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ABSTRACT

The paper introduces a methodology designed for the investigation of rock matrix heterogeneities and their effect on pre- and
post- fracture behavior. Specifically, a grain edge interaction length distribution (EILD) is constructed by Cathodoluminescnece
image analysis. The EILD augments traditional Discrete Element Method (DEM) models by stochastically strengthening
or weakening bonds, which simulates the presence of defects and locally tough regions. These heterogeneities cause the
development of an intrinsic process zone (IPZ), which is a material property that is experimentally observable by Acoustic
Emissions (AE). This paper compares the development of the IPZ within numerical and experimental three point bending
tests. Similar to experimental observations, EILD-augmented DEM three point bending tests yield IPZs with variable widths. In
comparison, the traditional DEM is unable to generate an IPZ. The paper concludes that the physically informed EILD contains
the necessary physical distribution of grain contacts to augment DEM rock fracture models. Further analysis of the numerical
AE activity reveals that larger AE events are located directly along the rupture and they are linearly related to their number of
constituent interactions. As such, an AE interaction count threshold is identified to distinguish between rupture and damage
AE activity. These results demonstrate the ability of the presented augmented DEM model to investigate the rock volumes
associated with large rupture events for various levels of heterogeneity.

Keywords: Discrete Element Method; rock heterogeneity modeling; acoustic emission; tensile fracture; intrinsic process
zone

1 Introduction

Rock fracture modeling remains challenging due to complex
micromechanical processes such as the interactions of ran-
domly oriented micro-defects, microcrack coalescence, and
stochastically distributed grain-grain cementation. These mi-
cromechanical processes concentrate stress and localize strain,
which result in non-linear stress-strain behaviors, large defor-
mations, and discontinuities. Such behaviors are difficult to
model, but numerous studies demonstrate the DEM-Bonded
Particle Model’s (BPM) (Potyondy and Cundall, 2004) ability
to model emergent non-linear stress-strain behaviors at vari-
able confining pressures (Scholtès and Donzé, 2012b; Wang
and Li, 2014). Although compressive failure is well-modeled
in DEM (Hazzard and Young, 2004), tensile failure models
lack the experimentally observed acoustic emissions (AE) (mi-

cro failures) in the intrinsic process zone (IPZ) (Labuz et al.,
1987; Lockner et al., 1992; Zietlow and Labuz, 1998) despite
capturing the macroscopic rupture (Mahabadi et al., 2009).
This paper aims to demonstrate the necessity and validity of a
physically constructed rock heterogeneity model for accurate
simulation of AE activity during tensile rock failure in Yade
DEM software.

The study of rock heterogeneity modeling can be split into
two general groups. Many studies use statistical distribu-
tions to vary material parameters, while others model some
representative elementary volume (REV) of defects directly
and upscale behaviors (known as homogenization). Both
methods simplify the computationally intractable problem of
modeling all imperfections and grain contacts within a rock
specimen with the hopes of modeling the macro effect of het-
erogeneities: non-linear macroscopic behaviors and fracture
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nucleation. DEM modelers fall into the first group; they gen-
erally represent heterogeneities by stochastically assigning
micro-properties (interaction stiffness or strength properties)
according to macro-property distributions (Potyondy and Cun-
dall, 2004). Some DEM studies simply use trial and error
calibration techniques to determine strength distribution mean
and variation parameters (Khazaei et al., 2015; Ma and Huang,
2017). Continuum methods, such as the finite element method,
approach the problem similarly by stochastically controlling
the modulus parameter and failure criteria (Cai and Kaiser,
2004; Tang and Kaiser, 1998; Yang et al., 2004). Liu et al.
(2004) investigated and compared a statistical approach to a
direct homogenization approach. In the homogenization case,
Liu et al. (2004) used microstructure image analysis to build
REV material properties and geometries deterministically. In
the statistical case, Liu et al. (2004) used a Weibull distribution
to assign finite element strength and elastic properties. It is im-
portant to note that the Weibull distribution was characterized
by a “homogeneous index”, which was determined based on
experimental macroscopic strength and modulus distributions.
Liu et al. (2004) concluded that the statistical method closely
approximated the deterministic microstructural REV method.
Garboczi and Day (1995) modeled heterogeneities directly by
generating model geometry based on microstructure imagery.
Rabczuk and Eibl (2006) used a damage evolution model to
account for heterogeneities within a meshfree concrete frac-
ture model. Ostoja-Starzewski et al. (1994) and Buxton et al.
(2001) modeled heterogeneities directly in a lattice spring
model by varying spring stiffnesses depending on the solid
phase that they appear in, similar to Liu et al. (2004)’s REV
method. Sfantos and Aliabadi (2007) imposed heterogene-
ity by randomly orienting anisotropic grains in a multiscale
micromechanical boundary element model. In all aforemen-
tioned cases, heterogeneity is introduced into models by vary-
ing material parameters according to macroscopic material
property distributions or modeling the microstructure directly
and homogenizing the behavior at larger scales. In compari-
son, the grain edge-interaction-length-distribution (EILD) pre-
sented in this paper is constructed physically by cathodolumi-
nescence (CL) microstructure image analysis. The physically
founded EILD is hypothesized to follow the same distribution
of grain contact strengths, and is therefore used to stochasti-
cally control the particle interaction strengths in an augmented
DEM model.

The discrepancies observed between experimental and nu-
merical AE activity for tensile fractures indicate a gap in the
micromechanical understanding of how heterogeneities affect
rock behavior. Further, the well documented use of macro-
scopic property distributions to inform microscopic processes
suggests a physically founded micromechanical method still
needs to be developed for heterogeneity modeling. This study
postulates that the missing piece of the traditional DEM-BPM
is the lack of physically founded micromechanical material
property distributions. Therefore, this paper presents an aug-
mentation of DEM-BPM by stochastically controlling particle

interaction properties according to physically founded rock
grain EILD. We hypothesize that the IPZ is controlled by the
grain EILD in rocks, which can be physically constructed
with CL imagery of rock grains. This EILD augments tradi-
tional DEM by stochastically correcting the interaction areas
used for bond strength assignment. In other words, the EILD-
augmented DEM model accommodates naturally occurring
stress concentrations as short edge (low strength, existing de-
fects (Zietlow and Labuz, 1998)) interactions break, and long
edge (locally tough regions (Alava et al., 2006)) interactions
arrest and deflect fracture propagation. Several objectives
are met in support of the aforementioned hypothesis. First,
the paper outlines CL image analysis and EILD parameter
estimation. Next, the EILD is implemented into DEM, where
the IPZ is numerically simulated for a three point bending test.
Finally, literature based experimental spatial and load-based
IPZ AE observations are used to validate the numerical model.
Ultimately, the hypothesis is supported by a method that mod-
els the mechanical behavior of a true grain packing while
maintaining the computationally tractable spatial discretiza-
tion of uniform particle distributions. After model validation,
we explore the effect of heterogeneity on AE magnitudes and
location. Finally, we demonstrate the capacity of the aug-
mented model by distinguishing rupture and non-rupture AE
activity based on numerical AE interaction count for a range
of heterogeneities.

1.1 Background
1.2 Acoustic emissions in the IPZ
Acoustic Emissions are non-destructive observations of brittle
material energy release prior, during, and after material rup-
ture. Many researchers correlate AE counts to inelastic strain
rates in rocks prior to failure (Boyce et al., 1981; Lockner
et al., 1992). Other studies localize AE to demonstrate cluster-
ing and material damage (Berkovits and Fang, 1995; Godin
et al., 2004; Shah and Labuz, 1995; Sondergeld and Estey,
1981), and some even use AE to identify field scale fracture
zones (Soma et al., 2002). Recently, the magnitudes and lo-
cations of AE have shed light on heterogeneity controlled
rock failures (Lei et al., 2004). A common observation of all
studies is the cloud of AE activity prior to failure, followed by
a coalescence of AE at the rupture location (Yang et al., 2012;
Zang et al., 1998).

The collection of AE events in modern laboratories de-
pends on computer based detection, signal conversion, and
localization (Labuz et al., 2001; Lockner, 1993). An array of
piezoelectric transducers generate voltage changes that are
usually sampled with frequency ranges of 100 Hz - 1 MHz.
These voltage changes are time stamped and converted to dis-
placements, which can be either inverted (Eitzen and Wadley,
1984; Shah and Labuz, 1995) or plugged into empirical rela-
tionships (McLaskey et al., 2015) to determine stress drops
and event magnitudes. Additionally, the hypocenter of each
event is determined by minimizing residuals of P-Wave arrival
times (Lockner et al., 1992; Shearer, 2009; Zang et al., 1998).
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In most cases AE activity within the transducer array are ac-
curately localized within 2 mm, but AE hypocenters beyond
the array may be inaccurate up to 20 or 30 mm (Zietlow and
Labuz, 1998).

The intrinsic process zone (IPZ) is an important region
defined as a damaged volume of microcracks surrounding a
macrocrack at peak load. Originally, the IPZ was observed
using AE by Shah and Labuz (1995) and further validated by
Zietlow and Labuz (1998) and Labuz et al. (2001). Develop-
ment of the IPZ is attributed to the inherent heterogeneities
of geomaterials such as pre-existing microcracks, misshapen
grains, and mineral imperfections (Lei et al., 2000). Each het-
erogeneity acts to concentrate stress and extend microcracks,
yielding a release of elastic waves (Acoustic Emissions). Ziet-
low and Labuz (1998) used AE locations pre- and post-peak
load to show that the IPZ shape and size is a measurable ma-
terial property (Sub Figs. 9), similar to the Fracture Process
Zone (FPZ).

Few studies model the IPZ directly. Fakhimi et al. (2002)
performed an experimental test on a biaxially loaded speci-
men containing a circular opening. In addition, Fakhimi et al.
(2002) used a 2D DEM to model the same biaxial test and
compared experimentally collected acoustic emission loca-
tions to DEM microcrack locations. Fakhimi et al. (2002)
found that the 2D DEM model microcrack cloud thickness
was similar to the experimentally observed AE cloud. Another
study by Wang et al. (2012) used finite elements to investi-
gate the development of the FPZ around a circular opening
in rock. Heterogeneity was addressed with a “homogenous
index” (Chun’an Tang, 1997), and acoustic emissions were
simulated by recording the released energy of finite elements.
Wang et al. (2012) observed an increase of AE cloud width
with increasing heterogeneity (decreasing homogenous index)
and determined a qualitative agreement with experimental
observations.

DEM lends itself well to the simulation of AE activity
since broken bonds are analogous to microcracks. Hazzard
and Young (2000) and Hazzard and Young (2002) introduced
methods for modeling AE within PFC DEM software. Many
studies extended and validated the methodology by compar-
ing numerical and experimental Guttenberg-Richter b-values,
refining energy calculations, and generating synthetic seismo-
grams (Hazzard and Damjanac, 2013; Khazaei et al., 2015,
2016; Lisjak et al., 2013; Zhang et al., 2017). In all cases, com-
pressive tests yield clouds of simulated AE that compare well
to experimental AE observations. Meanwhile, contrary to ex-
perimental observations, tensile tests generally produce clean
fractures with very few (if any) broken bonds in regions sur-
rounding the rupture (Cai and Kaiser, 2004; Mahabadi et al.,
2009). These “clean” fractures are likely due to the typical
uniform distribution of particle sizes and the corresponding
skewed distribution of bond strengths of traditional DEM. In
the cases where heterogeneity is considered, the DEM inter-
action stiffnesses are stochastically distributed according to
macroscopic material property distributions. Since it is not

computationally tractable to model each grain and defect
individually, DEM’s traditional discretization of space and
particle interactions need to be augmented to accommodate
for the development of the IPZ.

1.3 Discrete Element Method
The basic Discrete Element Method (DEM) treats particulate
material as an assembly of various sized spheres, each charac-
terized by density and stiffness. Spherical particle interactions
and movements are governed by Newton’s second law of mo-
tion, which enables the integration of sphere positions through
time to determine forces. For cohesive assemblies, such as
rock, the Bonded Particle Model (BPM) models particle in-
teractions as springs with compressive and tensile strengths
(Potyondy and Cundall, 2004). If a spring’s strength is ex-
ceeded, it is disconnected and the particles interact according
to frictional behavior only (or not at all if they are not in
contact). The current study employs and modifies Yade open
source DEM software (Šmilauer and Chareyre, 2015). Yade’s
DEM-BPM formulation (Scholtès and Donzé, 2012b) char-
acterizes particle interactions by computing normal (Fn) and
shear (Fs) forces based on normal (kn) and shear (ks) stiff-
nesses with a strain evaluation:

Fn = kn∆D (1)

where ∆D is the difference between the displacement between
interacting particles and the predefined equilibrium distance
(∆D = D−Deq). kn is computed assuming two springs are in
serial with lengths equal to the interacting particle radii:

kn =
EaRaEbRb

EaRa +EbRb
(2)

and ks is simply a fraction of kn, so ks/kn is sometimes referred
to as the microscopic Poisson’s ratio since it has an effect on
the lateral/axial deformability of the particle assembly. Since
the shear force depends on the orientation of both particles, it
is updated incrementally:

∆Fs = ks∆us (3)

Fs = Fs,prev +∆Fs (4)

where ∆us is the tangential displacement between particles.
Normal bond strength criterion is defined by Scholtès and

Donzé (2012a) as

Fn,max =−tAint (5)

where t is the tensile strength of the bond and Aint = π ×
min(Ra,Rb)

2. The maximum allowable shear force for a given
interaction follows a modified Mohr-Coulomb model:

Fs,max = Fn tanφb + cbAint (6)
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where φb is a microscopic friction angle and c is the cohesion
of the interaction.

Scholtès and Donzé (2012a) also incorporated an interac-
tion range (γint) to simulate grain interlocking. γint increases
the equilibrium distance, Deq, which allows particles to inter-
act with a greater number of neighboring particles:

Deq = γint(Ra +Rb) (7)

where Ra and Rb are the radii of interacting particles, and
γint is an interaction range factor. It is important to note
that the interaction range should not be high enough to allow
interactions that extend across the diameter of another particle:

γint <
Rmin +Rmax

Rmax
(8)

2 Methods
2.1 Cathodoluminescence Image Analysis
The current study uses Cathodoluminescence (CL) image
analysis to construct an EILD for stochastic augmentation of
DEM. CL is particularly useful for such an application since
it can be used to distinguish between detrital quartz grains
and authigenic quartz (Houseknecht, 1991). Petrographers
use the intense Cathodoluminescence (CL) of detrital quartz
(due to latex defects and trace cation inclusions) compared
to the less intense CL of authigenic cement as a proxy for
quartz grain-cement distinction (Fig. 1a). The thresholded
grains (Fig. 1b) are further analyzed with ImageJ for particle
centroid location c(x,y), particle perimeter coordinates p(x,y),
and particle feret diameter D f eret (Rasband, 2012). These
grain characteristics are used to detect grain edge interactions
as follows:

Particle 1 is the particle of interest, and Particle 2 is the
potential interacting neighbor particle. Particle 2 is considered
a potential interacting neighbor of Particle 1 when the distance
between particle centroids (dcentr.) is less than the average of
the particle feret diameters (D f eret ):

dcentr. = ‖c1− c2‖<
D1, f eret +D2, f eret

2
(9)

After the potential neighbors are determined, a point of in-
terest on the Particle 1 perimeter (p1) is interacting with a
point on the Particle 2 perimeter (p2) if the distance between
potential edges (dedges) is less than D1, f eret multiplied by a
separation factor (s selected a priori as 0.2 for this study):

dedges = ‖p1− p2‖< sD1, f eret (10)

The process is repeated for all points on the perimeter of
Particle 1. The interacting edge length, ledge, between Particle
1 and Particle 2 is then computed:

ledge =
n

∑
i=1
||P1,i−P1,i−1||2 (11)

where n is the number of points on Particle 1 interacting with
Particle 2.

The grain edge interaction detection process was performed
for all particles in Fig. 1b. A portion of the interacting edges
are shown in Sub Fig. 1b and the edge length distribution is
shown in Fig. 2. Finally, a Weibull shape parameter is fit to the
edge length distribution by Maximum Likelihood Estimation
and Newton Raphson (Appendix A).

2.2 EILD DEM Implementation
The EILD constructed in Sec. 2.1 represents the distribution
of interacting edge lengths for a rock specimen. This paper
hypothesizes that these interacting edge lengths represent
the strength of the grain interactions (i.e. longer interacting
edge lengths correspond to higher grain interaction strengths).
Such an interpretation can be directly represented in DEM
by modifying the interaction strength cross-sectional radii
accordingly. Yade’s EILD implementation uses a correction
factor, αw (random deviate generated from the EILD (Fig. 3))
to control the DEM interaction area (Aint ):

Aint = αw×min(Ra,Rb)
2
π (12)

Thus, αw probabilistically weakens or strengthens a bond
according to CL microstructure observations. In this way,
αw introduces natural heterogeneities and grain structure into
a uniformly distributed DEM packing. The corresponding
tensile strength distributions for various Weibull shape param-
eters are shown in Fig. 4.

2.3 Acoustic Emission simulation in DEM
The current study simulates AE by adopting methodology
presented by Hazzard and Young (2000) and Hazzard and
Damjanac (2013). Numerically simulated AE events are sim-
ulated by assuming each broken DEM bond (or cluster of
broken bonds) represents an event location. Additionally, the
associated system strain energy change represents the event
magnitude. Once a bond breaks, the strain energies (Ei) are
summed for all intact bonds within a predefined radius:

Ei =
1
2

(F2
n

kn
+

F2
s

ks

)
(13)

Eo =
N

∑
i

Ei (14)

where Fn, Fs and kn, ks are the normal and shear force (N) and
stiffness (N/m) components of the interaction prior to failure,
respectively. Hazzard and Damjanac (2013) showed that a
volume of 2 to 5 particle diameters (λ ) captured the strain
energy change of the entire system due to the broken bond
of interest. Hazzard and Damjanac (2013) also demonstrated
the increase of strain energy with increasing time steps in the
model. In Yade’s implementation, the time window (Tmax)
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Figure 1. Example of CL scan used to distinguish between detrital (grains) and authigenic (cement) quartz for image analysis
(top). Thresholded detrital quartz (white polygons) and samples of detected interacting edges (colored dots) (bottom)

depends on the P-Wave velocity associated with interacting
particle densities (Khazaei et al., 2016):

Tmax = int
( Davgλ

max(vp1,vp2)∆t

)
(15)

where Davg is the average diameter of the particles comprising
the failed event (m), vp1 and vp2 are the P-Wave velocities
(m/s) associated with the interacting particle densities, and ∆t
is the time step of the simulation (seconds/time step).

Yade’s AE simulation implementation uses the maximum
change of strain energy surrounding each broken bond to
estimate the moment magnitude of the AE. As soon as the
bond breaks, the total strain energy (Eo = ∑

n
i Ei) is computed

for the radius (set by the user as no. of avg particle diameters,
λ ). Eo is used as the reference strain energy to compute
∆E = E−Eo during subsequent time steps. Finally, max(∆E)
is used in the empirical equation derived by Scholz and Harris
(2003) to compute the moment magnitude of the acoustic
event.

Me =
2
3

log∆E−3.2 (16)

Since AE waveforms are naturally generated by clusters
of microcracks (Lockner, 1993; Scholz and Harris, 2003),
broken DEM bonds in Yade are also clustered. Events are
clustered if they occur within spatial and temporal windows
of other events (similar to the approach presented by Hazzard
and Damjanac (2013); Hazzard and Young (2002)). As shown
in Fig. 12, the final location of a clustered event is simply the
average of the clustered event centroids. Here, the updated
reference strain energy is computed by adding the strain en-
ergy of the unique interactions surrounding the new broken
bond to the original reference strain energy (Eo):

• Original bond breaks, sum strain energy of broken bonds
(Norig) within spatial window

Eorig,o =
Norig

∑
i=1

Ei (17)



3 Results and Discussion 6

Figure 2. Distribution of interaction edge length

Figure 3. Weibull distributions for varying shape
parameters used to generate αw.

• New broken bond detected within spatial and temporal
window of original bond break

• Update reference strain Eo by adding unique bonds
(Nnew) within new broken bond spatial window

Enew,o = Eorig,o +
Nnew

∑
i=1

Ei (18)

This method maintains a physical reference strain energy for
the calculation of ∆E = E−Enew,o and depends strongly on
the spatial window size. Ultimately, the clustering increases
the number of larger events, which yields more comparable
b-values of the Guttenberg Richter curve (Hazzard and Dam-
janac, 2013).

2.4 Three Point Bending Test
The current study validates the EILD-augmented DEM model
by comparing numerical and experimental three point bending
test results (Zietlow and Labuz, 1998). Both numerical and

Figure 4. Maximum DEM particle bond tensile strength
distributions for varying Weibull shape parameters. Smaller
Weibull shape parameters correspond to greater
heterogeneity.

experimental specimens measure 80 mm x 240 mm x 40 mm
and are loaded at the top middle and restrained at both ends
as shown in Fig. 5. DEM microproperties are highlighted in
Table 1.

Table 1. Numerical specimen DEM microproperties

Micro parameter Value (DEM)
Ei 50 GPa

ks/kn 0.30
φb 19o

cb 40 MPa
t 9 MPa

γint 1.329
Sphere radius unif(1.125 mm,1.875 mm)
Sphere density 5000 kg/m3

The loading piston velocity is constant at 0.03 m/s through-
out the test and during failure. Piston load is plotted with re-
spect to piston displacement (specimen deflection). As shown
in Fig. 6b, experimental load vs deflection observations are
“masked” due to a low machine stiffness, while numerical load
vs deflection curves exhibit true material behavior.

3 Results and Discussion
The methodology presented in this paper is implemented into
Yade open source software, where it is tested using a Three
Point Bending test. First, the EILD-augmented DEM is val-
idated with experimental data gathered from the literature.
Next, a micromechanical analysis is performed to gain deeper
insight into the effect of heterogeneity on AE event char-
acteristics. Finally, the results are used to demonstrate the
distinction between rupture and non-rupture activity.
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Figure 5. Numerical specimen and three point bending test geometry. Spheres colored by radius (uniform distribution with
radius 1.5 mm ± 0.375 mm.

Three Point Bending test load vs deflection curves follow
experimental observations with the peak load occurring be-
tween 0.15-0.2 mm deflection (Zietlow and Labuz, 1998).
Fig. 6a shows that a Weibull shape parameter of 2 results in
lower specimen stiffness, while higher Weibull shape parame-
ters all yield similar stiffnesses. Both low and high Weibull
shape parameters yield similar tensile strengths (7-8 MPa).
These load vs deflection curves exhibit less pre-failure plas-
ticity and no “snap-back” behavior in comparison to experi-
mental observations (Fig. 6a). These disparities are a result
of experimental machine stiffness leading to a “masked” re-
sponse (Fig. 6b (Labuz and Biolzi, 2007)). Numerically, the
“loading machine” maintains infinite stiffness, and therefore
yields a truer response as shown in Fig. 6b. Additional load
vs deflection disparities can be attributed to rock specimen
differences. Zietlow and Labuz (1998) tested quartzite, sand-
stone, and granite specimens. This study isolated the effect of
the Weibull shape parameter, and maintained the same macro
parameters of a generic rock.

The AE model described in Sec. 2.3 is validated by magni-
tude size and distribution. Fig. 8 shows an example of the AE
magnitude distribution for a Weibull shape parameter of 4. As
shown, the mean event magnitude is -12 and the maximum
magnitude is -6.8, which correspond closely to experimen-
tally observed AE magnitudes (Li and Einstein, 2017). The
b-value corresponding to the majority of events is 0.84, which
is close to 1 as observed by Rao and Lakshmi (2005) and
Scholz (1968).

Simulated AE follow the spatial and load-based experi-
mental observations presented by Zietlow and Labuz (1998).
Fig. 7 shows how peak load (90-100% max load) AE activity
is split with 30-40% occurring between 90-95% max load
while the remaining 60-70% occurs between 95-100% max
load. Fig. 7 also shows how the AE count decreases with

increasing Weibull shape parameter (decreasing heterogene-
ity), showing how fewer bonds fail as bond strength variation
decreases. Numerically simulated spatial AE distributions
also match experimentally observed AE spatial distributions;
simulated AE events are distributed randomly during 90-95%
max load, followed by a concentration of activity around the
rupture during 95-100% max load (Fig. 9). Zietlow and Labuz
(1998) observed the same random activity during 90-95%
max load, followed by the same nucleation of an apparent
IPZ during 95-100% max load (Sub Figs. 9). Numerical AE
cloud size characteristics also match experimental observa-
tions. A Weibull shape parameter of 2 yields an IPZ width of
30-40 mm, while a Weibull shape parameter of ∞ (traditional
model) yields an IPZ width of ≤ 5 mm. Pre-rupture AE cloud
narrows as well, with nearly 0 pre-rupture events occurring
in the traditional DEM model. In comparison to laboratory
results, Zietlow and Labuz (1998) reported that IPZ widths
range from 5 to 30 mm depending on rock type and specimen
dimensions (Sub Figs. 9). Experimental IPZ AE activity is
confined within the AE sensor array at the base of the rupture
(Sub Figs. 9) and any AE activity beyond the array cannot be
resolved to less than 2 cm (or not resolved at all (Zietlow and
Labuz, 1998)). Despite this experimental shortcoming, both
experimental and numerical ruptures track through the center
of the IPZ AE cloud (Sub Figures 9 and Fig. 10b). Any dispari-
ties between numerical and experimental AE counts/locations
are likely caused by the laboratory piezometric transducer
threshold limitations, triangulation uncertainties, and unique
rock specimen macro behaviors. In particular, a lack of avail-
able data prevented careful calibration of the numerical rock
specimen to various tensile/compressive tests of each rock
specimen presented in Zietlow and Labuz (1998). Many of
the behaviorally descriptive DEM microparameters, such as
interaction range, bond strengths, and stiffnesses, will impact
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a)

b)

Figure 6. a) Load as a function of deflection for numerical
three point bending test for various Weibull shape parameters.
Experimental three point bending test data collected by
Zietlow and Labuz (1998). b) Masked and true failure curves
for infinite and finite laboratory loading machine stiffnesses
(Labuz and Biolzi, 2007)

the spatial and load-based AE distribution. It is important to
note that the results presented here demonstrate the influence
of the Weibull shape parameter on the spatial and load-based
distributions of simulated AE activity in a DEM.

The simulated AE magnitudes enable further investigation
of larger rupture AE events and smaller damage AE events
(Fig. 10a). For a Weibull shape parameter of 4, the largest
event (M-6.14) is located at the center of the rupture. AE
magnitude decreases as the AE event location moves away
from the rupture and into the damaged region of the spec-
imen (Fig. 10b). The rupture events are distinguished by
their number of constituent clustered interactions and mag-
nitude. Fig. 11a-13a show how the largest AE events com-
prised of more than 10 bonds are focused along a well defined
rupture plane, despite an increase of heterogeneity and IPZ
width. However, an increase of heterogeneity does corre-
spond to a more distributed release of energy along the rup-
ture plane. Nineteen events comprised of ≥10 interactions

Figure 7. Load and AE count as a function of time for
numerical three point bending tests.
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Figure 8. Numerical model AE magnitude distribution
(Weibull, shape param.=4)

occurred along the rupture plane for the most heterogeneous
specimen (Fig. 13). The largest event registered at M-7.87
and was comprised of 28 interactions. At the other end of
the spectrum, the least heterogeneous specimen exhibited the
sharper release of energy through fewer events (Fig. 11). Five
events comprised of ≥10 interactions occurred along the rup-
ture plane for the least heterogeneous specimen. The largest
event registered at M-6.49 and was comprised of ca. 400
interactions. Between the two heterogeneity extremes, a nu-
merical specimen exhibiting the same IPZ width as a Sioux
Quartzite exhibited greater rock engagement than the hetero-
geneous specimen, but also the pronounced sharp release as
the homogenous specimen. Twelve events comprised of ≥10
interactions occurred along the rupture plane (Fig. 12), with
the largest event registering at M-6.14 comprised of ca. 300 in-
teractions. For all specimens, the logarithm of clustered inter-
actions beyond the fracture threshold (≥10) is linearly related
to their event magnitudes (Fig. 11-13). Below the fracture
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a)

b)

c)

d)

Figure 9. AE distribution for numerical three point bending test (Weibull, shape parameter = a) 2, b) 4, c) 6 d) ∞). Blue
triangles represent AE activity between 90-95% max load. Black circles represent AE activity between 95-100% max load.
Comparable experimental results shown as sub-figures (Zietlow and Labuz, 1998). Green squares within sub-figures represent
the transducer array used by Zietlow and Labuz (1998).
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threshold, the activity follows no distinct pattern and extends
beyond the rupture and into the IPZ, and then extends beyond
the IPZ and into the pre-failure activity. Thus, for these spec-
imens, the rupture AE activity is easily distinguished from
damaged rock AE activity by specifying a threshold of ≥10
for the number of constituent interactions. Results indicate
that large AE events located along the rupture release more
energy from larger rock volumes. This intuitive observation
provides insight into the numerical specimen behavior. As
Sec. 2.3 describes, the event magnitude depends on the change
of strain energy in bonds surrounding the event. Further, the
method clusters interactions (due to spatial and temporal prox-
imities), by increasing the reference strain energy. In other
words, new bonds actually decrease the change of strain en-
ergy value and therefore the AE magnitude. It follows that the
event magnitude can only increase if a truly large material
strain energy change occurs over a several grain spatial scale
and a P-Wave velocity time scale. The break down of true
heterogenous rock samples may follow a similar spatial/tem-
poral defect coalescence during the generation of large AE
rupture events. Meanwhile, small events located beyond the
IPZ may be discounted as non-rupture events, instead they are
indicative of a damaged volume within the material. These
findings enable the distinction between large rupture events at
the center of the IPZ and non-rupture AE activity occurring
in the damaged volume surrounding the rupture.

4 Conclusion
The methodology presented in this paper aims to improve rock
fracture modeling and relieve the computational challenge
of modeling rock heterogeneities by augmenting traditional
DEM with a physically constructed grain edge-interaction-
length distribtuion (EILD). The method simulates naturally
occurring heterogeneities, such as microcracks and misshapen
grains, by stochastically strengthening and weakening DEM
bonds according to the EILD. The method is validated by
comparing pre- and post-failure AE locations for numerical
and experimental three point bending tests. Similar to experi-
mental observations, a clear IPZ develops within the EILD-
aumgented model. As the Weibull shape parameter decreases,
the IPZ width increases. Thus, the variation of bond strengths
artificially imposes locally “tough” regions and stochastically
distributed “microdefects” that arrest and redirect microcracks,
respectively. The microcracks occur within some pre-rupture
volume (sized depending on EILD variation) and ultimately
coalesce to generate AE activity along the rupture. In com-
parison to the traditional DEM model, the EILD-augmented
model is capable of using a physically constructed EILD to
simulate various amounts of rock heterogeneity, while tradi-
tional DEM fails to capture the experimentally observed rock
engagement prior to and following failure.

The analysis presented in this paper aims to provide deeper
insight into the role of rock heterogeneities on the rupture pro-
cess. Results show that larger AE events are located directly
along the rupture and their magnitudes are linearly related to

their number of constituent interactions. Meanwhile, smaller
AE events correspond to failure of weak heterogeneities be-
yond the rupture. These observations lead to the development
of a rupture event threshold to distinguish between larger
rupture AE events and smaller damage AE events. Such a dis-
tinction enables the direct observation of the rupture via AE
activity, even within the wider IPZ zone. Further analysis may
be performed to better understand the relationship between
grain scale heterogeneties and micromechanical microccrack
coalescence for various rock types at different stress/strain
states. This analysis may also be extended for comparison
with existing continuum damage models.

In summary, this paper outlines the addition of a physi-
cally grounded source of rock heterogeneity into DEM. The
value of the so-called “EILD” is demonstrated by comparing
the numerically and experimentally collected pre- and post-
failure AE activity during a three point bending test. After the
model is validated, it is used to characterize and distinguish
rupture AE activity from damage AE activity within the IPZ.
Other uses for the EILD-augmented model include the vali-
dation/improvement of existing continuum damage models
and understanding the relationship between grain scale hetero-
geneities and microcrack coalescence at various stress/strain
states.
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Appendices
A Newton Raphson maximum-likelihood

parameter estimation for EILD:
The Weibull distribution is an exponential probability density
function (PDF) described by a shape parameter (γ) and scale
parameter (θ ):

φ = f (xi|θ ,γ) =
(

γ

θ

)( x
θ

)γ−1
exp(−(x/θ))γ (19)
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We use the log-likelihood of the PDF for a maximum likeli-
hood parameter estimation:

L(θ ,γ) =
n

∑
i=1

ln f (xi|θ ,γ) (20)

all summations from here on are w.r.t xi from i = 1 to n

lnL = n lnγ−n lnθ −∑

( x
θ

)γ

+(γ−1)∑ lnx (21)

d lnL
dγ

=
n
γ
−n lnθ −∑

( x
θ

)γ

ln
x
θ
+∑ lnx = 0 (22)

d lnL
dθ

=−nγ

θ
+∑

γ

(
x
θ

)γ

θ
= 0 (23)

now we solve for θ

θ =
(

∑xγ

n

)γ

(24)

and plug into d lnL
dγ

f (γ) =
∑xγ lnx

∑xγ
− ∑ lnx

n
− 1

γ
(25)

and the derivative for Newton-Raphson:

d f
dγ

=
∑xγ ln2 x∑xγ − (∑xγ lnx)2

∑(xγ)2 +
1
γ2 (26)

where γ is solved for iteratively with Newton-Raphson:

γ = γo +
f (γ)
d f
dγ

(27)

once γ is obtained, it is used to obtain θ
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