
WP1-D4

Revision of the combined metamodel

Project title: Marrying Ontology and Software Technology
Project acronym: MOST
Project number: ICT-2008-216691
Project instrument: EU FP7 STREP
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: ICT216691/UoKL/WP1-D4/D/PU/a1
Responsible editors: Tobias Walter, Fernando Silva Parreiras, Gerd

Gröner
Reviewers: Mirko Seifert, Yuting Zhao
Contributing participants: UoKL
Contributing workpackages: WP1
Contractual date of deliverable: 31 July 2010
Actual submission date: 17 July 2010

Abstract
To enable ontologies to leverage model-driven software development and other software pro-
cesses, a conceptual integration of the ontology and the model-driven software development
paradigm must take place. To achieve such an integration, the deliverable fulfills the require-
ment of an integrated metalanguage on level M3, as well as consistently defined, integrating
metamodels on level M2 to connect ontologies to the model-driven software development model
chain. Based on experiences collected with the initial prototype the joint metamodel, its query-
ing and its transformation, we revise the patterns identified in previous deliverables. In contrast
to our first deliverable D1.1 we mainly concentrate on the user scenarios and the languages which
are used in the case studies.

Keyword List
software modelling, ontologies, integration, metamodel

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Seventh Framework Programme.

c© MOST 2010.

ii

Revision of the combined metamodel

Tobias Walter1, Fernando Silva Parreiras1, Gerd Gröner1

1 Institute for Web Science and Technology
University of Koblenz-Landau

Email: {walter, parreiras, groener }@uni-koblenz.de,

17 July 2010

Abstract
To enable ontologies to leverage model-driven software development and other software pro-
cesses, a conceptual integration of the ontology and the model-driven software development
paradigm must take place. To achieve such an integration, the deliverable fulfills the require-
ment of an integrated metalanguage on level M3, as well as consistently defined, integrating
metamodels on level M2 to connect ontologies to the model-driven software development model
chain. Based on experiences collected with the initial prototype the joint metamodel, its query-
ing and its transformation, we revise the patterns identified in previous deliverables. In contrast
to our first deliverable D1.1 we mainly concentrate on the user scenarios and the languages which
are used in the case studies.

Keyword List
software modelling, ontologies, integration, metamodel

iv

Contents

1 Introduction 6
1.1 Relation to previous deliverables . 6

1.1.1 D1.1 - Report on the combined metamodel 6
1.1.2 D1.2 - Report on querying the combined metamodel 6
1.1.3 D1.3 - D1.3 Report on transformation patterns 7

2 Modeling and Metamodeling in MOST 7
2.1 Use Cases in MOST . 7

2.1.1 Workpackage 5 Use Cases . 7
2.1.2 Workpackage 6 Use Cases . 7

2.2 Modelling in MOST . 8

3 Combining Metamodels and Ontology Languages 9
3.1 M3 Integration Bridge . 11

3.1.1 M3 Integration Bridge Physical Device Modelling 11
3.2 M3 Transformation Bridge . 11

3.2.1 M3 Transformation Bridge Application 13

4 Combining Models and Ontology Languages 14
4.1 M2 Integration Bridge . 14

4.1.1 M2 Integration Bridge Application . 15
4.2 M2 Transformation Bridge . 17

4.2.1 M2 Transformation Bridge Application 17

5 Achievements: The TwoUse Toolkit 19

6 Conclusion 20

v

vi

Change Log

Version Date Author(s) Changes
1.0 31.03.10 Tobias Walter Document created
1.1 31.05.10 Tobias Walter Integration Bridges created
1.2 31.07.10 Tobias Walter Transformation Bridges added
1.3 30.08.10 Fernando Parreiras TwoUse Toolkit described
1.4 15.08.10 Tobias Walter Internal review comments instructed

List of Figures

1 Example physical device model . 8
2 A metamodel hierarchy . 10
3 Language bridge . 10
4 PDDSL metamodel with integrated ontologies at M2 layer 12
5 Aligning UML diagrams and Java code with OWL 13
6 Model bridge . 15
7 Model bridge . 16
8 The Selector Pattern . 17

2

List of Tables

1 Ecore and OWL: comparable constructs . 12
2 Transformation to OWL. 18

3

Terms and Definitions

Abstract Syntax. The abstract syntax delineates the body of concepts and how they may be
combined to create models. It comprises definitions of the concepts, the relationships between
concepts and well-formedness rules.

Concrete Syntax. The concrete syntax provides the notation to present the constructs de-
fined in the abstract syntax. It can be categorised in textual syntax and visual syntax.

Class-based modelling. Class-based modelling is an approach consisting basically of the es-
sential constructs used to model a UML class diagram that are common to other metamodelling
approaches like MOF and Ecore. Examples of these constructs are Class, Property, Operation,
Classifier, Attribute.

UML-based Models. UML-based models are models described by metamodels using differ-
ent architectures derived or based on UML. Examples of UML-based models are MOF models,
Ecore models, SysML models or BPMN models.

Metamodel. Metamodel is a model defined on the M2 level.

Metaclass. Metaclass is the class construct on the M2 level according to the the OMG’s Four
layered metamodel architecture. In fact, when describing metamodels, metaclasess are simply
referred to as classes.

Model Transformation. Model transformation is a function that receives a source model,
a source metamodel, a target metamodel and a transformation script as input and produces a
target model conforming to a target metamodel.

Metamodelling Architecture. Metamodelling Architecture comprises the set of metamod-
els and packages declared on M2 level, one or more concrete syntaxes to design models con-
forming with the set of metamodels and mapping rules to accomplish the translation from the
concrete syntax to the abstract syntax (metamodels).

UML-based Metamodelling. UML-based metamodelling consists of different metamodels
that use constructs, such as class, property and operation as essential constructs. We use the
term UML-based metamodelling to collectively refer to the metamodels UML, MOF and Ecore.

OMG’s Four layered metamodel architecture. It is an architecture defined by OMG
with four different levels: the metametamodel level (M3), the metamodel level (M2), the model
level (M1) and the objects level (M0) (or real world).

Ontology. In this document, the terms ontology and OWL ontology are used interchangeably.
For using UML profiles we focus on OWL as language for ontologies.

4

List of Abbreviations

AS Abstract Syntax
KB Knowledge Base
CS Concrete Syntax
CbML Class-based modelling language
CWA Closed World Assumption
DFA Deterministic Finite Automaton
DL Description Logics
DSL Domain Specific Language
M0 Metamodel Level 0
M1 Metamodel Level 1
M2 Metamodel Level 2
M3 Metamodel Level 3
MBOTL Model-based Ontology Translation Language
MDA Model Driven Architecture
MM Metamodel
MOF Meta-Object Facility 2.0
MOST Marrying Ontologies and Software Technologies
MTL Model Transformation Language
NA Not Available
OCL UML 2.0 Object Constraint Language
ODM Ontology Definition Metamodel
OMG Object Management Group
OWA Open World Assumption
OWL Web Ontology Language
OWL 2 Web Ontology Language 2
OWL DL The Description Logics Dialect of OWL
OWL Full The Most Expressive Dialect of OWL
QVT Query / View / Transformation
RDF Resource Description Framework
RDFS RDF Schema
UML Unified Modeling Language 2.0
WFR Well Formedness Rules

5

1 Introduction

Today Model Driven Development (MDD) plays a key role in describing and building soft-
ware systems. A variety of different software modeling languages may be used to develop
one large software system. Each language focuses on different views and problems of the sys-
tem [Mellor et al., 2003]. Model Driven Software Engineering (MDSE) is related to the design
and specification of modeling languages and it is based on the four-layer modeling architec-
ture [Atkinson and Kühne, 2003]. In such a modeling architecture the M0-layer represents the
real world objects. Models are defined at the M1-layer, a simplification and abstraction of the
M0-layer. Models at the M1-layer are defined using concepts which are described by metamod-
els at the M2-layer. Each metamodel at the M2-layer determines how expressive its models can
be. Analogously metamodels are defined by using concepts described as metametamodels at
the M3-layer.

Although the four-layer modeling architecture provides the basis for formally defining soft-
ware modeling languages we have analyzed some open challenges. Semantics of modeling lan-
guages often are not defined explicitly but hidden in modeling tools. To fix a specific formal
semantics for metamodels, it should be defined precisely in the metamodel specification. The
syntactic correctness of models is often analyzed implicitly in procedural checks of the modeling
tools. To make well-formedness constraints more explicit, they should be defined precisely in
the metamodel specification.

OWL2, the web ontology language, is a W3C recommendation with a very comprehensive
set of constructs for concept definitions [Motik et al., 2009] and constitutes formal models of
domains. Since ontology languages are described by metamodels and can be developed in a
model-driven manner, they provide the capability to combine them with software modeling
languages.

The objective of this deliverable is to revise the initial metamodel based on experiences
gained with the first demonstrator. We show how ontologies can support the definition of
software modeling language semantics and provide the definition of syntactic constraints. Since
OWL2 has not been designed to act as a metamodel for defining modeling languages we propose
to build such languages in an integrated manner by bridging pure language metamodels and an
OWL metamodel in order to benefit from both.

1.1 Relation to previous deliverables

1.1.1 D1.1 - Report on the combined metamodel

Deliverable 1.1 [Parreiras and Walter, 2008] presents a framework involving the integration of
existing metamodels and profiles for UML and OWL modeling, including relevant (sub)standards
such as OCL and considering newer developments such as SWRL, a weaving metamodel and
an UML profile for developing integrated models. This deliverable reviews the concepts and
the framework defined in D1.1 in different metamodeling layers, namely M2 and M3.

1.1.2 D1.2 - Report on querying the combined metamodel

Deliverable 1.2 [Zhao et al., 2009] describes a querying solution to support developers in query-
ing and transforming integrated models.

6

1.1.3 D1.3 - D1.3 Report on transformation patterns

Deliverable 1.3 [Parreiras et al., 2009] describes frequently used patterns for transforming in-
stantiations of metamodeling technical spaces into intermediate models, code and reasoning
access. The main objective is to explore the mediation patterns that are used in order to trans-
form, combine and refine models. This deliverable refines the transformation patterns described
in D1.3. The transformation approaches and pattern identified in D1.3 are reused by the M3
transformation bridge (cf. Section 3.2) and the M2 transformation bridge (cf. Section 4.2).

2 Modeling and Metamodeling in MOST

2.1 Use Cases in MOST

In the following we want to refer to the main use cases in MOST which come from the industrial
partners, namely Comarch for Workpackage 5 and SAP for Workpackage 6. Based on the use
cases we discuss in Section 3 and 4 the different metamodelling and modelling approaches.

2.1.1 Workpackage 5 Use Cases

In [Wende, 2009] concrete examples and problems in MDE with respect to the case study of
Comarch are presented.

Here the need for consistent management of physical network devices is described, where
devices can have thousands of different configurations with many different slots and plugged
in cards. Figure 1 depicts a model physical device model. The model specifies that the device
has three slots and that the first slot is required (marked red in the diagram). The possible or
required cards are indicated in blue rectangles next to the respective slots. Having a model of
a physical device the following key questions arise:

1. Network planning: what components can I use with a given configuration of a device to
build my service?

2. Consistency checks: is my configuration valid? Is my knowledge base about possible
configurations consistent?

3. Data quality: what is the exact type of device, given its configuration?

4. Explanations and guidance: Why is the configuration invalid? How can I fix it?

To answer those key questions a first step is to provide models and metamodels with con-
straints and underlying formal semantics. In Section 3.1 we present approaches for defining
constraints and formal semantics by ontology languages.

2.1.2 Workpackage 6 Use Cases

In [Wende, 2009] concrete examples and problems in MDE with respect to the case study of
SAP are presented.

SAP is dealing with business process modelling and management. Here, a common task is
to refine the process models to represent the design of processes on different levels of abstrac-
tion. An abstract process describes the core functionality and behaviour of an application. A

7

Figure 1: Example physical device model

refinement is an extension of an activity into a more specific process description. In such a pro-
cedure, the refined process should refer to the intended behaviour of the abstract process and
satisfy behavioural constraints of existing software components. However, due to a number of
possibly complex refinement steps, such a relation between the original generic process and the
refined specific process is not always obvious. Therefore, to check and ensure the consistency
of a refinement becomes a crucial issue in process management.

2.2 Modelling in MOST

A relevant initiative from the software engineering community called Model Driven Engineering
(MDE) is being developed in parallel with the Semantic Web [Mellor et al., 2003]. The MDE
approach suggests first to develop models describing the system in an abstract way, which
later is transformed into real, executable systems (e.g. source code) or ontologies used by
reasoners [Parreiras et al., 2009]. The MDE process is embedded in the process of ontology-
driven software engineering [Wende, 2009].

To advance understanding and usability of models, models must have a meaning and must
conform to a given structure. In MDE models are described by software languages, where
software languages themselves are described by so called metamodeling languages. A language
consists of an abstract syntax, at least one concrete syntax and semantics.

The abstract syntax of a software language is described by a metamodel and is designed by a
language designer. Semantics of the language may be defined by a natural language specification
or may be captured (partially) by logics. A concrete syntax, which could be of textual or visual
kind, is used by a language user to create software models.

Since metamodels are also models, metamodeling languages are needed, to describe software
languages. Here the abstract syntax is described by a metametamodel. In MOST the following
metametamodels are considered.

grUML In the scope of graph-based modeling to create software models [Ebert, 2008] a meta-
modeling language (e.g. grUML [Bildhauer et al., 2008]) must allow for defining graph

8

schemas, which provide types for vertices and edges and structures them in hierarchies.
Here each graph is an instance of its corresponding schema.

MOF The Meta-Object Facility (MOF) is OMG’s standard for defining metamodels. It pro-
vides a language for defining the abstract syntax of modeling languages. MOF is in general
a minimal set of concepts which can be used for defining other modeling languages. The
version 2.0 of MOF provides two metametamodels, namely Essential MOF (EMOF) and
Complete MOF (CMOF). EMOF prefers simplicity of implementation before expressive-
ness. CMOF instead is more expressive, but more complicated to implement [OMG, 2006].
EMOF mainly consists of the Basic package of the Unified Modeling Language (UML)
which is part of the UML infrastructure [OMG, 2007a]. It allows for defining classes to-
gether with properties, which are used to describe data attributes of classes and which
allow for referencing to other classes.

Ecore Another metametamodel is provided by the Ecore metamodeling language, which is
used in the Eclipse Modeling Framework [Budinsky et al., 2003]. It is similar to EMOF
and will be considered in the rest of this paper. Ecore provides four basic constructs: (1)
EClass - used for representing a modeled class. It has a name, zero or more attributes,
and zero or more references. (2) EAttribute - used for representing a modeled attribute.
Attributes have a name and a type. (3) EReference - used for representing an association
between classes. (4) EDataType - used for representing attribute types.

ADOxx The ontology-aware model management in MOST is based on the ADOxx Metamod-
elling Environment. Like other modelling frameworks and environments it is also based
on a metametamodel, called ADOxx Meta2-Model, which is used for the definition of the
visual modelling languages within the framework. In general, it contains constructs like
classes and associations, which are also available in other metametamodels. A detailed
definition of the ADOxx Meta2-Model can be found in [Bartho and Zivkovic, 2009].

Models are instances of metamodels which are instances of metametamodels. They are ar-
ranged in a hierarchy of 4 layers. Figure 2 depicts such a hierarchy. Here the Ecore metameta-
model is chosen to define a metamodel for a process language or a metamodel for the Physical
Device DSL (PDDSL), which is built by the language designer. He uses the metametamodel by
creating instances of the concepts it provides. The language user takes into account the meta-
model and creates instances which built a concrete process model or physical device model,
respectively. Both models could represent systems running in the real world.

3 Combining Metamodels and Ontology Languages

Figure 3 depicts the general architecture of a bridge combining language software language
metamodels and ontology technologies. The bridge itself is defined at the M3 layer, where
a metametamodel like Ecore is considered and bridged with the OWL metamodel. Here we
differentiate between two kinds of bridges: M3 Integration Bridge and M3 Transformation
Bridge. In general, integration bridges are used to extend the expressiveness of a language,
while the transformation bridge produces a new model based on a stable source language. In
contrast to Section 4 where we present M2 bridges, M3 bridges are used to define syntactic
expressions.

9

Ecore Metametamodel
M3

M2

M1

Process
Metamodel

Process
Model

Process
Model

Language
Designer

Language
User

M0 Real World Systems

representationOf representationOf

PDDSL
Metamodel

PDDSL
Model

instanceOf instanceOf

instanceOf

Figure 2: A metamodel hierarchy

Ecore Metametamodel

M3

M2

M1

Process Metamodel

Process
Model

Process
Model

instanceOf

instanceOf instanceOf

M0Real World Systems

representationOf representationOf

OWL
Metamodel

OWL
Ontology

Bridge Definition

Bridge Use

Language Bridge

instanceOf

DL
Knowledge Base

ABox

TBox

Reasoning
Service

transform

transform

Figure 3: Language bridge

10

3.1 M3 Integration Bridge

The design of an M3 integration bridge consists mainly of identifying concepts in the Ecore
metametamodel and the OWL metamodel, which are combined.

Here existing metamodel integration approaches (e.g. presented in [Walter and Ebert, 2009]
and [Parreiras and Walter, 2008]) to combine the different metamodels are used. Result is a new
metamodeling language, which allows for designing language metamodels at the M2 layer with
integrated constraints. Such design and the benefits of integrated metamodels are exemplified
in Section 3.1.1.

An integrated metamodeling language provides all classes of the Ecore metametamodel and
OWL metamodel. It merges for example, OWL Class with Ecore EClass, OWL ObjectProperty
with Ecore References or OWL DataProperty with Ecore Attribute. Thus, a strong connection
between the two languages is built. Since a language designer creates a class, he is in the scope
of both, OWL class and ECore class. Hence a language designer can use the designed class
within OWL class axioms and simultaneously use features of the Ecore metamodeling language,
like the definition of simple references between two classes.

The integration bridge itself is used at the M2 layer by a language designer. He is now able
to define language metamodels with integrated OWL annotations to restrict the use of concepts
he modeled and to extend the expressiveness of the language.

To provide modeling services to language user and language designer, the integrated meta-
model is transformed into a Description Logics TBox. The models created by the language
users are transformed into a corresponding Description Logics ABox. Based on the knowledge
base consisting of TBox and ABox we can provide standard reasoning services and application
specific modeling services to both language user and designer.

3.1.1 M3 Integration Bridge Physical Device Modelling

Having an integrated metametamodel available a language designer now can create language
metamodels with integrated OWL constraints and axioms like the one depicted in Figure 4.

Overall the language designer has an ontology-based metamodeling language which pro-
vides a seamless and integrated design of formal syntactic constraints within the metamodel
itself using some natural to use and simple to learn ontology languages, which can be used
in combination with other, more familiar concrete syntaxes (e.g. with textual Ecore modeling
syntax).

The metamodel together with instances (concrete PDDSL models) are transformed to an
ontology which acts as input for reasoners. Here different services can provided to answer the
key questions mentioned in Section 2.1.1. A full list of the services is given in [Wende, 2009].

3.2 M3 Transformation Bridge

The M3 Transformation Bridge allows language designers and language users to achieve repre-
sentations of software languages (Metamodel/Model) in OWL. It provides the transformation
of software language constructs like classes and properties into corresponding OWL constructs.

As one might notice, Ecore and OWL have a lot of similar constructs like classes, attributes
and references. To extend the expressiveness of Ecore with OWL constructs, we need to establish
mappings between the Ecore constructs onto OWL constructs. Table 3.2 presents a complete
list of similar constructs.

11

class Cisco7603 equivalentWith r e s t r i c t i onOn hasConf igurat ion
with min 1 Conf igurat ion7603 {
}
class Conf igurat ion extends IntersectionOf (r e s t r i c t i onOn hasS lo t with min 1
Slot , r e s t r i c t i onOn hasS lo t with some r e s t r i c t i onOn hasCard with some
SuperVisor720) {

reference hasS lo t : S l o t ;
}
class Conf igurat ion7603 extends Conf igurat ion , equivalentWith
IntersectionOf (r e s t r i c t i onOn hasS lo t with exactly 3 Slot , r e s t r i c t i onOn hasS lo t
with some r e s t r i c t i onOn hasCard with some UnionOf(HotSwappableOSM ,
SPAinte r faceProces sor s) {
}
class S lo t {

reference hasCard [1 −∗] : Card ;
}
class Card {
}
class SuperVisor720 extends Card {
}
class SPAinte r faceProces sor s extends Card {
}
class HotSwappableOSM extends Card {
}

Figure 4: PDDSL metamodel with integrated ontologies at M2 layer

Table 1: Ecore and OWL: comparable constructs
Ecore OWL

package ontology
class class

instance and literals individual and literals
reference, attribute object property, data property

data types data types
enumeration enumeration
multiplicity cardinality

12

Model

Metamodel

O
W

L
iz

in
g

U
M

L
J
a

v
a

Grammar

Metamodel to TBox

Grammar to TBox

Code

Model to ABox

Code to ABox

Linking

Alignment/

Enriching

Ontology 1

Ontology n

instanceOf

instanceOf

Figure 5: Aligning UML diagrams and Java code with OWL

Based on this mapping, we develop a generic transformation script to transform any Ecore
Metamodel/Model into OWL TBox/ABox – OWLizer.

A model transformation takes for example the UML metamodel [OMG, 2007b] as input
and generates an OWL ontology where the concepts, enumerations, properties and data types
(TBox) correspond to classes, enumerations, attributes/references and data types in the UML
metamodel. Another transformation takes the models (e.g. class diagrams, etc.) conforming
to the UML metamodel created by the UML user and generates individuals in the same OWL
ontology.

As one may notice, this is a generic approach to be used with any Ecore-based language. For
example, one might want to transform the UML Metamodel/Models as well as all the Java gram-
mar/code into OWL (classes/individuals). This approach can be seen as a linked data driven
software development environment [Iqbal et al., 2009] and it is illustrated at Section 3.2.1.

3.2.1 M3 Transformation Bridge Application

Software development consists of multiple phases, from inception to production. During each
software development phase, developers and other actors generate many artifacts, e.g. docu-
ments, models, diagrams, code, tests and bug reports. Although some of these artifacts are
integrated, they are usually handled as islands inside the software development process.

Many of these artifacts (graphical or textual) are written using a structured language,
which has a defined grammar. In a model-driven environment, concepts of software languages
are represented by metamodels, whereas the artifacts written in those software languages are
represented by models, which are described by the language metamodel. Thus, by transforming
software metamodels and models into OWL and by aligning the OWL ontologies corresponding
to software languages, we are able to link multiple data sources of a software development
process, creating a linked-data repository for software development.

Let us consider an example of integrating two data sources: UML diagrams and Java Code.

13

Regardless of generating Java code from UML diagrams, developers would like to have a consis-
tent view of corresponding classes and methods in UML and Java, i.e., developers might want
to consult UML diagrams looking for a corresponding Java class. In this scenario, OWL and
ontology technologies play an important role.

Figure 5 depicts the usage of M3 transformations together with ontology technologies. UML
metamodel and model as well as Java grammar (metamodel) and java code (model) are trans-
formed into OWL ontologies. Ontology alignment techniques [Euzenat and Shvaiko, 2007] can
be used to identify some concepts in common between the two ontologies (UML and Java), e.g.,
package, class, method. Moreover, individuals with the same name in these two ontologies are
likely the same.

Once the two ontologies are aligned, queries against the Java ontology also retrieve elements
defined in UML diagrams. Now it is possible to retrieve sequence diagrams including a given
Java class, since the two artifacts (UML diagrams and Java code) are now linked. This is
only one example of the great potential provided by linking software engineering artifacts using
OWL technologies.

4 Combining Models and Ontology Languages

Model bridges connect software models and ontologies on the modeling layer M1. They are
defined in the metamodeling layer M2 between different metamodels. Figure 6 visualises a
model bridge. The bridge is defined between a process metamodel on the software modeling
side and an OWL metamodel in the OWL modeling hierarchy. The process metamodel is an
instance of an Ecore (EMOF) metametamodel. In contrast to Section 4 where we presented
M3 bridges which are used to define syntactic expressions, here in this section M2 bridges are
used to reason (partially) on the formal semantics a modeling language has.

A model bridge is defined as follows: (1) Constructs in the software modeling and in the
ontology space are identified. These constructs or language constructs used to define the cor-
responding models in the modeling layer M1. (2) Based on the identification of the constructs,
the relationship between the constructs is analyzed and specified, i.e. the relationship of an
Activity in a process metamodel like the BPMN metamodel to an OWL class. We distinguish
between a transformation and integration bridge.

4.1 M2 Integration Bridge

Integration bridges merge information of the models from the software modeling and from the
ontology space. This allows the building of integrated models (on modeling layer M1) using
constructs of both modeling languages in a combined way, e.g. to integrate UML class diagrams
and OWL.

As mentioned in section 3.2, UML class-based modeling and OWL comprise some con-
stituents that are similar in many respects like classes, associations, properties, packages, types,
generalization and instances [OMG, 2008]. Since both approaches provide complementary bene-
fits, contemporary software development should make use of both. The benefits of an integration
are twofold. Firstly, it provides software developers with more modeling power. Secondly, it
enables semantic software developers to use object-oriented concepts like inheritance, operation
and polymorphism together with ontologies in a platform independent way.

Such an integration is not only intriguing because of the heterogeneity of the two modeling
approaches, but it is now a strict requirement to allow for the development of software with many

14

Ecore Metametamodel

M3

M2

M1

Process Metamodel

Process
Model

Process
Model

instanceOf

instanceOf instanceOf

M0 Real World Systems

representationOf representationOf

Model Bridge

OWL
Metamodel

OWL
Ontology

instanceOf

Bridge Definition

Bridge Use

DL
Knowledge Base

TBox
Reasoning

Service

transform

Figure 6: Model bridge

thousands of ontology classes and multiple dozens of complex software modules in the realms
of medical informatics [O’Connor et al., 2007], multimedia [Staab et al., 2008] or engineering
applications [Staab et al., 2006].

TwoUse (Transforming and Weaving Ontologies and UML in Software Engineering) ad-
dresses these types of systems [Silva Parreiras and Staab, 2010]. It is an approach combining
UML class-based models with OWL ontologies to leverage the unique and potentially comple-
mentary strengths of the two. TwoUse consists of an integration of the MOF-based metamodels
for UML and OWL, the specification of dynamic behavior referring to OWL reasoning and the
definition of a joint profile for denoting hybrid models as well as other concrete syntaxes.

Figure 7 presents a model-driven view of the TwoUse approach. TwoUse uses UML profiled
class diagrams as concrete syntax for designing combined models. The UML class diagrams
profiled for TwoUse are input for model transformations that generate TwoUse models con-
forming to the TwoUse metamodel. The TwoUse metamodel provides the abstract syntax
for the TwoUse approach, since we have explored different concrete syntaxes. Further model
transformations take TwoUse models and generate the OWL ontology and Java code.

TwoUse allows developers to raise the level of abstraction of business rules previously em-
bedded in code. It enables UML modeling with semantic expressiveness of OWL DL. TwoUse
achieves improvements on the maintainability, reusability and extensibility for ontology based
system development.

4.1.1 M2 Integration Bridge Application

In general, the Strategy Pattern solves the problem of dealing with variations. However, as
already documented by [Gamma et al., 1995], the Strategy Pattern has a drawback. The clients
must be aware of variations and of the criteria to select between them at runtime. Hence, the
question arises of how the selection of specific classes could be determined using only their
descriptions rather than by weaving the descriptions into client classes.

The basic idea lies in decoupling class selection from the definition of client classes by
exploiting OWL-DL modeling and reasoning. We explore a slight modification of the Strategy
Pattern that includes OWL-DL modeling and that leads us to a minor, but powerful variation
of existing practices: the Selector Pattern.

15

UML
Profile

4 TwoUse

UML
Profile

4 TwoUse

Concrete Syntax Abstract Syntax

M2

M1 TwoUseTwoUse

InstanceOf

TwoUse
Metamodel

TwoUse
Metamodel

UML
Profile
4 OWL

UML
Profile
4 OWL

OWLOWL

OWL
Metamodel

OWL
Metamodel

UMLUML

UML
Metamodel

UML
Metamodel

Transformation

Figure 7: Model bridge

To integrate the UML class diagram with patterns and the OWL profiled class diagram ,
we rely on the TwoUse approach. The hybrid diagram is depicted in Figure 8. The Selector
Pattern is composed by a context, the specific variants of this context and their respective
descriptions, and the concept, which provides a common interface for the variations (Figure 8).
Its participants are:

• Context maintains a reference to the Concept object.

• Concept declares an abstract method behavior common to all variants.

• Variants implement the method behavior of the class Concept.

The Context has the operation select, which uses OWL-like query operations to dynam-
ically classify the object according to the logical descriptions of the variants. A Variant is
returned as result (Figure 8). Then, the Context establishes an association with the Concept,
which interfaces the variation.

The application of the Selector Pattern presents some consequences, that we discuss as
follows:

Reuse. The knowledge represented in OWL-DL can be reused independently of platform or
programming language.

Flexibility. The knowledge encoded in OWL-DL can be modeled and evolved independently
of the execution logic.

Testability. The OWL-DL part of the model can be automatically tested by logical unit tests,
independently of the UML development.

The application of TwoUse can be extended to other design patterns concerning variant
management and control of execution and method selection. Design patterns that factor out

16

: Concept::Context

1::selector(()

2::behavior(()

Context
<<owlClass>>

selector()

VariantA
<<owlClass>>

VariantB
<<owlClass>>

Concept

behavior()

<<rdfSubClassOf>><<rdfSubClassOf>>

contexttContext::selector():Concept
body:

DirectType (?self ?T)

<<owlDisjointUnionOf>>

Figure 8: The Selector Pattern

commonality of related objects, like Prototype, Factory Method and Template Method, are
good candidates.

4.2 M2 Transformation Bridge

A transformation bridge describes a (physical) transformation between models in layer M1.
The models are kept separately in both modeling spaces. The information is moved from one
model to the model in the other modeling space according to the transformation bridge. With
respect to the example depicted in Figure 6, a process model like a UML Activity Diagram
is transformed to an OWL ontology. The transformation rules or patterns are defined by the
bridge.

4.2.1 M2 Transformation Bridge Application

Process models capture the dynamic behavior of an application or system. In software model-
ing they are represented by graphical models like BPMN Diagrams or UML Activity Diagrams.
Both metamodels are instances of Ecore metametamodels. The corresponding metamodels
prove flexible means to describe process models for various applications. However, process
models are often ambiguous with inappropriate modeling constraints and even missing seman-
tics.

We identified the following shortcomings of process models in the software modeling space.
(1) A semantic representation of control flow dependencies of activities in a process, i.e. execu-
tion ordering of activities in a flow. Such constraints allow the description of order dependencies
like an activity requires a certain activity as a successor. (2) It is quite common in model-driven
engineering to specialize or refine a model into a more fine-grained representation that is closer
to the concrete implementation. In process modeling, activities could be replaced by subactiv-
ities for a more precise description of a process. Hence, modeling possibilities for subactivities
and also for control flow constraints of these subactivities are a relevant issue. (3) Quite often,

17

Construct UML Notation DL Notation
1. Start Starti
2. End Endi
3. Activity Receive Order

4. Edge TOi

5. Process P P ≡ Starti u ∃=1 TOi.
(ReceiveOrder u ∃=1 TOi.Endi)

6. Flow ReceiveOrder u ∃=1 TOi.F illOrder

7. Decision ReceiveOrder u ∃=1 TOi.
((RejectOrder t FillOrder)
u ∃=1 TOi.CloseOrder)

8. Condition ReceiveOrder u ∃=1 TOi.
((FillOrder u κorderaccepted) t
(Stalled u ¬κorderaccepted))

9. Fork and ReceiveOrder u ∃ TOi.
Join (ShipOrder u ∃=1 TOi.CloseOrder)

u ∃ TOi.(SendInvoice u
∃=1 TOi.CloseOrder) u = 2 TOi

10. Loop Loopj u ∃=1TOi.F illOrder,
Loopj ≡ ReceiveOrder u ∃=1 TOj .

(Loopj t Endj)

Table 2: Transformation to OWL.

one may formulate process properties that cover modality, i.e. to express a certain property
like the occurrence of an activity within a control flow is optional or unavoidable in all possible
process instances (traces).

In the following we give an overview of the model bridge from a UML activity diagram to
an OWL ontology with a short discussion of design decisions. In addition, we demonstrate
the usage of ontological representation of a process model in order to compensate the afore-
mentioned shortcomings in software process modeling.

Process Modeling Principles in OWL A process model describes the set of all process
runs or traces it allows. Activities are represented by OWL classes and a process is modeled as
a complex expression that captures all activities of the process. A process run is an instance
of this complex class expression in OWL. The process models are described in OWL DL, as
syntax we use the DL notation. Transformation patterns from UML activity diagrams to OWL
are given in Tab. 2.

Control flow relations between activities are represented by object properties in OWL, i.e.
by the property TOi. All TOi object properties are subproperties of the transitive property
TOT . A process is composed by activities which is described in OWL by axioms as show in
No. 5. The control flow (No. 6) is a class expression in OWL like A u ∃TOi.B that means

18

the activity A is directly followed by the activity B. We use concept union for decisions
(No. 7). The non-deterministic choice between activity B and C is given by the class expression
∃TOi.(B t C). Flow conditions (No. 8) are assigned to the control flow. A loop (No.10) is a
special kind of decision. An additional OWL class Loopj for the subprocess with the loop is
introduced to describe multiple occurrences of the activities within the loop. Parallel executions
are represented by intersections (No.9). It is an explicit statement that an activity have multiple
successors simultaneously.

Process Modeling and Retrieval in OWL The semantic representation of process models
in OWL tackles the problems and shortcoming that are mentioned at the beginning of this
section in multiple ways. For instance the validation of process properties, specializations or
refinement relations between process models, as well as the retrieval of processes benefits from
this representation. This section gives an overview of query patterns for process retrieval with
semantic queries.

The process model in OWL gives an explicit description of the execution order dependencies
of activities. Hence, this information is used for process retrieval. A query describes the
relevant ordering conditions like which activity has to follow (directly or indirectly) another
activity. For instance a process that executes the activity FillOrder before MakePayment
with an arbitrary number of activities between them, is given by the query process description
∃TOT.(FillOrder u ∃TOT.MakePayment). The transitive object property TOT is used to
indicate the indirect connection of the activities. The result are all processes that are subsumed
by this general process description.

Besides ordering constraints, this semantic query processing allows the retrieval of processes
that contain specialized or refined activities. For instance the result of the demonstrated query
also contains all processes with subactivities of FillOrder and MakePayment. The corre-
sponding class expressions in the OWL model are specializations of the class expression given
by the query expression. Finally, the usage of in the queries allows handling of modality for
activity occurrences in a process, like a query that expresses that the activity ShipOrder has
to occur or might occur.

5 Achievements: The TwoUse Toolkit

We have realized the approaches described in WP1 deliverables in the TwoUse Toolkit1 It is an
open source tool that implements current OMG and W3C standards for developing ontology-
based software models and model-based OWL ontologies. It is a model-driven tool to bridge
the gap between Semantic Web and Model Driven Software Development.

TwoUse toolkit building blocks are:

• A set of model transformations. Generic transformations like Ecore2OWL and XML2OWL
(Language Bridges) allows developers to transform any software language into OWL. Spe-
cific transformations like UML2OWL and BPMN2OWL (Model Bridges) allow developers
to OWL representations of software models.

• A set of textual and graphical editors. TwoUse relies on textual and graphical editors
for editing and parsing W3C standard languages like OWL2 and SPARQL, OMG stan-

1http://twouse.googlecode.com/.

19

http://twouse.googlecode.com/

dards like UML and OCL (Deliverable D1.1 [Parreiras and Walter, 2008]) as well as other
domain-specific languages (Deliverable D1.2 [Zhao et al., 2009]).

• A set of reasoning services like classification, realization, query answering and explanation
(Deliverable 2.5.1 [Wende, 2009]).

The TwoUse Toolkit has two user profiles: model-driven software developer and OWL
ontology engineer. TwoUse enables model-driven software developers with the following func-
tionalities:

• Describe classes in UML class diagrams using OWL class descriptions
(D1.1 [Parreiras and Walter, 2008]).

• Semantically search for classes, properties and instances in UML class diagrams
(D1.2 [Zhao et al., 2009]).

• Design business rules using the UML Profile for SWRL (D1.1 [Parreiras and Walter, 2008]).

• Extent software design patterns with OWL class descriptions
(D1.1 [Parreiras and Walter, 2008]).

• Make sense of UML class diagrams using inference explanations (D2.5.1 [Wende, 2009]).

• Link software engineering artifacts by transforming software languages into OWL (OWL-
izing) (Language Bridge).

• Write OWL queries using SPARQL or the OWL-like languages using query editors with
syntax highlighting (D1.2 [Zhao et al., 2009]).

• Validate refinements on business process models (D3.4 [Zhao et al., 2010]).

OWL ontology engineers are able to:

• Graphically model OWL ontologies and OWL safe rules using OMG UML Profile for
OWL and UML Profile for SWRL [OMG, 2008].

• Graphically model OWL ontologies and OWL Safe Rules using the OWL Graphical Edi-
tor.

• Graphically model and store ontology design patterns as templates [Silva Parreiras et al., 2010].

• Write and safe SPARQL and SPARQLAS queries using the textual editors with syntax
highlighting [Schneider, 2010].

6 Conclusion

In this deliverable, we presented the building blocks for bridging software languages and ontol-
ogy technologies in MOST. Language bridges are generic and can be used in existing software
languages as well as new software languages that explore the extended functionalities provided
by OWL. Model bridges have an ad-hoc character and are language specific.

20

While language bridges improve software development by realizing some of the major mo-
tivations of the OWL language, e.g., shared terminology, evolution, interoperability and incon-
sistency detection, model bridges allow for exploring new ways of modeling software as well as
different ways of exploiting reasoning technologies.

In particular we presented different bridges. Here, integration bridges are used to extend
the expressiveness of a language, while the transformation bridge produces a new model based
on a stable source language. M3 bridges are used to define syntactic expressions, while M2
bridges are used to reason (partially) on the formal semantics. These bridges are used in
ontology driven software development for combining modeling and metamodeling languages
with ontology technologies to reason on syntax and semantics of modeling languages.

References

[Atkinson and Kühne, 2003] Atkinson, C. and Kühne, T. (2003). Model-driven development:
a metamodeling foundation. IEEE software, 20(5):36–41.

[Bartho and Zivkovic, 2009] Bartho, A. and Zivkovic, S. (2009). Modeled software
guidance/engineering processes and systems. Deliverable ICT216691/TUD/WP2-
D2/D/PU/b1.00, Technial University Dresden, BOC. EU FP7 STREP MOST Project num-
ber ICT-2008-216691.

[Bildhauer et al., 2008] Bildhauer, D., Riediger, V., Schwarz, H., and Strauss, S. (2008).
grUML-An UMLbased Modeling Language for TGraphs. to appear in Arbeitsberichte In-
formatik, Universität Koblenz-Landau.

[Budinsky et al., 2003] Budinsky, F., Brodsky, S., and Merks, E. (2003). Eclipse modeling
framework. Pearson Education.

[Ebert, 2008] Ebert, J. (2008). Metamodels Taken Seriously: The TGraph Approach. In Kon-
togiannis, K., Tjortjis, C., and Winter, A., editors, 12th European Conference on Software
Maintenance and Reengineering, Piscataway, NJ. IEEE Computer Society.

[Euzenat and Shvaiko, 2007] Euzenat, J. and Shvaiko, P. (2007). Ontology matching. Springer-
Verlag, Heidelberg.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design
patterns: elements of reusable object-oriented software. Addison-Wesley Professional.

[Iqbal et al., 2009] Iqbal, A., Ureche, O., Hausenblas, M., and Tummarello, G. (2009). Ld2sd:
Linked data driven software development. In Proceedings of the 21st International Conference
on Software Engineering & Knowledge Engineering (SEKE’2009), Boston, Massachusetts,
USA, July 1-3, 2009, pages 240–245. Knowledge Systems Institute Graduate School.

[Mellor et al., 2003] Mellor, S., Clark, A., and Futagami, T. (2003). Model-driven development.
IEEE software, 20(5):14–18.

[Motik et al., 2009] Motik, B., Patel-Schneider, P. F., and Horrocks, I. (2009). OWL 2 Web
Ontology Language: Structural Specification and Functional-Style Syntax. http://www.w3.
org/TR/owl2-syntax/.

21

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/

[O’Connor et al., 2007] O’Connor, M. J., Shankar, R., Tu, S. W., Nyulas, C., Parrish, D.,
Musen, M. A., and Das, A. K. (2007). Using semantic web technologies for knowledge-driven
querying of biomedical data. In AIME, pages 267–276.

[OMG, 2006] OMG (2006). Meta Object Facility (MOF) Core Specification. http://www.omg.
org/docs/formal/06-01-01.pdf.

[OMG, 2007a] OMG (2007a). UML Infrastructure Specification, v2.1.2. OMG Adopted Speci-
fication.

[OMG, 2007b] OMG (2007b). Unified Modeling Language: Superstructure, version 2.1.1. Ob-
ject Modeling Group.

[OMG, 2008] OMG (2008). Ontology Definition Metamodel. Object Modeling Group.

[Parreiras and Walter, 2008] Parreiras, F. S. and Walter, T. (2008). Report on the combined
metamodel. Deliverable ICT216691/UoKL/WP1-D1.1/D/PU/a1, University of Koblenz-
Landau. MOST Project.

[Parreiras et al., 2009] Parreiras, F. S., Walter, T., and Wende, C. (2009). Report on trans-
formation patterns. Deliverable ICT216691/UoKL/WP1-D1.3/D/PU/a1, University of
Koblenz-Landau. MOST Project.

[Schneider, 2010] Schneider, M. (2010). SPARQLAS - Implementing SPARQL Queries with
OWL Syntax. In Proceedings of the Third Workshop on Transforming and Weaving Ontolo-
gies and Model Driven Engineering (TWOMDE 2010), 30 June, Malaga, Spain, number 604.
CEUR-WS.org.

[Silva Parreiras et al., 2010] Silva Parreiras, F., Groener, G., Walter, T., and Staab, S. (2010).
A Model-Driven Approach for Using Templates in OWL Ontologies. In Knowledge Manage-
ment and Engineering by the Masses, 17th International Conference, EKAW 2010, Lisbon,
Portugal, October 11 - 15, 2010. Proceedings, volume 6317 of LNAI, pages 350–359. Springer.

[Silva Parreiras and Staab, 2010] Silva Parreiras, F. and Staab, S. (2010). Using ontologies
with uml class-based modeling: The twouse approach. Data Knowl. Eng. To be published.

[Staab et al., 2006] Staab, S., Franz, T., Görlitz, O., Saathoff, C., Schenk, S., and Sizov, S.
(2006). Lifecycle knowledge management: Getting the semantics across in x-media. In
Foundations of Intelligent Systems, ISMIS 2006, Bari, Italy, September 2006, volume 4203
of LNCS, pages 1–10. Springer.

[Staab et al., 2008] Staab, S., Scherp, A., Arndt, R., Troncy, R., Gregorzek, M., Saathoff,
C., Schenk, S., and Hardman, L. (2008). Semantic multimedia. In Reasoning Web, 4th
International Summer School, Venice, Italy, volume 5224 of LNCS, pages 125–170. Springer.

[Walter and Ebert, 2009] Walter, T. and Ebert, J. (2009). Combining DSLs and Ontologies
using Metamodel Integration. In Domain-Specific Languages, volume LNCS, pages 148–169.
Springer.

[Wende, 2009] Wende, C. (2009). Ontology Services for Model-Driven Software Development.
MOST Project Deliverable. www.most-project.eu.

22

http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/docs/formal/06-01-01.pdf
www.most-project.eu

[Zhao et al., 2010] Zhao, Y., , Wende, C., Pan, J. Z., Thomas, E., Gröner, G., Jekjantuk, N.,
Ren, Y., and Walter, T. (2010). Guidance tools for language transformations. Deliverable
ICT216691/UNIABDN/WP3-D4/D/PU/b1, University of Aberdeen. MOST Project.

[Zhao et al., 2009] Zhao, Y., Pan, J. Z., Nophadol Jekjantuk, F. S. P., Gröner, G.,
and Walter, T. (2009). Report on querying the combined metamodel. Deliverable
ICT216691/UoKL/WP1-D1.2/D/PU/a1, University of Koblenz-Landau. MOST Project.

23

	Introduction
	Relation to previous deliverables
	D1.1 - Report on the combined metamodel
	D1.2 - Report on querying the combined metamodel
	D1.3 - D1.3 Report on transformation patterns

	Modeling and Metamodeling in MOST
	Use Cases in MOST
	Workpackage 5 Use Cases
	Workpackage 6 Use Cases

	Modelling in MOST

	Combining Metamodels and Ontology Languages
	M3 Integration Bridge
	M3 Integration Bridge Physical Device Modelling

	M3 Transformation Bridge
	M3 Transformation Bridge Application

	Combining Models and Ontology Languages
	M2 Integration Bridge
	M2 Integration Bridge Application

	M2 Transformation Bridge
	M2 Transformation Bridge Application

	Achievements: The TwoUse Toolkit
	Conclusion

