have a tendency to select harmful facts—
superfluous facts that would trigger some explosive misbehavior in the superposition-based
provers, hampering proof search. Moreover, the Sledgehammer setup has been tuned for
Judgment Day and MePo over the years (in the hope that improvements on this represen-
tative benchmark suite would translate in improvements on users’ theories), and conversely
MePo’s parameters are tuned for Judgment Day. Finally, MaSh’s weakness might simply
reflect the goal-based nature of the benchmarks: Individual goals in a detailed proof tend to
rely more heavily on local facts and symbols, about which little has been learned. Nonethe-

5 CVC4’s developers have been reporting high success rates on Sledgehammer-generated benchmarks
before [41], but this is the first time that we independently corroborate those results.

20 J. C. Blanchette et al.

less, quite some progress has been made since we first introduced MaSh at ITP 2013 [34,
Section 5.2].

7 Case Study: Microkernel Verification

The verification of the seL4 operating system microkernel by Klein’s group at NICTA [29],
at several hundreds of thousand lines of Isabelle text, is surely the largest project ever un-
dertaken in Isabelle. Following the first release of MaSh, the engineers in the project were
interested in applying it to their ever growing formal development.

Dealing with actual users inevitably raises real issues:

• The seL4 formalization is a very large proof, which causes scalability issues.
• The formalization is typically at least one version of Isabelle behind, corresponding to

eight months of development on the proof assistant.
• At the time (in 2013), the proof effort was a commercial venture and hence could not be

freely shared with the MaSh developers.

We started a collaboration with NICTA to look into this. The second author, Greenaway,
joined the four MaSh developers to help debug and tune it further. He had access to the
proprietary seL4 work. In addition, his AutoCorres tool [16], which is used for verifying
seL4, has been open source for some years. Hence, it was possible for his coauthors to do
some experiments with these theories.

Initially, scalability was an even larger problem than we had expected. With the entire
seL4 proof loaded in memory, amounting to almost 59 000 facts, it took about 50 s for a sin-
gle invocation of MePo, 120 s for MaSh, and 130 s for MeSh on a standard workstation (In-
tel Core i5-3470 at 3.2 GHz), before the automatic provers could even be started. Although
most users normally do not work that deep in the proof, these timings were completely unac-
ceptable. Since Sledgehammer runs for 30 s by default (which roughly corresponds to most
users’ patience), at most a few seconds should be used for fact selection.

When profiling the tool, we discovered several inefficient algorithms. Fortunately, they
could either be optimized or bypassed. The following list of improvements gives a flavor of
the changes we did:

• The most expensive piece of code was the formula duplication check. Despite the use
of appropriate functional data structures, it scaled poorly took about 30 s irrespective of
which fact selector was used. Removing duplicates is desirable but not essential, so we
no longer do it for huge background theories (≥ 50 000 facts).

• Meng and Paulson [36] realized that complex formulas, with many nested function ap-
plications or many λ-abstractions, rarely arise in proofs. Omitting them increases the
success rate slightly. This check is now skipped with little loss for very large background
theories (≥ 25 000 facts).

• MePo and even some provers [9] exploit metainformation about the formulas—for ex-
ample, whether a formula is a simplification rule in Isabelle. Collecting this information
is expensive and yields comparatively small benefits. This is now avoided if a certain
threshold is reached (≥ 10 000 simplification rules).

• The formulas’ term structure was traversed several times to look for certain internal
constructs, to blacklist obviously useless formulas. This code could easily be rewritten
to require only one traversal.

A Learning-Based Relevance Filter for Isabelle/HOL 21

• MaSh wasted much time extracting the dependencies from a few huge proof terms. The
solution was to introduce a threshold on the size of proof terms considered by machine
learning.

• MePo iterates several times over all visible facts. A score is associated with each fact and
updated at each iteration. Ignoring facts with very low scores after a few (5) iterations
speeds up the algorithm without changing its results much.

Thanks to these and other similar changes, MePo and MaSh came out much more usable
with a fully loaded seL4—for example, MaSh took only 12.5 s afterward—and also faster
for more pedestrian scenarios. The NICTA team had their own locally patched version of
Isabelle to work around various issues. Thus, we could backport all changes to Sledge-
hammer and MaSh and distribute the changes rapidly via that channel, bypassing the proof
assistant’s eight-month-or-so release cycle.

For most of MaSh’s existence, the machine learning engine was implemented in an
external Python program. Whenever Sledgehammer needed to select fact, it launched the
Python program, which first loaded all its persistent data. For huge background theories, a
lot of time was wasted loading and storing data. We eventually implemented a local server
mode to reduce the overhead, but this introduced many reliability issues that affected the
NICTA users. Moreover, in a context where users keep switching between different Isa-
belle versions, race conditions and data corruptions were frequent occurrences. This was
ultimately solved by porting the machine learning engine to Standard ML and integrating it
directly in Sledgehammer.

Although their formalization was proprietary, the NICTA users were willing to enable
Sledgehammer’s “spy” mode. With this mode enabled, each invocation of Sledgehammer is
logged along with information about the proofs found. The spy mode was activated between
September 2013 to June 2014 on 23 users’ machines. The exact dates vary from user to user.
Some basic data could be gathered about Sledgehammer usage and about the old Python-
based MaSh implementation.

Figure 16 summarizes the results; the users’ names were changed to preserve anonymity.
The overall success rate (after reconstruction) is 38% for MaSh users, 33% for MePo users,
and 36% collectively. This is encouraging but inconclusive because of the small number of
users, and of possible biases introduced by the choice of selector by a user. It should be no
surprise that these results are lower than for Judgment Day: seL4 problems are likely more
difficult, and on an evolving theory useful lemmas tend to be missing—some goals might
even be unprovable. On average, users invoked Sledgehammer twice for each goal they tried
it on. The spy logs suggest that they often tried the tool on a goal, then added one lemma
or changed their specification, then tried to discharge the goal again, possibly reiterating the
last two steps.

If there is too little data to determine with certainty whether MaSh (or rather, the old
version in Python with naive Bayes as its sole algorithm and with its bugs) helped, at least
we see how often NICTA users invoke Sledgehammer and how often it succeeds. We also
see that the number of background facts considered for fact selection is typically much lower
than the worst case of about 59 000, when all of seL4 is loaded. The high number of facts in
some proofs is due to needless dependencies in the output of the E-SInE [21] prover, which
used to be part of the standard Sledgehammer setup.

We learned several lessons from the experiment:

• Scalability is an issue for large formalizations, but most of the time the NICTA users do
not work as deeply in the formalization as we had initially feared.

22 J. C. Blanchette et al.

Number of Number of Success Avg. number of Avg. number of
User Fact selector distinct goals successes rate background facts facts in proofs

Janise MeSh 1002 354 35% 18 207 19
Colby MePo 584 192 33% 19 932 4
Damien MeSh 411 200 49% 16 504 9
Kia MePo 332 116 35% 13 024 2
Shiela MePo 207 53 26% 10 152 14
Emil MePo 169 53 31% 19 037 6
Mozella MeSh 112 63 56% 18 033 16
Ammie MeSh 97 9 9% 18 427 5
Azalee MeSh 46 12 26% 23 510 41
Shanelle MePo 40 11 28% 18 992 6
Soo MePo 35 23 66% 12 043 5
Lonnie MeSh 33 10 30% 21 499 4
Travis MePo 20 15 75% 11 526 4
Lillie MeSh 20 7 35% 20 950 7
Dallas MePo 16 6 38% 14 731 48
Alyssa MePo 13 3 23% 44 480 3
Joi MePo 10 4 40% 12 758 4
Nelida MeSh 8 2 25% 56 114 10
Angel MePo 8 7 88% 7 942 7
Yetta MePo 3 1 33% 10 554 3
Shona MePo 2 0 0% 9 989 –
Myra MePo 2 0 0% 37 920 –
Kylee MePo 1 1 100% 10 662 1

MePo 1455 486 33% 16 514 6
All users

 MeSh 1712 655 38% 18 172 15
Either 3166 1141 36% 17 422 12

Fig. 16 Sledgehammer usage at NICTA as revealed by the spy mode

• Judging from the spy data, the main reason why NICTA benefits only moderately from
Sledgehammer (compared with other Isabelle projects) seems to be that many users have
not yet integrated it in their workflow. The success rate is similar across users, so those
who invoke Sledgehammer the most are also those who find the most proofs with it.

• The earlier separation of MaSh into a Python part and a Standard ML part, while making
the core engine easily reusable (e.g., by other proof assistants), was a continual source of
worries. Robustness and performance were achieved through a more integrated design.

For a project like seL4, one could imagine having a shared server, instead of performing
the learning on each machine. HOLYHammer, for HOL Light, provides such a facility [28].
The “four zeros” mentioned in the introduction were chosen with casual Isabelle users in
mind, but some teams are ready to spend more time and effort setting up their environment
if they know it will bring significant gains.

Now that seL4 formalization is open source, it would be an obvious choice for evaluating
large-theory reasoning in the style of Section 5. Unfortunately, it does not track Isabelle’s
development as closely as IsaFoR, making it technically difficult to conduct experiments
with the latest version of Isabelle and MaSh.

8 Related Work and Contributions

The main related work is already mentioned in the introduction. Bridges such as Sledgeham-
mer for Isabelle/HOL, MizAR [52] for Mizar, and HOLYHammer [27] for HOL Light are

A Learning-Based Relevance Filter for Isabelle/HOL 23

opening large formal theories to methods that combine automatic theorem provers and arti-
ficial intelligence [13, 35, 51] to help automate interactive proofs. Today such large theories
are the main resource for combining semantic and statistical AI methods [20, 54].6

The main contribution of this work has been to add the emerging machine learning meth-
ods for fact selection to Sledgehammer and make them incremental, fast, and robust enough
so that they run unnoticed on a single-user machine and respond well to common user-
interaction scenarios. The advising services for Mizar and HOL Light [25, 27, 48, 52] (with
the partial exception of MoMM [48]) run primarily as remote servers, whereas Sledgeham-
mer does most of its work on the user’s machine. Other novelties of this work include the use
of more proof-related features in the learning (inspired by MePo), experiments combining
MePo and MaSh, and the related learning of various parameters of the systems involved. We
have evaluated the methods on several proof developments, and scaled them to very large
ones such as the seL4 formalization. The overall success rate of 66.1% on the lemmas from
several large Isabelle formalizations, and 76.7% on the goals from Judgment Day, should be
good news for Isabelle users.

9 Conclusion

Fact selection is an important practical problem that arises with large-theory reasoning.
Sledgehammer’s MaSh selector brings the benefits of machine learning to Isabelle users: By
decreasing the quantity and increasing the quality of facts passed to the automatic provers, it
helps them find more, deeper proofs within the allotted time. Starting with the 2014 edition
of Isabelle, MaSh is enabled by default and delivers on its promises: zero configuration, zero
click, zero maintenance, and zero overhead. The core learning functionality is implemented
as a pair of general-purpose algorithms that can be reused by other proof assistants.

Many areas are calling for more engineering and research; we mentioned a few already.
Learning data could be shared on a server or supplied with the proof assistant. More ad-
vanced algorithms appear too slow for interactive use, but they could be optimized. Learn-
ing could be applied to control more aspects of Sledgehammer, such as the prover options
or even MePo’s parameters. Evaluations over the entire Archive of Formal Proofs, or on the
seL4 formalization, might shed more light on MaSh’s and MePo’s strengths and weaknesses.

Acknowledgment. Tobias Nipkow and Lawrence Paulson have, for years, encouraged us
to investigate the integration of machine learning in Sledgehammer; their foresight has made
this work possible. Gerwin Klein and Makarius Wenzel provided advice on technical and li-
censing issues. Andrew Reynolds helped us tune the command-line options passed to CVC4.
Tobias Nipkow, Lars Noschinski, Mark Summerfield, Dmitriy Traytel, and the anonymous
reviewers suggested many improvements to earlier versions of this paper.

Blanchette was partially supported by the Deutsche Forschungsgemeinschaft (DFG)
project Hardening the Hammer (grant NI 491/14-1). Kaliszyk was supported by the Austrian
Science Fund (FWF): P26201. Kühlwein was supported by the Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO) project Learning to Reason (grant 612.001.010).
Urban was supported by the NWO project Knowledge-Based Automated Reasoning (grant
612.001.208).

6 It is hard to envisage all possible combinations, but with the recent progress in natural language pro-
cessing, suitable combination methods could soon be applied to another major aspect of formalization: the
translation from informal prose to formal specification.

24 J. C. Blanchette et al.

References

1. The Mizar Mathematical Library. http://mizar.org/.
2. Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise selection

for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning, 52(2):191–213, 2014.
3. Jesse Alama, Daniel Kühlwein, and Josef Urban. Automated and human proofs in general mathematics:

An initial comparison. In Nikolaj Bjørner and Andrei Voronkov, editors, LPAR-18, volume 7180 of
LNCS, pages 37–45. Springer, 2012.

4. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King,
Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, CAV
2011, volume 6806 of LNCS, pages 171–177. Springer, 2011.

5. Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher order logic. In Mark Aagaard
and John Harrison, editors, TPHOLs 2000, volume 1869 of LNCS, pages 38–52. Springer, 2000.

6. Jasmin Christian Blanchette, Sascha Böhme, Mathias Fleury, Steffen Juilf Smolka, and Albert Stecker-
meier. Semi-intelligible Isar proofs from machine-generated proofs. J. Autom. Reasoning. To appear.

7. Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending Sledgehammer with
SMT solvers. J. Autom. Reasoning, 51(1):109–128, 2013.

8. Jasmin Christian Blanchette, Sascha Böhme, Andrei Popescu, and Nicholas Smallbone. Encoding
monomorphic and polymorphic types. In Nir Piterman and Scott Smolka, editors, TACAS 2013, vol-
ume 7795 of LNCS, pages 493–507. Springer, 2013.

9. Jasmin Christian Blanchette, Andrei Popescu, Daniel Wand, and Christoph Weidenbach. More SPASS
with Isabelle—Superposition with hard sorts and configurable simplification. In Lennart Beringer and
Amy Felty, editors, ITP 2012, volume 7406 of LNCS, pages 345–360. Springer, 2012.

10. Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement Day. In Jürgen Giesl and Reiner Hähnle,
editors, IJCAR 2010, volume 6173 of LNCS, pages 107–121. Springer, 2010.

11. Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. veriT: An open,
trustable and efficient SMT-solver. In Renate A. Schmidt, editor, CADE-22, volume 5663 of LNCS,
pages 151–156. Springer, 2009.

12. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R. Ramakrishnan and Jakob
Rehof, editors, TACAS 2008, volume 4963 of LNCS, pages 337–340. Springer, 2008.

13. Jörg Denzinger, Matthias Fuchs, Christoph Goller, and Stephan Schulz. Learning from previous proof
experience. Technical Report AR99-4, Institut für Informatik, Technische Universität München, 1999.

14. Thibault Gauthier and Cezary Kaliszyk. Premise selection and external provers for HOL4. In Xavier
Leroy and Alwen Tiu, editors, CPP 2015, pages 49–57. ACM, 2015.

15. Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Mizar in a nutshell. J. Formalized Rea-
soning, 3(2):153–245, 2010.

16. David Greenaway, June Andronick, and Gerwin Klein. Bridging the gap: Automatic verified abstraction
of C. In Lennart Beringer and Amy Felty, editors, ITP 2012, volume 7406 of LNCS, pages 99–115.
Springer, 2012.

17. Thomas C. Hales. Introduction to the Flyspeck project. In Thierry Coquand, Henri Lombardi, and
Marie-Françoise Roy, editors, Mathematics, Algorithms, Proofs, number 05021 in Dagstuhl Seminar
Proceedings, pages 1–11. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2006.

18. Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le Hoang, Cezary
Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen, Tobias Nipkow,
Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam Tran, Diep Thi
Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. A formal proof of the Kepler conjecture. CoRR,
abs/1501.02155, 2015.

19. John Harrison. HOL Light: A tutorial introduction. In Mandayam K. Srivas and Albert John Camilleri,
editors, FMCAD ’96, volume 1166 of LNCS, pages 265–269. Springer, 1996.

20. Jónathan Heras, Ekaterina Komendantskaya, Moa Johansson, and Ewen Maclean. Proof-pattern recog-
nition and lemma discovery in ACL2. In Kenneth L. McMillan, Aart Middeldorp, and Andrei Voronkov,
editors, LPAR-19, volume 8312 of LNCS, pages 389–406. Springer, 2013.

21. Kryštof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning. In Nikolaj Bjørner
and Viorica Sofronie-Stokkermans, editors, CADE-23, volume 6803 of LNCS, pages 299–314. Springer,
2011.

22. Johannes Hölzl and Armin Heller. Three chapters of measure theory in Isabelle/HOL. In Marko van
Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, ITP 2011, volume 6898 of
LNCS, pages 135–151. Springer, 2011.

23. Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In Myla Archer, Ben Di Vito,
and César Muñoz, editors, Design and Application of Strategies/Tactics in Higher Order Logics, NASA
Tech. Reports, pages 56–68, 2003.

http://mizar.org/

A Learning-Based Relevance Filter for Isabelle/HOL 25

24. Karen Spärck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal
of Documentation, 28:11–21, 1972.

25. Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. CoRR, abs/1310.2805, 2013.
26. Cezary Kaliszyk and Josef Urban. Stronger automation for Flyspeck by feature weighting and strategy

evolution. In Jasmin Christian Blanchette and Josef Urban, editors, PxTP 2013, volume 14 of EPiC,
pages 87–95. EasyChair, 2013.

27. Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with Flyspeck. J. Autom.
Reasoning, 53(2):173–213, 2014.

28. Cezary Kaliszyk and Josef Urban. HOL(y)Hammer: Online ATP service for HOL light. Math. Comput.
Sci., 9(1):5–22, 2015.

29. Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dham-
mika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal verification of an operating-system kernel. Commun. ACM, 53(6):107–
115, 2010.

30. Gerwin Klein and Tobias Nipkow. Jinja is not Java. In Gerwin Klein, Tobias Nipkow, and Lawrence
Paulson, editors, Archive of Formal Proofs. http://afp.sf.net/entries/Jinja.shtml, 2005.

31. Gerwin Klein, Tobias Nipkow, and Lawrence Paulson, editors. Archive of Formal Proofs. http://afp.
sf.net/.

32. Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha Sharygina
and Helmut Veith, editors, CAV 2013, volume 8044 of LNCS, pages 1–35. Springer, 2013.

33. Daniel Kuehlwein and Josef Urban. Learning from multiple proofs: First experiments. In Pascal
Fontaine, Renate A. Schmidt, and Stephan Schulz, editors, PAAR-2012, volume 21 of EPiC, pages 82–
94. EasyChair, 2013.

34. Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban. MaSh: Machine
learning for Sledgehammer. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors,
ITP 2013, volume 7998 of LNCS, pages 35–50. Springer, 2013.

35. Daniel Kühlwein, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef Urban, and Tom Heskes. Overview
and evaluation of premise selection techniques for large theory mathematics. In Bernhard Gramlich, Dale
Miller, and Uli Sattler, editors, IJCAR 2012, volume 7364 of LNCS, pages 378–392. Springer, 2012.

36. Jia Meng and Lawrence C. Paulson. Lightweight relevance filtering for machine-generated resolution
problems. J. Applied Logic, 7(1):41–57, 2009.

37. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

38. Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. J. Comput. Secur.,
6(1-2):85–128, 1998.

39. Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In Geoff Sutcliffe, Stephan Schulz,
and Eugenia Ternovska, editors, IWIL-2010, volume 2 of EPiC, pages 1–11. EasyChair, 2012.

40. Lawrence C. Paulson and Kong Woei Susanto. Source-level proof reconstruction for interactive theorem
proving. In Klaus Schneider and Jens Brandt, editors, TPHOLs 2007, volume 4732 of LNCS, pages
232–245. Springer, 2007.

41. Andrew Reynolds, Cesare Tinelli, and Leonardo de Moura. Finding conflicting instances of quantified
formulas in SMT. In Koen Claessen and Viktor Kuncak, editors, FMCAD 2014, pages 195–202. IEEE,
2014.

42. Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middeldorp, and Andrei
Voronkov, editors, LPAR-19, volume 8312 of LNCS, pages 735–743. Springer, 2013.

43. Geoff Sutcliffe. The 4th IJCAR automated theorem proving system competition—CASC-J4. AI Com-
mun., 22(1):59–72, 2009.

44. Geoff Sutcliffe. The 6th IJCAR automated theorem proving system competition—CASC-J6. AI Com-
mun., 26(2):211–223, 2013.

45. René Thiemann and Christian Sternagel. Certification of termination proofs using CeTA. In Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, TPHOLs 2009, volume 5674
of LNCS, pages 452–468. Springer, 2009.

46. Christian Urban and Cezary Kaliszyk. General bindings and alpha-equivalence in Nominal Isabelle.
Log. Meth. Comput. Sci., 8(2), 2012.

47. Josef Urban. BliStr: The Blind Strategymaker. In Leonardo de Moura, Boris Konev, and Stephan Schulz,
editors, PAAR-2014, EPiC. EasyChair. To appear.

48. Josef Urban. MoMM—Fast interreduction and retrieval in large libraries of formalized mathematics.
Int. J. AI Tools, 15(1):109–130, 2006.

49. Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning,
37(1-2):21–43, 2006.

http://afp.sf.net/entries/Jinja.shtml
http://afp.sf.net/
http://afp.sf.net/

26 J. C. Blanchette et al.

50. Josef Urban. MaLARea: A metasystem for automated reasoning in large theories. In Geoff Sutcliffe,
Josef Urban, and Stephan Schulz, editors, ESARLT 2007, volume 257 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007.

51. Josef Urban. An overview of methods for large-theory automated theorem proving. In Peter Höfner,
Annabelle McIver, and Georg Struth, editors, ATE-2011, volume 760 of CEUR Workshop Proceedings,
pages 3–8. CEUR-WS.org, 2011.

52. Josef Urban, Piotr Rudnicki, and Geoff Sutcliffe. ATP and presentation service for Mizar formalizations.
J. Autom. Reasoning, 50(2):229–241, 2013.

53. Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jiří Vyskočil. MaLARea SG1—Machine learner for
automated reasoning with semantic guidance. In Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, IJCAR 2008, volume 5195 of LNCS, pages 441–456. Springer, 2008.

54. Josef Urban and Jiří Vyskočil. Theorem proving in large formal mathematics as an emerging AI field.
In Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics—Essays
in Memory of William McCune, volume 7788 of LNCS, pages 240–257. Springer, 2013.

55. Andrei Voronkov. AVATAR: The architecture for first-order theorem provers. In Armin Biere and Rod-
erick Bloem, editors, CAV 2014, volume 8559 of LNCS, pages 696–710. Springer, 2014.

56. Makarius Wenzel. Isabelle/Isar—A generic framework for human-readable proof documents. In Ro-
man Matuszewski and Anna Zalewska, editors, From Insight to Proof—Festschrift in Honour of Andrzej
Trybulec, volume 10(23) of Studies in Logic, Grammar, and Rhetoric. Uniwersytet w Białymstoku, 2007.

	1 Introduction
	2 Sledgehammer and MePo
	3 The Machine Learning Engine
	3.1 Basic Concepts
	3.2 Updates and Selection
	3.3 Sparse Naive Bayes
	3.4 k Nearest Neighbors
	3.5 Feature Weights

	4 Integration in Sledgehammer
	4.1 Learning from and for Isabelle
	4.2 Relevance Filters: MaSh and MeSh
	4.3 Automatic and Manual Control
	4.4 Nonmonotonic Theory Changes

	5 Evaluation on Large Formalizations
	5.1 Machine Learning Metrics
	5.2 Success Rates of Automatic Theorem Provers

	6 Judgment Day
	7 Case Study: Microkernel Verification
	8 Related Work and Contributions
	9 Conclusion

