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1 Terms and Definitions

Abstract Syntax. The abstract syntax delineates the body of concepts and how they may be
combined to create models. It comprises definitions of the concepts, the relationships between
concepts and well-formedness rules.

Concrete Syntax. The concrete syntax provides the notation to present the constructs de-
fined in the abstract syntax. It can be categorized in textual syntax and visual syntax.

Class-based modeling. Class-based modeling is an approach consisting basically of the
essential constructs used to model a UML class diagram that are common to other metamodeling
approaches like MOF and Ecore. Examples of these constructs are Class, Property, Operation,
Classifier, Attribute.

UML-based Models. UML-based models are models described by metamodels using differ-
ent architectures derived or based on UML. Examples of UML-based models are MOF models,
Ecore models, SysML models or BPMN models.

Metamodel. Metamodel is a model defined on the M2 level.

Metaclass. Metaclass is the class construct on the M2 level according to the the OMG’s Four
layered metamodel architecture. In fact, when describing metamodels, metaclasess are simply
referred to as classes.

Model Transformation. Model transformation is a function that receives a source model,
a source metamodel, a target metamodel and a transformation script as input and produces a
target model conforming with a target metamodel.

Reference Layer. Reference Layer is a set of abstract classes that are common over different
packages. It defines the core elements of a given domain.

Implementation Layer. Implementation Layer is the set of classes that extend abstract
classes in the Reference Layer by redefining or specifying their properties and operations.

Metamodeling Architecture. Metamodeling Architecture comprises the set of metamodels
and packages declared on M2 level, one or more concrete syntaxes to design models conforming
with the set of metamodels and mapping rules to accomplish the translation from the concrete
syntax to the abstract syntax (metamodels).

UML-based Metamodeling. UML-based metamodeling consists of different metamodels
that use constructs, such as class, property and operation as essential constructs. We use the
term UML-based metamodeling to collectively refer to the metamodels UML, MOF and Ecore.

OMG’s Four layered metamodel architecture. It is an architecture defined by OMG
with four different levels: the metametamodel level (M3), the metamodel level (M2), the model
level (M1) and the objects level (M0) (or real world).
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Mapping Rules. Mapping rules are relationships among constructs in two distinct meta-
models.

Ontology. In this document, the terms ontology and OWL ontology are used interchangeably.
For using UML profiles we focus on OWL as language for ontologies.

Scenario. Scenarios are outlines of set of use cases where the integrated metamodel happens
to be used. They describe the users’ work and are used to extract use cases from it.

1.1 List of Abbreviations

AS Abstract Syntax
KB Knowledge Base
CS Concrete Syntax
CbML Class-based modeling language
CWA Closed World Assumption
DFA deterministic finite automaton
DL Description Logics
DSL Domain Specific Language
M0 Metamodel Level 0
M1 Metamodel Level 1
M2 Metamodel Level 2
M3 Metamodel Level 3
MBOTL Model-based Ontology Translation Language
MDA Model Driven Architecture
MM Metamodel
MOF Meta-Object Facility 2.0
MOST Marrying Ontologies and Software Technologies
MTL Model Transformation Language
NA Not Available
NFA nondeterministic finite automaton
OCL UML 2.0 Object Constraint Language
ODM Ontology Definition Metamodel
OMG Object Management Group
OWA Open World Assumption
OWL Web Ontology Language
OWL 2 Web Ontology Language 2
OWL DL The Description Logics Dialect of OWL
OWL Full The Most Expressive Dialect of OWL
QVT Query / View / Transformation
RDF Resource Description Framework
RDFS RDF Schema
RL Reference Layer
TU TwoUse
UML Unified Modeling Language 2.0
WFR Well Formedness Rules
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2 Introduction

To make use of hybrid models addressed by the integration at the level of modeling languages
in the MOST Deliverable 1.1[Parreiras and Walter, 2008], it is important to provide the proper
tools to the developer to manage and understand the models. Thus, tools that can work on
the models need to be integrated. An important service to allow developers insight into their
models, and provide for improved model management, is integrated querying.

In order to be able to query and transform integrated models, a query framework needs to
be integrated on the level of Model Driven Engineering (MDE). Queries provide support to the
developer to fulfill requirements and address modeling decisions, so that the development of
integrated tools will be simplified.

The objective of this deliverable is to investigate the possibilities for querying the combined
metamodel in order to access models in a flexible manner using or combining existing languages.

The research issues pursued in this deliverable are the following: How to query and validate
the integrated models? How should an integrated query language look like? How can it be
mapped to reasoning technology made available by WP3?

This deliverable is organized as follows: Section 3 summarizes the motivation of the in-
tegrated metamodel. Subsequently, the requirements of such a querying solution, based on
literature and on practice, are elicited and described in Sect.4. Existing query languages are
studied in Sect.5. Some existing approaches to be based on are described in Sect.6. An analysis
of possible solutions for querying the combined metamodel is described in Sec.7. Finally, Sect.8
finishes this document.

3 Background

3.1 Motivation of the Integrated Metamodel

In Deliverable D1.1, we presented a framework involving the integration of existing metamodels
and profiles for UML and OWL modeling, including relevant (sub)standards such as OCL and
considering newer developments such as SWRL, a weaving metamodel and an UML profile for
developing integrated models.

As applications of ontologies in MDE spreads, many questions come to light. Disciplines like
model transformation and domain specific languages become essential in order to support differ-
ent kinds of models in an model driven environment. Understanding how ontology technologies
like can be integrated in this field is crucial to leverage the development of such disciplines.

Aware of the need for an extensible solution, Deliverable D1.1 [Parreiras and Walter, 2008]
has presented an reference layer with support to different model languages and ontology lan-
guages. Prominent applications of the reference layer are the Twouse approach
[Silva Parreiras et al., ] [Silva Parreiras et al., 2008b], the integration between KM3 and OWL,
and a Model-Based Ontology Translation Language [Silva Parreiras et al., 2008a].

3.2 Applications of the Integrated Metamodel

3.2.1 TwoUse

TwoUse[Silva Parreiras et al., ][Silva Parreiras et al., 2008b] is a framework for developing in-
tegrated models, comprising the benefits of UML models and OWL ontologies. It illustrates
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a concrete implementation of the MOST Reference Layer[Parreiras and Walter, 2008] and it is
based on four core ideas:

• It provides an integrated MOF based metamodel as a common backbone for UML (in-
cluding OCL) and OWL modeling;

• It uses an UML profile as its integrated syntactic basis supporting UML2 extension mech-
anisms and mappings from the profile onto the metamodel;

• It provides a canonical set of transformation rules in order to deal with integration at the
semantic level.

• It extends the basic library provided by the OCL specification, which we call OCL-DL.

3.2.2 Ontologies in Domain Specific Languages

The integrated metamodel is used as basis for an Ontology Based DSL Framework for developing
domain specific languages as well. Since DSL programmers have different levels of experience
and have incomplete knowledge about the languages, a new technical space that allows the use
of ontologies to suggest the right constructs to be used is required. Constraints are defined
at the metamodel level and they are fulfilled at the modeling level, deriving guidance for the
modeling process of domain models.

3.2.3 Ontology-based Transformation

The Model-Based Ontology Translation Language (MBOTL) integrates different translation
problems into a representation based on the combined metamodel. In
[Silva Parreiras et al., 2008a], an platform independent approach for ontology translation based
on model-driven engineering (MDE) of ontology alignments is proposed in order to reconcile se-
mantic reasoning with idiosyncratic lexical and syntactic translations. The framework includes
a language to specify ontology translations, an integrated metamodel (ATL, OCL, OWL)and
translations to realize the unified language.

4 Query Requirements

This section describes requirements of a query language for the integrated model. These re-
quirements are divided into functional and non-functional requirements.

4.1 Functional Query Requirements

Functional query requirements analyze the query functionality with respect to a structured
data set. This includes all requirements concerning the technical implementation like the query
processing, data representation, as well as relationship between input and output.

Complete Knowledge vs. Incomplete Knowledge The result of a query depends on the
assumption about the world, i.e. how is the existing data set on which the query is executed
defined. There are two different kinds of knowledge representation. In a closed world assumption
the intention is that everything which is known is contained in the data set, i.e. the dataset
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is considered as complete knowledge. This assumption is realized in database systems. In an
open world it is assumed that the available data is not necessarily the complete knowledge of
the world.

From the logical point of view there is a difference with respect to the truth value of state-
ments which are not known to be true. The truth value of a statement in the closed world
assumption is true if the statement is valid otherwise the statement is false. This also includes
the case when a statement is unknown, it is assigned to be false. In the open world assumption
this statement is unknown. The open world assumption realizes incomplete knowledge. In
knowledge representation the intention of incomplete knowledge is quite natural, i.e. it is not
possible to know everything. OWL realizes the open world assumption.

Obviously the result of a query depends on the assumption. This is demonstrated by the
following example. The knowledge base consists of the statement: Bob sells Car, Bob and Car
are individuals, and sells is a relationship or role in DL. The query is Bob sells Book. The
result with the closed world assumption is no, since there is no statement in the knowledge base
that Bob sells a Book. In the open world assumption the answer is unknown, since the neither
the statement nor the negation is in the knowledge base.

This assumption leads to a more sophisticated effect if there are cardinality restrictions
added to roles or relationships. If the sells relationship has the cardinality restriction 1, i.e.
every individual can only sell one object. Suppose that both statements above are axioms in the
knowledge base. In the closed world assumption this causes an error, because it is not allowed
that Bob sells a Car and a Book. In the open world assumption this infers a statement that
the Car and the Book are equal objects.

Negation as failure is related to the closed world assumption. This strategy is realized in
logic programming. A logic program is a finite set of horn rules. If it is not possible to prove
that a statement is valid then is is assumed that this statement is false. All unsuccessful proves
are considered as a failure.

Functions

Functions are an additional part of a query language which facilitates the query mechanism.
They are reusable blocks of queries and can be used as helpers. The following list contains basic
functions which are (partially) implemented in query languages like SPARQL
[Prud’hommeaux and Seaborne, 2008] or SQL [Kline and Kline, 2000].

• Aggregate functions: average, minimum, maximum, count, summary of result tuples.

• Scalar functions: The result of a scalar function is a single value. There is either no
function input or one single value. In [Kline and Kline, 2000] there is a distinction of the
following scalar functions.

– Built-in scalar functions, e.g. current date, current user or timestamps.

– Numeric functions: operation on numeric values.

– String functions: operations on string values, e.g. string concatenate.

– Date and time functions: operations on time and date types.

• Solution modifier: It supports query result modification like result sorting.

• Null value support: Operators can deal with null values as input and output of a query.
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• Type conversion, like a mapping from a value to a string representation.

• Test predicates, e.g. bound test of variables: bound(X).

• Basic built-in functions:

– Logical operators: negation (¬), conjunction(∧) and disjunction (∨).

– Arithmetic operators: +, −, ∗, /
– Comparison: Equality (=) and inequality (<, ≤, >, ≥)

Transitive Closure

The transitive closure of a binary relation R on a set S is the smallest transitive relation on
this set S that contain R. In the graph theory the transitive closure describes the reachability
relations between nodes. The relations are the edges.

The transitive closure is also considered in database research. One example is the gener-
ation of a view which contains the transitive closure. In theoretical database research this is
described as maintaining transitive closure of graphs in relational calculus [Dong et al., 1999].
The problem of transitive closure in SQL and relational calculus is outlined in [T and Su, 2000].
SQL does not directly support the transitive closure, i.e. to execute a query in which the tuples
in the result are in the transitive closure.

Unique Name Assumption

The unique name assumption implies that every name is unique. Names here refers to represen-
tatives of objects, e.g. IDs or URIs like in the web. It is assumed that if there are two different
names (identifiers) the corresponding objects are also different. The unique name assumption
only refers to constants.

There is a connection between unique name assumption and CWA/OWA. In the closed
world assumption the unique name assumption is useful. In the open world assumption it is
meaningful to omit the unique name assumption due to the incomplete knowledge base. In this
case it is possible to add explicit statements that two things are same or different. In OWL
there is no unique name assumption, this has to be explicitly specified with statements. In DL
the unique name assumption holds.

Language Semantics

The semantics of a query language is a formal definition of the meaning of the language which
is based on a logical and mathematical model. There are different language semantics like
the declarative and the procedural semantics. For the integrated model a declarative query
language is dedicated. A declarative semantics associates to each element of the language a
mathematical meaning. A corresponding semantic function maps a value to each element of
the domain.

4.2 Non-Functional Query Requirements

The non-functional query requirements describe more user-oriented requirements in order to
allow the user an adequate usage of the query facilities. The aim is to ease querying for the
user.
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Syntax

In order to provide a common applicability for the user it is recommended to use a syntax
based on the syntax of existing query languages. Obviously these existing query languages
should provide similar functionality, e.g. querying models with multiple layers. For the syntax
there are at least the following two candidates:

• OCL (Object Constraint Language) is a declarative language that supports query formu-
lation for MOF-based models and metamodels.

• SPARQL in combination with an extension SPARQL FA allows querying an ontology
which consists of multiple layers.

User Interface

The user interface is the connection between the user and the application for data input and
output. There are two relevant types of user interfaces:

• A graphical user interface (GUI) supports data input and output in a graphical layout.

• A web user interface (WUI) enables the data input and output with a web browser.

5 Existing Query Languages

5.1 OCL

UML class diagrams alone are not expressive enough to describe behavior of operations. For
example, an operation getSalesOrder() (Fig. 1) queries the country of the customer and
returns the respective specialization of the sales order. In common UML modeling practice, a
textual query language such as OCL[OMG, 2005] may be used to specify such a query.

Beyond querying, OCL may also be used to specify invariants on classes and types in the
class model, to describe pre- and post conditions on operations and methods, and to specify
initial and derived rules over a UML model [OMG, 2005].

The OCL syntax differs from well know query languages like SQL and SPARQL. Indeed,
SQL and SPARQL do not require a starting point for query, i.e., it takes a global point of view.
OCL, on the other hand, takes the object-oriented point of view, starting the queries from one
given class.

In OCL, expressions are written ”in the context of an instance of an specific type”[OMG, 2005].
The reserved word self is used to denote this instance.

OCL expressions may be used to specify the body of query operations. Since OCL is a
typed language, i.e., each OCL expression is evaluated to a value, expressions may be chained
to specify complex queries or invariants.

Example

Let us consider the case of an international e-commerce system elaborated in
[Shalloway and Trott, 2001]. The characteristics of the system to be designed include:

• It is supposed to be a sales order system for Canada and the United States.
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TaskCtrl
salesOrder : SalesOrder
customer : Customer

process()
getSalesOrder()

CanSalesOrder USSalesOrder

SalesOrder
price

total()
taxes()
freight()

Country

name : String

Customer

10..n

+customer

+order

1

0..n

+country

+customer

Figure 1: UML Class Diagram of the problem domain.

• Calculate freight and taxes based on the country.

• Use Government Sales Tax (GST) and Provincial Sales Tax (PST) for tax in Canada.

A snippet of the corresponding UML class diagram is presented in Fig. 1. The class TaskCtrl
is responsible for controlling the sales orders. A SalesOrder can be a USSalesOrder or a
CanSalesOrder, according to the Country where the Customer lives.

The operation getSalesOrder() queries the country of the customer and returns the special-
ization of the sales order. Following the example mentioned above, the target behavior could
be theoretically denoted by the following OCL expression:

context TaskCtrl : : ge tSa le sOrder ( ) : Sa lesOrder
body :
i f customer . country . name = ’USA’ then

s e l f . s a l e sOrder . oclAsType ( USSalesOrder )
else

i f customer . country . name = ’Canada’ then
s e l f . s a l e sOrder . oclAsType ( CanSalesOrder )

endif
endif

However, this way of specifying the operation getSalesOrder() exhibits some shortcom-
ings. The semantics of the subclasses of SalesOrder, i.e. the semantics of USSalesOrder and
CanSalesOrder, are embedded in nested conditions in the operation specification of a method
of TaskCtrl. Hence, the semantics of USSalesOrder and CanSalesOrder may be difficult to
find and understand in larger domains. They may even appear redundantly when the same
conditions need to be applied somewhere else in the specification. Furthermore, the description
of the classes CanSalesOrder and USSalesOrder are stated at least twice: once in the class
declaration and once, implicitly, as an expression of the operation TaskCtrl.getSalesOrder().

OCL defines a predefined class called OclAny, which acts as a superclass for all the types
except for the OCL pre-defined collection types. Hence, features of OclAny are available
on each object in all OCL expressions, and all classes in a UML model inherit all operations
defined on OclAny. We highlight two of these operations:

• oclIsTypeOf(typespec: OclType): Boolean. Evaluates to true if the given object is of the
type identified by typespec.
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• oclIsKindOf(typespec: OclType): Boolean. Evaluates to true if the object is of the type
identified by typespec or one of its subtypes.

Let us exemplify these operations. The first one evaluates to true if we have an instance
of SalesOrder and ask whether it is an instance of SalesOrder. The second one evaluates to
true if the prior example evaluates to true or if we have an instance of USSalesOrder and ask
whether it is an instance of SalesOrder, but not the opposite.

5.1.1 Semantics

The specification of OCL is given in natural language, although an informative formal se-
mantics is annexed to the specification. Despite this informative formal semantics based on
[Richters, 2002], other strategies have been used to define the semantics of OCL.

Roe et al.[Roe et al., 2003] have proposed mappings between UML Models incorporating
OCL Constraints and Object-Z[Smith, 2000]. Object-Z prescribes a formal specification for
object-orientation extending the language Z.

Schmitt et al.[Schmitt, 2001] propose a model theoretic Semantics of UML class diagrams
and OCL. It defines the semantics of model properties and excludes the previous values of prop-
erties in postconditions. This work was extended later to deal with this issue, when translating
OCL into Dynamic Logic.

Additionally, Beckert et al. proposes a translation of OCL into First-order Predicate Logic
[Beckert et al., 2002].

Bucker presents a representation of the semantics of OCL in higher-order logic
[Brucker and Wolff, 2002]. The proof calculi allowing the implementation of an OCL reasoner
is defined in [Brucker and Wolff, 2006].

5.1.2 Complexity

In despite of the available semantics of OCL described above, reasoning with OCL is undecidable
in worst case scenario.

5.2 Conjunctive Query

In database theory, a conjunctive query is a restricted form of first-order queries. A large part
of queries issued on relational databases can be written as conjunctive queries, and large parts
of other first-order queries can be written as conjunctive queries. Conjunctive queries also have
a number of desirable theoretical properties that larger classes of queries (e.g., the relational
algebra queries) do not share.

5.2.1 Syntax

The conjunctive queries are simply the fragment of first-order logic given by the set of formulae
that can be constructed from atomic formulae using conjunction(∧) and existential quantifica-
tion (∃), but not using disjunction (∨), negation(¬), or universal quantification (∀). A conjunc-
tive query consists of two parts, the head, and the body. The head states which variables from
the query should be returned to the user and the body of the query consists of one or more
atoms which bind variables or literal values to concepts or roles within the ontology.

Conjunctive queries have a normal form:
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(∃y1) . . . (∃yn)(p1(x1, . . . , xm, y1, . . . , yn) ∧ . . . ∧ pk(x1, . . . , xm, y1, . . . , yn)).

They can also be expressed in Datalog:

q(x1, . . . , xm) : −p1(x1, . . . , xm, y1, . . . , y), . . . , pk(x1, . . . , xm, y1, . . . , y).

Example

Q(x, y) : −Student(x) ∧ hasFriend(x, y)

The above query is a query for any instance of the concept Person and binds it to the
variable X, and finds any instance of the hasFriend role where the Student X has some friend
which is bound to the variable Y.

5.2.2 Semantics

The interpretation I satisfies a query Q = q1 ∧ . . . ∧ qn and a tuple t is a certain answer to a
query Q given some source instances if it is in the answer to this query over every instance of
the integrated database that satisfies all the source annotations.

5.2.3 Complexity

For the study of the computational complexity of evaluating conjunctive queries, two problems
have to be distinguished. The first is the problem of evaluating a conjunctive query on a
relational database where both the query and the database are considered part of the input. The
complexity of this problem is usually referred to a combined complexity, whiles the complexity
of the problem of evaluating a query on a relational database, where the query is assumed fixed,
and is called data complexity [Vardi, 1982].

Conjunctive queries are NP-complete with respect to combined complexity
[Chandra and Merlin, 1977], while the data complexity of conjunctive queries is very low, in the
parallel complexity class AC0, which is contained in LOGSPACE and thus in polynomial time.
The NP-hardness of conjunctive queries may appear surprising, since relational algebra and SQL
strictly subsume the conjunctive queries and are thus at least as hard (in fact, relational algebra
is PSPACE-complete with respect to combined complexity and is therefore even harder under
widely-held complexity-theoretic assumptions). However, in the usual application scenario,
databases are large, while queries are very small, and the data complexity model may be
appropriate for studying and describing their difficulty.

5.3 SPARQL

SPARQL [Prud’hommeaux and Seaborne, 2008]is W3C standard query language for RDF data
on the semantic web. SPARQL is based on graph pattern matching. A SPARQL query matches
a graph pattern against a dataset consisting of one or more input graphs. The resulting variable
bindings are either returned in tabular form (”select queries”) or embedded into a template
description in order to generate new RDF data (”construct queries”).

11



5.3.1 Syntax

We assume basic familiarity of the reader with RDF and SPARQL, and will only briefly in-
troduce some basics here: We define a SPARQL query as a tuple (E, DS, R) where E is a
SPARQL algebra expression, DS is a RDF dataset, and R is a query form. SPARQL has four
query forms; For a SELECT query, a result from R is simply a set of variables, a CONSTRUCT
query returns is a set of triple patterns. An ASK query returns a boolean representing whether
a query pattern matches or not. While, DESCRIBE query returns an RDF graph that describes
the resources found.

We assume the pairwise disjoint, infinite sets Vuri,Vbnode,Vlit, and Vuri, which denote URIs,
blank node identifiers, RDF literals, and variables respectively. Graph patterns are recursively
defined as follows:

• {s, p, o} is a graph pattern where s, o ∈ Vuri ∪ Vbnode ∪ Vlit ∪ Vuri and p ∈ Vuri ∪ Vvar.

• A set of graph patterns is a graph pattern.

• Let P, P1, P2 be graph patterns, R a filter expression, and i ∈ Vuri ∪ Vvar, then P1

OPTIONAL P2, P1 UNION P2, GRAPH iP , and P FILTER R are graph patterns.

Example

Example of SPARQL:
SELECT (?t ?x ?y)
WHERE {?x rdf:type ?t .

?t rdfs:subClassOf ont:Employee.
?x ont:teacherOf :a .
?y ont:takesCourse :a .
}

5.3.2 Semantics

The sematic of SPARQL is based on mappings, partial functions from variables to terms. A
mapping µ is a solution of triple pattern t in G if µ(t) ∈ G and dom(µ) = var(t) w.r.t. an
evaluation of t in G is the set of solutions (written [[t]]G ). The semantics of complex SPARQL
query constructs can be defined by using set of mapping. Let M1 and M2 be sets of mappings
then we can define as folows:

• Join (M1 on M2) extending mappings in M1with compatible mappings in M2.

• Difference(M1\M2) mappings in M1 that cannot be extended with mappings in M2.

• Union (M1 ∪M2) mappings in M1 plus mappings in M2.

• Left Outer Join (M1 ./ M2) is equivalent to (M1 on M2) ∪ (M1\M2)

The evaluation of a graph pattern over G, denoted by [[�]]G, defined recursively as follows:

• [[(P1 AND P2)]]G = [[P1]]G on [[P2]]G
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• [[(P1 UNION P1)]]G = [[P1]]G ∪ [[P2]]G

• [[(P1 OPT P1)]]G = [[P1]]G ./ [[P2]]G

• [[(P FILTER R)]]G = {µ2[[P ]]G | µ satisfies R}

For more detail, refer the reader to [Pérez et al., 2006]

5.3.3 Complexity

From the study of the computational complexity of evaluating SPARQL queries
[Pérez et al., 2006]. Given An RDF dataset D, a graph pattern P and a mapping µ. we can
define computational complexity of evaluating SPARQL queries as follows. First,the evaluation
can be solved in time O(| P | × | D |) for graph pattern expressions constructed by using only
AND and FILTER operators. Second, the evaluation is NP-complete for graph pattern expres-
sions constructed by using only AND, FILTER and UNION operators. Third, the valuation is
PSPACE-complete for graph pattern expressions. Finally, the evaluation(P )(data complexity)
is in LOGSPACE for every graph pattern expression P .

5.4 SPARQL-DL

SPARQL-DL is a rich query language for OWL-DL ontologies. It provides an OWL-DL-like
semantics for SPARQL basic graph patterns which involves as special cases both conjunctive
ABox queries and mixed TBox/RBox/ABox queries over Description Logic (DL) ontologies
[Sirin and Parsia, 2007].

5.4.1 Syntax

In this section we provide a brief description of SPARQL-DL syntax and refer the reader to
[Sirin and Parsia, 2007] for more details. Let VO = (Vcls,Vop,Vdp,Vap,Vind,VD,Vlit) be an
OWL-DL vocabulary. Let Vbnode and Vvar be the set of bnode identifiers and set of variables.A
SPARQL-DL query atom q is of the form:

q ← Type(a,C) | PropertyValue(a, p, v) | SameAs(a, b) | DifferentFrom(a, b) |
EquivalentClass(C1, C2) | SubClassOf(C1, C2) | DisjointWith(C1, C2) |
ComplementOf(C1, C2) | EquivalentProperty(p1, p2) | SubPropertyOf(p1, p2) |
InverseOf(p1, p2) | ObjectProperty(p) | DatatypeProperty(p) | Functional(p) |
InverseFunctional(p) | Transitive(p) | Symmetric(p) | Annotation(s, pa, o)

where a, b ∈ Vuri ∪ Vbnode ∪ Vvar, v ∈ Vuri ∪ Vlit ∪ Vbnode ∪ Vvar, p, q ∈ Vuri ∪ Vvar, C,D ∈
Sc∪Vvar, s ∈ Vuri, pa ∈ Vap, o ∈ Vuri∪Vlit. A SPARQL-DL query Q is a finite set of SPARQL-
DL query atoms and the query is interpreted as the conjunction of the elements in the set.

Example

Example of SPARQL-DL:
Type(?x,?t), SubClassOf(?t,Employee),
PropertyValue(?x,teacherOf, :a),
PropertyValue(?y,takesCourse, :a).
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5.4.2 Semantics

The semantics of SPARQL-DL is very similar to the semantics of OWL-DL.We specify the
conditions under which an interpretation satisfies a query atom in much the same way that
satisfaction is defined for OWL-DL axioms.

The interpretation I satisfies a query Q = q1 ∧ . . . ∧ qn w.r.t. an evaluation σ(written
I |= σq) iff I |= σqi for every i = 1, ..., n. Note that, we are only interested in the existence of
an evaluation and we simply say that I satisfies a query Q (written I |= Q) if there exists an
evaluation σ such that I |= Q. Finally, we say that Q is a logical consequence of the ontology
O (written I |= Q) if the query is satisfied by every model of O, i.e. I |= O implies I |= Q.
A solution to a SPARQL-DL query Q = q1 ∧ . . . ∧ qn w.r.t. an OWL-DL ontology O is a
variablemapping µ : Vvar → Vuri ∪ Vlit such that when all the variables in Q are substituted
with the corresponding value from µ we get a semi-ground query µ(Q) compatible with V O
and O |= µ(Q). The solution set S(Q) for a query Q is the set of all such solutions.

Form of the query atom Condition on interpretation
Type(a,C) σ(a) ∈ CI
PropertyValue(a, p, v) 〈σ(a), σ(v)〉 ∈ pI
SameAs(a, b) σ(a) = σ(b)
DifferentFrom(a, b) σ(a) 6= σ(b)
SubClassOf(C1, C2) CI1 ⊆ CI2
EquivalentClass(C1, C2) CI1 = CI2
DisjointWith(C1, C2) CI1 ∩ CI2 = ∅
ComplementOf(C1, C2) CI1 = ∆I\CI2
SubPropertyOf(p, q) pI ⊆ qI
EquivalentProperty(p, q) pI = qI

Functional(p) 〈x, y〉 ∈ pIand〈x, z〉 ∈ pIimpliesy = z
InverseFunctional(p) 〈y, x〉 ∈ pIand〈z, x〉 ∈ pIimpliesy = z
Transitive(p) 〈x, y〉 ∈ pIand〈y, z〉 ∈ pIimplies〈x, z〉 ∈ pI
Symmetric(p) 〈x, y〉 ∈ pIimplies〈y, x〉 ∈ pI
Annotation(s, pa, o) 〈s, o〉 ∈ pIa

Table 1: Satisfaction of a SPARQL-DL query atom w.r.t. an interpretation

5.4.3 Complexity

Currently, there is no study about the computational of the complexity of SPARQL-DL yet.
However, we believe that the complexity of the evaluation SPARQL-DL query is equivalent to
the SPARQL query in the worst case since SPARQL-DL is a substantial subset of SPARQL.

5.5 GReQL

Graphs are well-defined mathematical and formal structures. Different algorithms and methods
exist to work efficiently on graphs. Normally, graphs appear all-around in today’s software
engineering. For example and for simple imagination, UML class diagrams also can be seen as
a graph, where, in general, the nodes are represented by classes and the edges by associations.
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Figure 2: Part of the grUML Metametamodel

A very general kind of graphs are the TGraphs [Ebert et al., 2002]. Such graphs are directed,
its edges and vertices are typed and attributed and for each node the incident edges are ordered.
Each graph is an instance of its corresponding schema (metamodel) which for example defines
types of edges and vertices and structures them in hierarchies.

5.5.1 Modeling with grUML

The modeling language grUML (graphUML) is a sublanguage of UML and is based on TGraphs.
Using UML model elements in grUML also graph schemas are defined. Sets of vertices are
represented by classes with attributes. Sets of edges are represented by associations which can
contain attributes too. Different types of vertices and edges are defined using specialization
associations of UML.

Thus a grUML diagram is the visualization of a TGraph at the same meta-layer Mi. The
TGraph itself is instance of the grUML-Metamodel at the corresponding metameta-layer Mi+1.

Let’s consider an example to see into using TGraphs and grUML. Figure 2 depicts an
extreme simplification of the grUML metametamodel which lies at the M3-layer of the four-
layer architecture[Miller et al., 2001]. Here we have one class for vertexes and one class for
edges. Each edge connects two vertex classes. EdgeClass and VertexClass are specializations
of AttributedElementClass which means, that both can be attributed.

Using the grUML metametamodel at the M3-layer we can create instances of the model at
the M2-layer. TGraphs are composed of such instances whose type for example is VertexClass
or EdgeClass. Figure 3 depicts an object model of a simple domain specific language at the
M2-layer, that is defined by the corresponding grUML metametamodel. Here we have differ-
ent objects of type VertexClass, for example Entity, Attribute or Datatype. Attribute
has the two specializations SimpleAttribute and ReferenceAttribute. Using an object
hasAttribute of type EdgeClass Entity is connected with Attribute. In object diagram
there are two objects fromEntity and toAttribute which are instances of the association
classes from and to in the grUML metametamodel. The attributes and its values give in-
formation about the role name and the cardinality. In the example an entity has 0 to many
(the value -1 means many) attributes but an attribute belongs only to exactly 1 entity. Anal-
ogously, the object referenceTo of type EdgeClass and its corresponding links connect the
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Figure 3: Domain Specific Language represented by instances of the grUML Metamodel

ReferenceAttribute-object with exactly one Entity-object. The model also gives the infor-
mation that a SimpleAttribute has exactly one Datatype, but of course a Datatype can be
used by many SimpleAttributes.

For an easier understandable representation, the object diagram of figure 3 is visualized
using a concrete syntax. Using the grUML metametamodel at the M3-layer we can visualize
each TGraph again as a grUML-diagram (cf. figure 3). Vice versa, each grUML-diagram
can also be visualized by a TGraph because grUML-diagrams have a graph-based extensional
semantic.

5.5.2 Querying Models with GReQL

As explained above if we are modeling UML class diagrams (respectively grUML diagrams) the
abstract representation is a TGraph.

Now GReQL, the Graph Repository Query Language, comes into play. GReQL is a declara-
tive query language for TGraphs which is developed at the Institute of Software Technology of
the University of Koblenz-Landau1.

GReQL can be used to extract different kinds of information of TGraphs, for example
attributes of vertices and edges or complete structures inside of a graph. In the following we
want to give a short overview of the syntax of GReQL.

1http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/MainResearch/

Graphentechnologie/GReQL
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Figure 4: Domain Specific Language visualized by grUML-Diagram

5.5.3 Syntax

GReQL queries have typical syntactic FWR-structure, which means, that queries consist of the
three clauses from, with and report [Bildhauer, 2006].

The from-clause declares variables for the concerned elements (nodes and edges) in the
graph with the corresponding domain of each variable. The domain is composed of all types
of the graph schema. Regarding to our schema in figure 3 we have the vertex types Entity,
Attribute, ReferenceAttribute, SimpleAttribute and Datatype. For edges we have the
types hasAttribute, hasDatatype and referenceTo.

The optional with-clause summarizes predicates which have to be fulfilled from the variables.
These predicates include powerful graph oriented expressions like regular path expressions. The
with-clause consists of predicate formulas, therefore boolean operators like not, and and or exist
and quantifiers like forall and exists can be used.

The report-clause determines the result structure of the query.
Listing 1 gives a simple example of the structure of a GReQL query. Corresponding to

graph represented in figure 3 the query returns all entities that have at least one attribute. In
the from-clause we define the concerned elements in the query. In the with-clause we state that
an edge of type hasAttribute has to exist between an Entity-node and an Attribute-node.
If this predicate is fulfilled the defined variable in the result-clause is returned.

Listing 1: A simple GReQL Query

from en t i t y :V{Entity }
a t t r i b u t e :V{Entity }

with en t i t y −−>{ha sA t t r i b u t e }
a t t r i b u t e

r epor t en t i t y
end
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Figure 5: TwoUse OCL overview.

5.5.4 Complexity

The evaluation of path descriptions of GReQL queries is done by an automaton-driven graph
traversal. In the worst case, a DFA that accepts exactly the same language as a NFA with n
states could have up to 2n states, but this explosion does not occur practically. To perform
the path search, the DFAs are used to drive a worklist algorithm that traverses the graph and
marks the vertices with the states of the DFA. This marking ensures that the search algorithms
terminates and that its complexity is O(|S|·max(|V |; |E|) where S is the state set of the DFA and
V and E are the vertex and edge set of the graph, respectively [Bildhauer and Ebert, 2008].

6 Existing Approaches

6.1 TwoUse OCL

TwoUse OCL is an extension of the OCL language with support to built-in operations. These
built-in operations call reasoning services to reason over models that are translated into OWL.
Figure 5 depicts the overview of TwoUse OCL.

Part of the UML/OCL KB is translated to OWL, namely the OWL KB. The OWL KB can
be explored by reasoning services or shared on the semantic web. The result of the expressions
are translated back into OCL and available to the OCL engine.

TwoUse includes new operations that rely on reasoning engine services to extend the bound-
aries of OCL towards OWL. One may use the TwoUse operation owlIsInstanceOf(USSalesOrder)
which makes use of a reasoner and returns true if, the properties of the object satisfy the suffi-
cient conditions to be a member of class USSalesOrder. The following are the core operations
of TwoUse OCL:

• owlIsInstanceOf(typespec: OclType): Boolean. Evaluates to true if the object satisfy all
the logical requirements of the OWL class description typespec.

• owlAllNamedClass(): Set(OclType). Returns all named classes classified by a reasoner,
whose the object satisfies the logical requirements.
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Figure 6: TwoUse OCL Library Extension and sample model classes.

• owlAllInstances(): Set(T). This is an introspective operation which returns all instances
that satisfy the logical requirements of the OWL class description of the given object.

• owlMostSpecNamedClass(): OclType. Returns the intersection of owlAllNamedClass().

All TwoUse OCL operations make use of reasoning services, i.e., they rely on inferences over
complex descriptions of concepts and instances. In order to include these operations, we extend
the OCL library by adding a new M1 instance of the OCL metaclass AnyType called OwlAny.
While all M1 classifiers except collections conform to OclAny in OCL, only M1 instances of
TUClass conforms to OwlAny. Thus, OwlAny acts as a supertype for all TwoUse classes. As the
result all TwoUse classes inherit all operations of OwlAny.

Figure 6 depicts the TwoUse OCL in the context of four metamodels: OCL, UML, OWL
and TwoUse. At level M2, white boxes represent metaclasses imported from UML metamodel
and light grey boxes represent metaclasses from OCL metamodel. The black box represent the
TwoUse metaclass imported from TwoUse metamodel, which specializes the UML class and
the OWL class, that are the dark grey box. At level M1, we show the class SalesOrder which
is a M1 instance of the metaclass TUClass and, because of that, is a subtype of the TwoUse
OCL class OwlAny. SalesOrder is indirectly a M1 instance of the UML metaclass Class too
and so is indirectly a subtype of the OCL Class OclAny. The class TaskCtrl is a pure UML
Class and is also a subtype of OclAny.

Since OWL classes do not support operations and cannot be referred to in OCL expressions,
we use a TwoUse Class to build the bridge. A TwoUse Class inherits from both OWL and UML
Classes. Therefore, a M1 instance of the metaclass TUClass is an instance of the metaclass
OWLClass too. Thus, OCL implementations are extended to include OWL querying capabilities.

6.1.1 Semantics

OWL has model-theoretic semantics and allows for inferring on expressions that must be explic-
itly specified in the UML language. Therefore, it is possible to have the same concept specified
by different set of statements in OWL and UML.

Nevertheless, the assumptions about these expressions can lead to different results. Re-
capping our example of Sect.5.1, suppose we change a little the model and declare the class
AlcaCustomer as subclass of Customer and superclass of CanadianCustomer and USCustomer,
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Customer
<<owlClass>>

USCustomer
<<owlRestriction>>

<<owlValue>> {hasValue = USA} country : Country

CanadianCustomer
<<owlRestriction>>

<<owlValue>> {hasValue = Canada} country : Country

AlcaCustomer
<<owlClass>>

MexicanCustomer
<<owlClass>>

<<owlValue>> {hasValue = USA} country : Country

Figure 7: UML Profiled Class Diagram with new classes.

and the class MexicanCustomer as subclass of Customer (Fig. 7). If we ask the UML model
whether an instance of MexicanCustomer is a AlcaCustomer (oclIsKindOf(AlcaCustomer)),
the answer will be no. Nevertheless, if we ask the OWL ontology, the answer is undefined,
unless we explicitly state that the class MexicanCustomer is a subclass of the complement of
the class AlcaCustomer, i.e., a non-ALCA customer. The reason is that the UML, OCL and
the databases use the Closed World Assumption (CWA) whereas OWL ontologies use the Open
World Assumption (OWA).

The CWA and OWA are not contradictory and should be seen as complementary to each
other. Recent results [Motik et al., 2007] show that it is possible to control the degree of
incompleteness in an ontology, since OWA assumes incomplete information by default, obtaining
a more versatile formalism. Such ”underspecification” can be used to allow reuse and extension
and does not mean insufficiency. Again using our example, suppose we define a incomplete list
of Alca countries comprising just Canada and USA, because these are the countries the store
ships to, and we do not need to know the 32 others. In the future, the store starts shipping to
Mexico. If we query our ontology whether Mexico is member of Alca, the answer is undefined,
which is reasonable, providing that our list of Alca countries is incomplete and does not include
Mexico and the 31 remaining countries.

TwoUse delegates the decision of using OWA or CWA to the user, which chooses the amount
of the OCL operations (CWA) or the TwoUse OCL extension (OWA). Such choice must be
done aware of the consequences, which demands the deep understanding of the user about the
semantics of OWL and the OCL-DL operations.

6.2 KAON2

KAON2 [KAON2, 2005] is an infrastructure for managing and reasoning with OWL-DL, SWRL,
and F-Logic ontologies. In this section, we briefly summarize the functionality that is provided
by the tool:

• Provides an integrated API for reading, writing, and management of OWL-DL, SWRL,
and F-Logic ontologies. Currently, OWL RDF and OWL XML file formats are supported.
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• Provides built-in reasoner for OWL DL except nominals and datatypes (SHIQ), extended
with DL-safe subset of SWRL. Reasoning is based on novel algorithms, which reduce an
OWL ontology to a (disjunctive) Datalog program. These algorithms allow KAON2 to
handle relatively large ontologies with high efficiency.

• Supports the answering of conjunctive queries expressed in SPARQL.

• Supports the DIG interface, and can therefore be used with ontology editors.

• Accesses information that is stored in relational databases based on mappings between
ontology entities and database tables.

• Provides tools for creating a meta-ontology beyond OWL DL ontologies within OWL DL.

6.2.1 A Metamodel Approach in KAON2

[Vrandecic et al., 2006] has introduced an approach to offer metadata about the defined classes
or properties in an ontology. Their approach relies on the metamodeling features of Model
Driven Architecture (MDA), which provide the means for the specification of modeling lan-
guages in a standardized, platform independent manner. For more details refer to
[Vrandecic et al., 2006].

Example

This example has been taken from [Vrandecic et al., 2006], in order to show how to define an
OWL DL meta-ontology. In this ontology we explicitly capture axioms. Ontologies can be
transformed to become instance data with regard to the vocabulary of the meta-ontology.

1. CLASS v ONTOLOGYENTITY

2. AXIOM v ONTOLOGYELEMENT

3. SUBCLASSOFAXIOM v AXIOM

4. EQUIVALENTCLASSAXIOM v AXIOM

5. DISJOINTWITHAXIOM v AXIOM

6. > v ∀SUBCLASSOFSUBCLASS.CLASS

7. > v ∀SUBCLASSOFSUBCLASS−1.SUBCLASSOFAXIOM

8. v≤ 1 SUBCLASSOFSUBCLASS.>

9. > v ∀ 8SUBCLASSOFSUPERCLASS.CLASS

10. > v ∀SUBCLASSOFSUPERCLASS−1.SUBCLASSOFAXIOM

11. v≤ 1 SUBCLASSOFSUPERCLASS.>

12. > v ∀EQUIVALENTCLASS.CLASS

13. > v ∀EQUIVALENTCLASS−1.EQUIVALENTCLASSAXIOM
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14. > v ∀DISJOINTWITH.CLASS

15. > v ∀DISJOINTWITH−1.DISJOINTWITHAXIOM

Axioms 1-5 define the terms used. Every axiom type is defined by a class of its own (refer
to the following example). The rest of the axioms defines the domain and ranges of the used
properties. The following is an example of a very simple ontology, with just one axiom that
states that all persons are living beings

PERSON v MORTAL

Using the meta-ontology, we can represent this ontology as follows:

CLASS(Mortal)

CLASS(Person)

SUBCLASSOFAXIOM(axiom1)

SUBCLASSOFSUPERCLASS(axiom1,Mortal)

SUBCLASSOFSUBCLASS(axiom1, P erson)

SUBCLASSOF(Person,Mortal)

Please note that the class PERSON is something else than its representing individual in the
metaontology, which is the individual Person. The axiom of the original ontology is reified
explicitly as the individual axiom1, an instance of the class SUBCLASSOFAXIOM. The axiom is
connected to the entities taking part in that axiom with the given properties. The last axiom
offers a direct property instance representing the original axiom. Now it is possible to state
further facts about this axiom, like its source or the confidence we put into the axiom, within
the ontology:

CREATOR(axiom1, Aristotle)

CONFIDENCE(axiom1, 0.95)

Naturally, we also can talk about the entities of the ontology in the same manner:

CREATOR(Person,God)

6.3 OWL-FA

OWL-FA[Pan et al., 2005] is an extension of OWL-DL, which enables metamodeling. OWL-
FA uses the architecture of RDFS(FA). In OWL-DL it is not allowed, that an object is a
class, property or individual at the same time, but this is a typical characteristic of metamodel
descriptions. The idea is, to interpret objects depending on the layer they belong.
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6.3.1 Syntax

The syntax of OWL-FA is similar to that of OWL-DL. The OWL-FA vocabulary consists of
the set for class names Vclsi

for each layer i, the sets of abstract property names Vapi, the set
of datatype name VD, the set of datatype property names Vdp and the set of individual names
Vind.

The abstract syntax for an OWL-FA class definition is:

C ← > | ⊥ | CN | ¬iC | C ui D | C ti D | {o} | ∃iR.C | ∀iR.C | ≤i nR | ≥i nR |
(if i = 1) ∃1T.d | ∀1T.d | ≤1 nT | ≥1 nT

In this abstract definition, CN (CN ∈ Vclsi
) is the name of an atomic class. C and D are

OWL-FA classes in layer i (1 ≤ i ≤ k, k ≥ 1), T ∈ Vdp is a name of a datatype property, R is
an OWL-FA property in layer i and o ∈ Vind is an individual.

6.3.2 Semantics

OWL-FA has a model theoretic semantics, which is defined in terms of interpretations. Given
an OWL-FA alphabet V, a set of built-in datatype names B ⊆ VD and an integer k ≥ 1, an
OWL-FA interpretation is a pair J = (∆J , ·J ), where ∆J is the domain (a non-empty set)
and ·J is the interpretation function, which satisfy the following conditions (where 0 ≤ i ≤ k):

1. ∆J =
⋃

0≤i≤k−1 ∆A
J
i ∪∆D, where ∆A

J
i is the domain for stratum (layer) i and ∆D is

the datatype domain;

2. ∆A
J
i+1 = 2∆A

J
i ∪ 2∆A

J
i ×∆A

J
i and ∆D ∩∆A

J
i = ∅;

3. ∀a ∈ VD : aJ ∈ ∆A
J
0 and ∀C ∈ Vclsi+1 : CJ ⊆ ∆A

J
i ;

4. ∀R ∈ Vapi+1 : RJ ⊆ ∆A
J
i ×∆A

J
i and ∀T ∈ Vdp : TJ ⊆ ∆A

J
0 ×∆D;

5.
⋃
∀d∈B V (d) ⊆ ∆D, where V (d) is the value space of d;

6. ∀d ∈ VD, if d ∈ B, then2

(a) dJ = V (d), where V (d) is the value space of d,

(b) if v ∈ L(d), then (“v”ˆˆd)J = L2V (d)(v), where L(d) is lexical space of d and
L2V (d) is the lexical-to-value mapping of d,

(c) if v 6∈ L(d), then (“v”ˆˆd)J is undefined;

otherwise, dJ ⊆ ∆D and “v”ˆˆd ∈ ∆D.

An OWL-FA ontology O consists of O1, . . . , Ok. Each Oi consists of a TBox Ti, an RBox
Ri and an ABox Ai. An OWL-FA TBox Ti is a finite set of class inclusion axioms of the form
C vi D, where C,D are OWL-FA-classes in stratum i. An interpretation J satisfies C vi D if
CJ ⊆ DJ . Let R,S be OWL FA abstract properties in stratum i. An OWL-FA RBox Ri is a
finite set of property axioms; namely, property inclusion axioms (R vi S), functional property
axioms (Funci(R)) and transitive property axioms (Transi(R)). An interpretation J satisfies

2To simplify the presentation, we do not distinguish datatype names and datatype URIrefs here.
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R vi S if RJ ⊆ SJ ; J satisfies Funci(R) if, for all x ∈ ∆A
J
i−1, ]{y ∈ ∆A

J
i−1 | 〈x, y〉 ∈ RJ } ≤ 1

(] denotes cardinality); J satisfies Transi(R) if, for all x, y, z ∈ ∆A
J
i−1, {〈x, y〉, 〈y, z〉} ⊆ RJ →

〈x, z〉 ∈ RJ . The semantics for datatype property inclusion axioms and functional axioms
can be defined in the same way as those in OWL-DL. Like in OWL-DL, there is no transitive
datatype property axioms.

Let a, b ∈ I be individuals, C1 a class in stratum 1, R1 an abstract property in stratum
1, l a literal, T ∈ VD a datatype property, X,Y classes or abstract properties in stratum i,
E a class in stratum i + 1 and S an abstract property in stratum i+1. An OWL-FA ABox
A1 is a finite set of individual axioms of the following forms: a :1 C1, called class assertions,
〈a, b〉 :1 R1, called abstract property assertions, 〈a, l〉 :1 T , called datatype property assertions,
a = b, called individual equality axioms and, a 6= b, called individual inequality axioms. An
interpretation J satisfies a :1 C1 if aJ ∈ CJ1 ; it satisfies 〈a, b〉 :1 R1 if 〈aJ , bJ 〉 ∈ RJ1 ; it
satisfies 〈a, l〉 :1 T if 〈aJ , lJ 〉 ∈ TJ ; it satisfies a = b if aJ = bJ ; it satisfies a 6= b if aJ 6= bJ .
An OWL-FA ABox Ai is a finite set of axioms of the following forms: X : E, called meta-class
assertions, 〈X,Y 〉 : R, called meta-property assertions, or X =i−1 Y , called meta individual
equality axioms. An interpretation J satisfies X : E if XJ ∈ EJ ; it satisfies 〈X,Y 〉 : R if
〈XJ , Y J 〉 ∈ RJ ; it satisfies X =i−1 Y if XJ = Y J .

An interpretation J satisfies an ontology O if it satisfies all the axioms in O. O is satisfiable
(unsatisfiable) if there exists (does not exist) such an interpretation J that satisfies O. Let
C,D be OWL-FA-classes in stratum i, C is satisfiable w.r.t. O if there exist an interpretation J
of O s.t. CJ 6= ∅i; C subsumes D w.r.t. O if for every interpretation J of O we have CJ ⊆ DJ .

6.4 SPARQL-FA

SPARQL-FA is an extension of the Semantic Web standard query language SPARQL, which
allows mixed Meta/TBox/ABox/RBox queries over metamodeling enabled ontology. In this
section, we give a very brief overview of SPARQL-FA and its semantics. For more details, refer
to [Zhao et al., 2009].

6.4.1 Syntax

Let VO = (Vclsi ,Vapi ,VD,Vdp,Vind) be an OWL FA vocabulary. A SPARQL-FA query atom q
is of the form:

q ← FA:Typei(a,C) | FA:PropertyValuei(a, p, v) | FA:EquivalentClassi(C1, C2) |
FA:SubClassOfi(C1, C2) |FA:DisjointWithi(C1, C2) |
FA:EquivalentPropertyi(p1, p2) | FA:SubPropertyOfi(p1, p2) |
FA:Functionali(p) | FA:InverseFunctionali(p) | FA:InverseOfi(p) |
FA:ObjectPropertyi(p) | FA: DatatypePropertyi(p) |
FA:Domaini(p, C) | FA:Rangei(p, C) | FA:Transitivei(p) |
FA:Symmetrici(p) | FA:Annotation(s, pa, o)

where a, b ∈ Vuri ∪ Vbnode ∪ Vvar, v ∈ Vuri ∪ Vlit ∪ Vbnode ∪ Vvar, p, q ∈ Vuri ∪ Vvar, C,D ∈
Sc∪Vvar, s ∈ Vuri, pa ∈ Vapi, o ∈ Vuri∪Vlit and i is a layer (stratum in OWL-FA). A SPARQL-
FA query Q is a finite set of SPARQL-FA query atoms and the query is interpreted as the
conjunction of the elements in the set.
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6.4.2 Semantics

We define an evaluation α : Vind ∪ Vbnode ∪ Vlit → ∆J to be a mapping from the individual
names, bnodes, and literals used in the query to the elements of interpretation domain ∆J

with the requirement that α(a) = aJ if a ∈ Vind or a ∈ Vlit. The interpretation J satisfies a
semi-ground query atom q w.r.t. µ (denoted as I |= αq) if q is compatible with VO and the
corresponding condition listed in Table 2 is met. Note that, the query atoms ObjectProperty
and DatatypeProperty are not in this table because they are satisfied by every interpretation
as long as they are compatible with VO.

The interpretation J satisfies a query Q = q1 ∧ . . . ∧ qn w.r.t. an evaluation σ(written
J |= αq) if J |= αqi for every i = 1, ..., n. J satisfies a query Q if there exists an evaluation
σ such that I |= Q. Q is a logical consequence of the ontology O if the query is satisfied by
every model of O A solution to a SPARQL-FA query Q = q1 ∧ . . . ∧ qn w.r.t. an OWL-FA
ontology O is a variablemapping µ : Vvar → Vuri ∪ Vlit such that when all the variables in
Q are substituted with the corresponding value from µ a semi-ground query µ(Q) compatible
with VO and O |= µ(Q).

Abstract syntax Condition on interpretation
FA:Typei(a,C) α(aJ ) ∈ CJ1
FA:PropertyValuei(a, p, v) 〈α(aJ ), α(vJ )〉 ∈ PJ
FA:SubClassOfi(C1, C2) CJ1 ⊆ CJ2
FA:EquivalentClassi(C1, C2)CJ1 = CJ2
FA:DisjointWithi(C1, C2) CJ1 ∩ CJ2
FA:EquivalentPropertyi(p, q)pJ = qJ

FA:SubPropertyOfi(p, q) pJ ⊆ qJ
FA:InverseOfi(p) pJ = (pJ )−

FA:Domaini(p, C) pJ ⊆ CJ ×∆
J

D
FA:Rangei(p, C) pJ ⊆ ∆

J

D × CJ
FA:Functionali(p) {x ∈ ∆A

J
i−1 | ]{y | 〈x, y〉 ∈ PJ } ≤ 1}

FA:InverseFunctionali(p) {y ∈ ∆A
J
i−1 | ]{x | 〈x, y〉 ∈ PJ } ≤ 1}

FA:Transitivei(p) {x, y, z ∈ ∆A
J
i−1 | {〈x, y〉, 〈y, z〉} ⊆ RJ → 〈y, z〉 ∈ RJ }

FA:Symmetrici(p) 〈x, y〉 ∈ PJ → 〈y, x〉 ∈ P I
FA:Annotation(s, pa, o) 〈s, o〉 ∈ PJa

Table 2: Condition on interpretation of SPARQL-FA abstract syntax

7 Querying the Combined Metamodel

After eliciting the requirements for querying the combined metamodel(Sect.4) and analyzing
existing approaches (Sect.6 and Sect.5), we analyze in this section how existing approaches
relate to the requirements.

The following sections explores existing approaches to meet the requirements and presents
extensions to cover open issues.
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Figure 8: Feature Model of Querying the Combined Metamodel.

7.1 Combining Existing Approaches

Some requirements presented in Sect.4 are realized by existing approaches. For example the def-
inition of functions and the usage of built-in functions are provided by OCL, whereas SPARQL
provides an powerful language to query resources in triple pattern, allowing for retrieving the
syntax of the language as well as its assertions.

The Unique Name Assumption (UNA) is assumed in OCL and may be mimicked with OWL
as well, using constructs like owl:AllDifferent and owl:distinctMembers. Incomplete knowledge
can be handled using the open world assumption (OWA) whereas complete knowledge is handled
by the closed world assumption (CWA).

The Table 4 presents a relation between the requirements and the approaches discussed
above. We call these approaches features of the query solution for the combined metamodel.
A combination of these features reflects configurations for querying the combined metamodel.
These combinations are modeled in the feature model depicted in Fig. 8.

Requirements Features
Incomplete Knowledge OWA
Complete Knowledge CWA
Functions and Built-in Functions OCL
Built-in Functions SPARQL
Transitive Closure OWL/Rules
UNA OWL/Rules, UML/OCL
Semantics OWL/Rules, UML/OCL

Table 3: Mapping requirements to features.

The feature model reveals the different possible choices for querying the combined meta-
model and can also be used as a taxonomy to categorize the existing approaches.

The relations between the features are constrained by the following composition rules:

SPARQL r equ i r e s OWL/Rules ;
SPARQL i s i s mutually e x c l u s i v e with UML/OCL;
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Figure 9: Conceptual Architecture for Querying the Combined Metamodel.

OCL r equ i r e s UML/OCL;
UML/OCL r e qu i r e s CWA;
UML/OCL i s mutually e x c l u s i v e with OWA.

Let us analyze these constraints. SPARQL queries require reasoning with OWL or dl rules
and does not work with UML/OCL reasoning. On the other hand, OCL queries requires
reasoning with UML/OCL and reasoning with UML/OCL requires CWA exclusively.

After ruling out the configurations inconsistent with the constraints above, we have the
following possible configurations for querying the combined metamodel:

1. SPARQL, OWL-RULES, OWA (Sect.7.1.1);

2. SPARQL, OWL-RULES, CWA (Sect.7.1.2);

3. OCL, UML-OCL, OWL-RULES, CWA (Sect.7.1.3);

4. OCL, UML-OCL, CWA (Sect.7.1.4).

Figure 9 illustrates how the configurations listed above may take place when querying the
combined metamodel. Three out of four configurations can be found by adopting current
approaches. One configuration involves a combination of different semantics and reasoning
services. All these configurations are described in the following sections.

These four combinations cover all needs for querying the combined metamodel considering
the features and restrictions aforementioned. They allow OWA as well as CWA and includes
capabilities for reasoning with OWL, UML/OCL and an hybrid approach including both.

7.1.1 Using SPARQL over OWL with OWA

Among existing RDF based query languages for the semantic web, SPARQL is the W3C rec-
ommendation. It is based on triples patterns and allows for querying the vocabulary and the
assertions of a given domain.

Restrictions on the SPARQL language, i.e., entailment regimes, allow for querying OWL
ontologies, including TBox, RBox and ABox. One implementation is that is SPARQL-DL
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[Sirin and Parsia, 2007](Sect.5.4). Another one is SPARQL-FA, which implemented on the
TrOWL, the infrastructure for the MOST project(Sect.6.4).

SPARQL-DL enables querying OWL ontologies using the Open World Assumption. It is
current available together with the Pellet Reasoner. It offers a robust query language with DL
reasoning support.

SPARQL-FA allowing mixed Meta/TBox/ABox and RBox queries over metamodeling en-
abled ontology. Currently, we provide an efficient algorithm for query over SPARQL-FA1, a
sub-language of SPARQL-FA that allows variables to be evaluated as not only individuals, but
also classes and properties. The algorithm is sound and complete w.r.t. the DL-Lite semantic
approximation of a given OWL DL ontology.

7.1.2 Using SPARQL over OWL with CWA

The SPARQL language has been explored in combination with closed-world reasoning as well.
Examples of current applications are SPARQL++[Polleres et al., 2007]. SPARQL++ extends
SPARQL by supporting aggregate functions, CONSTRUCT query form and built-ins. SPARQL++
queries can be formalized in HEX Programs or description logic programs. SPARQL++ covers
only an subset of RDF(S) and how it could be extended towards OWL is still an open issue.

OWL reasoning with closed world assumption is possible by adopting epistemic operators
[Grimm and Motik, 2005] [Donini et al., 1998]. Thus, SPARQL-FA can be used with CWA cov-
ering the whole expressivity of OWL-DL and OWL-FA. An implementation of that is described
in MOST project’s deliverable D3.2 [Zhao et al., 2009].

7.1.3 Using OCL over UML/OCL with CWA

This is the standard application of OCL as query language. The KB may be described using
UML and OCL constraints. Query operations may be defined and used as helpers for OCL
queries and constraints. Default values as well as initial and derived values can be defined by
using UML and OCL.

UML/OCL reasoning differs from OWL/DL Rules reasoning in the sense that the former
includes behavioral features like operations whereas reasoning with OWL is strictly logical.

Additionally to OCL, GreQL may also be used as query language over UML/OCL models
with CWA. In order to do so, a translation from the UML/OCL technical space to grUML/-
GreQL technical space is additionally required.

7.1.4 Using OCL over UML/OCL and OWL with CWA: OCL-DL

In some cases, a combination of UML/OCL and OWL/DL Rules is needed. For example, one
wants to define complex class descriptions or reuse existing ones. To compute reasoning tasks
like realization, instance checking, and retrieval, automated reasoners implement sound and
complete calculi like the tableau algorithms and guarantees decidability. On the other side,
to make usage of behavioral features like query operations, helpers and built-ins, UML/OCL
reasoning may come into play.

None of the existing approaches allow such combination, except from TwoUse OCL. How-
ever, TwoUse OCL built-in operations allow only the reasoning tasks instance checking, which
verify whether an object satisfies the requirements to be an instance of a given class, and
realization, which evaluates to the most specific named classes for a given object.
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For that purpose, we present a hybrid solution, combining reasoning with OWL/DL rules
and UML/OCL in a cascaded way. The OCL-DL box in Fig. 9 illustrates such a combina-
tion. Queries are written in OCL-like notation and a subset of these queries is translated into
SPARQL and execute against an OWL/DL rules KB (assuming CWA). The results are used
as input for the UML/OCL that allows the usage of helpers, query operations and built-ins
defined for the classes of the KB to execute the remaining subset of the original query.

In the next section we present how this OCL-like notation can be modeled with the inte-
grated metamodel.

7.2 OCL-DL Language Description

Combining UML/OCL and OWL/DL rule for querying the integrated metamodel is part of an
effort towards using OCL for the semantic web, namely OCL-DL[Silva Parreiras, 2008]. OCL-
DL allows the specification of both queries and constraints, namely:

• body of query operations;

• invariants on classes;

• initial values;

• derivation rules;

• pre- and post conditions on operations;

Figure 10 displays OCL-DL according to the different layers of the conceptual architecture
depicted in Fig. 9. In the repository layer, the MOST KB comprises the OWL/DL rules KB and
the UML/OCL KB. Adapters are used to query the MOST KB using OWL/DL rules reasoning.
The output is used as input for OCL expressions. These OCL expressions may be chained with
other OCL expressions that use again OWL Reasoning. The final result is delivered by the
OCL-DL engine.

In the next sections we detail different aspects of OCL-DL like abstract syntax according
to MOST Reference Layer, concrete syntax, and preliminary translations into SPARQL.

7.2.1 Relation with Metamodeling

OCL-DL extends the integrated metamodel by allowing to model useful aspects of a domain,
as listed above. These aspects take the form of expressions associated with different elements
of the combined metamodel.

More specifically, OCL-DL expressions are associated with classes, operations and attributes.
Invariants are in the context of classes whereas initialization and derivation expressions are in
the context to attributes. Body, definition, pre and post conditions are in the context of
operations.

7.2.2 Abstract Syntax

Since we use OCL as concrete syntax, the OCL-DL metamodel is based on the OCL metamodel
[OMG, 2005]. In the following paragraphs we describe shortly the OCL metamodel. Please
consult the OCL specification for more detailed information.
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Figure 11: Package OCL.

30



Figure 12: Package OCL::Types.

The OCL package (Fig.11) provides the classes necessary to support the specification of
operation queries, invariants, pre- and post conditions.

The subpackages Types(Fig. 12) and Expressions(Fig. 14) are adopted from the OCL speci-
fication
[OMG, 2005]. Since OCL is a typed language, every expression has a type and evaluates to a
type.

The subpackage Context (Fig. 13) enables the specification of context of OCL expressions,
since context specification in the OCL specification is embedded in UML. Here, we follow the
approach of Akehurst and Patrascoiu [Akehurst and Patrascoiu, 2004].

From the point of view of the abstract syntax, OCL-DL does not extend much OCL. In
order to be able to use OWL constructs and to derive this kind of constructs back, the class
MClassifier is added to the OCL::Type package (Fig. 15).

Well Formedness Rules All OCL-DL operations make use of reasoning services, i.e., they
rely on inferences over complex descriptions of concepts and instances. In order to include these
operations, we extend the OCL library by adding a new M1 instance of the OCL metaclass
AnyType called OwlAny. While all classifiers except collections conform to OclAny in OCL, all
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Figure 13: Package OCL::Expression Contexts.
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Figure 14: Package OCL::Expressions.
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Figure 15: Package OCL-DL::Types.
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MClassifiers conforms to OwlAny. Thus, OwlAny acts as a supertype for MClassifier, that inherit
all operations of OwlAny.

−− Al l MCla s s i f i e r s conform to OwlAny . con t ex t MClas s i f i e r inv :
AnyType . a l l I n s t a n c e s ()−> f o rA l l (p | (p . name = ’OwlAny’ )

implies s e l f . conformsTo (p ) )

7.2.3 Model Libraries

The model libraries define a number of datatypes, class identifiers and operations that must be
included in the implementation of OCL-DL. These constructs are instances of an abstract syntax
class. The foundation library exists at the M1 level, while the abstract syntax (metamodel)
exists at M2 level. The foundation library is composed of the XML Schema Datatypes library,
the RDF library, the OWL library and the OCL library.

Examples of M1 objects of the XML Schema datatypes library are the datatypes gDay,
gMonth and gYear, having the M2 class RDFS::RDFSDatatype as metaclass. In the RDF li-
brary, for example, the M1 object nil has the M2 class RDFS::RDFList as metaclass. In
the OWL library, interesting M1 objects are Thing and Nothing, both having the M2 class
OWL::OWLClass as metaclass. For a complete description of the foundation library for RDF
and OWL, please refer to the ODM specification [OMG, 2008].

An example of M1 object of the extended OCL library is the construct OclAny. All types in-
herit the properties and operations of OclAny, except collection types. This invariant allows for
attributing predefined operations to classes. Please refer to the OCL specification [OMG, 2005]
for a comprehensive description of the OCL library.

7.2.4 Mapping to existing reasoning technology

We apply a translational semantics from OCL-DL into SPARQL-FA (Sect. 6.4). Indeed,
SPARQL-FA is a powerful language enable to express different aspects of OCL. The following
table summaries the translational semantics of OCL-DL into SPARQL-FA.

OCL-DL expression SPARQL query form
body or def SELECT
init or derive CONSTRUCT
inv ASK
pre- andpost ASK

Table 4: Metrics for Object-Oriented Design on Package elements

Since the focus of this deliverable is on a query language for the integrated metamodel, we
concentrate on translation OCL-DL query operations into SPARQL queries. More information
about the other elements of OCL-DL can be found in [Silva Parreiras, 2008].

For sake of illustration, in Annex A, we give a few examples of equivalent queries in OCL
and in SPARQL. A comprehensive set of transformations will be published in Deliverable D1.3.

7.2.5 Complexity

A fundamental issue in every query language is the complexity of query evaluation. Given
that we apply a translational semantics from OCL-DL into SPARQL. Roughly speaking, the

35



complexity of OCL-DL query is equivalent to the complexity of SPARQL query. The complexity
of evaluating graph pattern expressions is described in Table 5 [Pérez et al., 2006]

Graph pattern expressions Complexity
Fixed patterns (data complexity) LOGSPACE
AND and FILTER PTIME
AND, FILTER and OPT PSPACE-complete
AND, FILTER and UNION NP-complete

Table 5: OCL-DL complexities

7.3 Summary

This section analyzes how current approaches can be used to query the integrated metamodel
and possible new combinations. Existing query languages like SPARQL, OCL and GreQL may
be used according to different requirements whereas a combination of OCL and SPARQL is
used when applying OWL and UML reasoning.

8 Conclusion

When querying ontologies and class based models in an integrated way, requirements like word
assumption, support to functions and built-ins must be taken into consideration. Current query
languages use different strategies to accomplish these requirements. However, combinations of
existing languages are needed to cover all the requirements.

This deliverable describes the state of the art on querying ontologies and class based models.
Existing query languages are analyzed against the requirements. Solutions for querying and
validating integrated models are based on existing solutions and new combinations of them
(Sect.7). The integrated query language has an OCL like notation (Sect.7.2). Initial equiva-
lences between OCL-DL and SPARQL-FA are presented and an comprehensive set of mappings
will be defined in Deliverable D1.3.
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Figure 16: Domain to illustrate OCL-DL.

Annex A: Examples of Equivalent Queries OCL-DL and
SPARQL-FA

Figure 16 depicts the context of the OCL expressions described below. The correspondent OWL
ontology follows the example queries.

context Company
s e l f . numberOfEmployees > 50

in to

PREFIX : <http ://www. example . org /example#>
PREFIX op : <http ://www.w3 . org /2005/xpath−f unc t i ons >
SELECT ?numberOfEmployees
WHERE {

? s e l f numberOfEmployess ?x .
FILTER op : numeric−l e s s−than (? x 50)

}
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−−−−−−−−−−−−

context Company
s e l f . employee−>s e l e c t ( age > 50)−>notEmpty ( )

in to

PREFIX : <http ://www. example . org /example#>
PREFIX op : <http ://www.w3 . org /2005/xpath−f unc t i ons >
ASK
WHERE {

? s e l f employee ? i Pe r son .
? i Pe r son age ? v age .
FILTER op : numeric−l e s s−than (? v age 50)

}

−−−−−−−−−−−−

context Company
s e l f . employee . b irthDate

in to

PREFIX : <http ://www. example . org /example#>
SELECT ? birthDate
WHERE {

? s e l f employee ? v employee
? v employee birthDate ? birthDate

}

−−−−−−−−−−−−

context Company
inv : s e l f . employee−>e x i s t s ( forename = ’Jack’ )

i n to

PREFIX : <http ://www. example . org /example#>
ASK
WHERE {

? s e l f employee ? e .
? e forname ”Jack”

}

−−−−−−−−−−−−

context Company
inv : s e l f . employee−>f o rA l l ( age <= 65)

in to
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PREFIX : <http ://www. example . org /example#>
ASK
WHERE{

? s e l f employee ? e1 .
OPTIONAL {

? e2 age ?a .
FILTER (? a <= 65)
. FILTER (? e1 = ? e2 )

}
FILTER ( ! bound (? e2 ) )

} i s f a l s e

}

Ontology used in the example in N3 notation.

@pref ix : <http ://www. example . org /example#> .
@pre f ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .
@pre f ix owl2xml : <http ://www.w3 . org /2006/12/ owl2−xml#> .
@pre f ix owl : <http ://www.w3 . org /2002/07/ owl#> .
@pre f ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
@pre f ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pre f ix example : <http ://www. example . org /example#> .

: age
a owl : DatatypeProperty ;
r d f s : domain : Person .

: Date
a owl : Class ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : year

] ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : day

] ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : month

] .

: Bank
a owl : Class ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
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owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : accountNumber

] .

: gender
a owl : DatatypeProperty ;
r d f s : domain : Person .

: accountNumber
a owl : DatatypeProperty ;
r d f s : domain : Bank .

: manager
a owl : ObjectProperty ;
r d f s : domain :Company ;
r d f s : range : Person .

: managedCompanies
a owl : ObjectProperty ;
r d f s : domain : Person ;
r d f s : range :Company .

: year
a owl : DatatypeProperty ;
r d f s : domain : Date .

: employee
a owl : ObjectProperty ;
r d f s : domain :Company ;
r d f s : range : Person .

: month
a owl : DatatypeProperty ;
r d f s : domain : Date .

: name
a owl : DatatypeProperty ;
r d f s : domain :Company ;
r d f s : range xsd : s t r i n g .

: employer
a owl : ObjectProperty ;
r d f s : domain : Person ;
r d f s : range :Company .

: i sMarr i ed
a owl : DatatypeProperty ;
r d f s : domain : Person .

: customer
a owl : ObjectProperty ;
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r d f s : domain : Bank ;
r d f s : range : Person .

: b irthDate
a owl : ObjectProperty ;
r d f s : domain : Person ;
r d f s : range : Date .

: Person
a owl : Class ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : managedCompanies

] ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : gender

] ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : lastName

] ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : isUnemployed

] ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : maxCardinal ity ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : bank

] ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : i sMarr i ed

] ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : age

] ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : f i r stName

] ;
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r d f s : subClassOf
[ a owl : R e s t r i c t i o n ;

owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : b irthDate

] .

owl : Thing
a owl : Class .

: Company
a owl : Class ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : numberOfEmployees

] ;
r d f s : subClassOf

[ a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y ”1”ˆˆ xsd : nonNegat iveInteger ;
owl : onProperty : name

] .

: bank
a owl : ObjectProperty ;
r d f s : domain : Person ;
r d f s : range : Bank .

: lastName
a owl : DatatypeProperty ;
r d f s : domain : Person ;
r d f s : range xsd : s t r i n g .

: numberOfEmployees
a owl : DatatypeProperty ;
r d f s : domain :Company .

: isUnemployed
a owl : DatatypeProperty ;
r d f s : domain : Person .

: day
a owl : DatatypeProperty ;
r d f s : domain : Date .

: f i r stName
a owl : DatatypeProperty ;
r d f s : domain : Person ;
r d f s : range xsd : s t r i n g .
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