
WP1-D1.1

Report on the Combined Metamodel

Project title: Marrying Ontology and Software Technology
Project acronym: MOST
Project number: ICT-2008-216691
Project instrument: EU FP7 STREP
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: ICT216691/UoKL/WP1-D1.1/D/PU/a1
Responsible editors: Fernando Silva Parreiras, Tobias Walter
Reviewers: BOC, CMR
Contributing participants: UoKL, BOC, CMR, SAP
Contributing workpackages: WP1, WP2, WP5, WP6
Contractual date of deliverable: 31 July 2008
Actual submission date: 31 July 2008

Abstract
UML-based models and OWL ontologies constitute modeling approaches with different strengths
and weaknesses that make them appropriate for use of specifying different aspects of software
systems. Though MOF based metamodels and UML profiles for OWL have been proposed in
the past, an integrated approach of both modeling approaches in a coherent framework has
been lacking so far. This deliverable presents a framework involving the integration of existing
metamodels and profiles for UML and OWL modeling, including relevant (sub)standards such
as OCL and considering newer developments such as SWRL, a weaving metamodel and an UML
profile for developing integrated models. We start covering the usage scenarios and use cases
for the application of ontologies and software technologies. The usage scenarios are scrutinized
to identify uses cases. The use cases are detailed and mapped onto the usage scenarios. State
of art OWL metamodels and UML-based metamodels are analyzed and reference models are
proposed. Subsequently, an integration between both reference models is described. We exem-
plify a concrete integration with the TwoUse approach.

Keyword List
software modeling, ontologies, metamodeling, integration

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Seventh Framework Programme.

c© MOST 2008.

ii

Report on the Combined Metamodel

Fernando Silva Parreiras1 and Tobias Walter1

1 ISWeb — Information Systems and Semantic Web
Institute for Computer Science
University of Koblenz-Landau

Universitaetsstrasse 1
56070 Koblenz, Germany

Email: {parreiras, walter}@uni-koblenz.de

31 July 2008

Abstract
UML-based models and OWL ontologies constitute modeling approaches with different strengths
and weaknesses that make them appropriate for use of specifying different aspects of software
systems. Though MOF based metamodels and UML profiles for OWL have been proposed in
the past, an integrated approach of both modeling approaches in a coherent framework has
been lacking so far. This deliverable presents a framework involving the integration of existing
metamodels and profiles for UML and OWL modeling, including relevant (sub)standards such
as OCL and considering newer developments such as SWRL, a weaving metamodel and an UML
profile for developing integrated models. We start covering the usage scenarios and use cases
for the application of ontologies and software technologies. The usage scenarios are scrutinized
to identify uses cases. The use cases are detailed and mapped onto the usage scenarios. State
of art OWL metamodels and UML-based metamodels are analyzed and reference models are
proposed. Subsequently, an integration between both reference models is described. We exem-
plify a concrete integration with the TwoUse approach.

Keyword List
software modeling, ontologies, metamodeling, integration

iv

Contents

1 Introduction 2
1.1 Problem . 2
1.2 Objectives . 2
1.3 How to Read This Document . 3

2 Terms and Definitions 4
2.1 List of Abbreviations . 5

3 Scenarios 6
3.1 Scenario 1: Supporting Model Transformation with Ontologies 6
3.2 Scenario 2: Using ontologies with variability management at runtime 6
3.3 Scenario 3: Description of database structures by ontologies 7
3.4 Scenario 4: Improving design patterns with ontologies 9
3.5 Scenario 5: Web service orchestration specification 11
3.6 Scenario 6: Ontology based systems . 11

4 Use Cases 13
4.1 Use Case Package 1: Design . 13

4.1.1 Use Case 1.1: Write Model Transformation with Ontology Support 13
4.1.2 Use Case 1.2: Design Hybrid Class Diagram 13
4.1.3 Use Case 1.3: Design new OWL ontology 15
4.1.4 Use Case 1.4: Design new UML-based models 15
4.1.5 Use Case 1.5: Verify Hybrid Models . 15
4.1.6 Use Case 1.6: Integrate OWL into different Diagrams 16
4.1.7 Use Case 1.7: Weave existing OWL Ontology and UML-based Models . . 16

4.2 Use Case Package 2: Extension . 16
4.2.1 Use Case 2.1: Add Extension to Metamodel 16

4.3 Mapping Use Cases to Scenarios . 17

5 OWL Metamodels 18
5.1 State of the Art . 18

5.1.1 OMG OWL Metamodel . 18
5.1.2 NEON OWL Metamodel . 20
5.1.3 OWL2 Metamodel . 20

5.2 MOST Reference Layer for OWL . 20
5.2.1 Reference Layer . 21

6 UML-Based Common Metamodels 26
6.1 MOST Reference Layer for UML-based Metamodeling 26

7 MOST Metamodeling Architecture 27
7.1 MOST Conceptual Architecture . 27
7.2 Abstract Syntax . 29

7.2.1 MOST Reference Layer . 30
7.2.2 Connecting Metamodels . 31

7.3 Concrete Syntax . 34

v

7.3.1 Visual Concrete Syntax . 34
7.4 Mappings from UML Profiles onto TwoUse Models 35
7.5 Weaving Model . 36
7.6 Foundation Library . 36

8 Validation 38

9 Conclusion 39

vi

Change Log

Version Date Author(s) Changes
1.3 31.07.08 Fernando Silva Parreiras, Tobias

Walter
Chapter 1 to 13 added

1 Introduction

Software modeling languages (e.g. UML2) and ontology modeling languages (e.g. the Web
Ontology Language OWL) have different strengths and weaknesses that make them appropri-
ate for specifying different aspects of software systems. UML is a general-purpose modeling
language that is capable of capturing information about different views of systems, e.g. static
structure and dynamic behavior. Ontologies model domain knowledge and provide shared con-
ceptualizations by a well-defined vocabulary using precise definitions via logical axioms. OWL
provides a class definition language for ontologies. In particular, OWL allows for the definition
of classes by required and implied logical constraints on the properties of their members.

UML and OWL comprise some constituents which are similar in many respects such as
classes, associations, properties, packages, types, generalization and instances. However, both
approaches have their advantages and disadvantages. For example, UML provides means to
express dynamic behavior, whereas OWL does not. On the other hand, OWL is capable of
inferring generalization and specialization between classes as well as class membership of objects
based on the constraints imposed on the properties of class definitions. UML class diagrams,
on the other hand, do not allow for dynamic specialization/generalization of classes and class
memberships.

Future software development should make use of the benefits of both approaches to overcome
their restrictions. Advantages of OWL ontologies can support other languages by reducing its
model, enabling validation or automated consistency checking. Furthermore ontology languages
provide a better support for reasoning than MOF-based languages. These advantages require
either to bridge software models from both approaches, or to integrate them into a composed
hybrid model.

1.1 Problem

Though UML-Based metamodels and UML profiles for OWL have been proposed in the past, an
integrated use of both modeling approaches in a coherent framework has been lacking. To allow
developers to take advantage of the benefits of both UML models and ontologies a common
metamodel must be designed. This will allow developers to construct software models consisting
both of UML classes and ontology concepts, that is, develop hybrid models.

Languages for software models (like UML) and ontologies (like OWL) have different elements
and properties and, hence, different metamodels. Since MOST contributes to the smooth
integration between the two worlds, this deliverable aims to answer the following questions:
How can we integrate UML-based metamodels and OWL metamodels at the language layer?
What are the concrete syntaxes for the integrated models?

So far, OWL metamodels have only been used in ‘”stand-alone”’ mode of ontology engi-
neering, but a combined metamodel bridges over the two aspects and provides for dual use of
classes (e.g. as Java classes and as OWL concepts).

1.2 Objectives

The objective of this deliverable is to extend existing UML-based metamodels as well as OWL
metamodels and their respective UML profiles, including relevant (sub)standards such as OCL
and considering newer developments such as SWRL (semantic web rule language).

Thus, this deliverable tackles the following issues:

2

1. What are the syntaxes of the above mentioned languages (UML with its different dia-
grams, OCL, OWL, SWRL, RIF, etc.)?

2. How can they be represented by metamodeling approaches such as MOF? Which difficul-
ties arise when they are to be integrated into a joint metamodel?

3. What will be a visual concrete syntax (e.g. a UML profile) for such a joint metamodel?

1.3 How to Read This Document

Chapter 2 will give an overview terms and definitions.
Chapter 3 describes the usage scenarios of an integrated approach. Chapter 4 is built

on these scenarios and describes the use cases. An analysis of existing OWL metamodels is
presented in Chapter 5 as well as a Reference Layer for OWL (Section 5.2). The Reference
Layer is a set of abstract classes that are common over different packages and languages and
defines the core elements of a given domain.

Different metamodeling approaches and a Reference Layer for different metamodeling ap-
proaches like UML, MOF and Ecore are described in Chapter 6.

The MOST Metamodeling Architecture is described in Chapter 7. There, the connections
with the Reference Layers and a guideline for extending the metamodel are described. Moreover,
the concrete syntax for developing hybrid models including a UML profile and an Weaving
Metamodel is explained. A foundation library and guidelines for mappingis are presented.

Finally, in Chapter 8 the metamodels are analyzed and validated according to the require-
ments and use cases presented in Chapter 3. Chapter 9 finishes the document summarizing the
contributions.

3

2 Terms and Definitions

Abstract Syntax. The abstract syntax delineates the body of concepts and how they may be
combined to create models. It comprises definitions of the concepts, the relationships between
concepts and well-formedness rules.

Concrete Syntax. The concrete syntax provides the notation to present the constructs de-
fined in the abstract syntax. It can be categorized in textual syntax and visual syntax.

Class-based modeling. Class-based modeling is an approach consisting basically of the es-
sential constructs used to model a UML class diagram that are common on others metamodeling
approaches like MOF and Ecore. Examples of these constructs are Class, Property, Operation,
Classifier, Attribute.

UML-based Models. UML-based models are models described by metamodels using differ-
ent architectures derived or based on UML. Examples of UML-based models are MOF models,
Ecore models, SysML models or BPMN models.

Metamodel. Metamodel is a model defined on the M2 level.

Metaclass. Metaclass is the class construct on the M2 level according to the the OMG’s Four
layered metamodel architecture. In fact when describing metamodels, metaclasess are simply
referred to as classes.

Model Transformation. Model transformation is a function that receives a source model,
a source metamodel, a target metamodel and a transformation script as input and produces a
target model conforming with a target metamodel.

Reference Layer. Reference Layer is a set of abstract classes that are common over different
packages. It defines the core elements of a given domain.

Implementation Layer. Implementation Layer is the set of classes that extend abstract
classes in the Reference Layer by redefining or specifying their properties and operations.

Metamodeling Architecture. Metamodeling Architecture comprises the set of metamodels
and packages declared on M2 level, one or more concrete syntaxes to design models conforming
with the set of metamodels and mapping rules to accomplish the translation from the concrete
syntax to the abstract syntax (metamodels).

UML-based Metamodeling. UML-based metamodeling consists of different metamodels
that use constructs as class, property and operation as essential constructs. We use the term
UML-based metamodeling to collectively refer to the metamodels UML, MOF and Ecore.

OMG’s Four layered metamodel architecture. It is an architecture defined by OMG
with four different levels: the metametamodel level (M3), the metamodel level (M2), the model
level (M1) and the objects level (M0) (or real world).

4

Mapping Rules. Mapping rules are relationships among constructs in two distinct meta-
models.

Ontology. In this document, the terms ontology and OWL ontology are used interchangeably.
For using UML profiles we focus on OWL as language for ontologies.

Scenario. Scenarios are outlines of set of use cases where the integrated metamodel happens
to be used. They describe the users’ work and are used to extract use cases from it.

2.1 List of Abbreviations

AS Abstract Syntax
CS Concrete Syntax
CWA Closed World Assumption
DL Description Logics
DSL Domain Specific Language
M0 Metamodel Level 0
M1 Metamodel Level 1
M2 Metamodel Level 2
M3 Metamodel Level 3
MBOTL Model-based Ontology Translation Language
MDA Model Driven Architecture
MM Metamodel
MOF Meta-Object Facility 2.0
MOST Marrying Ontologies and Software Technologies
MTL Model Transformation Language
NA Not Available
OCL UML 2.0 Object Constraint Language
ODM Ontology Definition Metamodel
OMG Object Management Group
OWA Open World Assumption
OWL Web Ontology Language
OWL 2 Web Ontology Language 2
OWL DL The Description Logics Dialect of OWL
OWL Full The Most Expressive Dialect of OWL
QVT Query / View / Transformation
RDF Resource Description Framework
RDFS RDF Schema
RL Reference Layer
TU TwoUse
UML Unified Modeling Language 2.0
WFR Well Formedness Rules

5

3 Scenarios

In this section, firstly, we present some scenarios that make profit from the integration of OWL
and UML; and describe them mostly with examples. These scenarios lead us to use cases,
which we are described in Section 4. These scenarios are merely suggestions of use and are not
intended to cover all possible usages of an integrated approach. Most of them are based on
preliminary requirements elicitation together with MOST partners.

3.1 Scenario 1: Supporting Model Transformation with Ontologies

Scenario 1 covers the usage of an extended MTL that uses reasoning technologies to achieve
more flexible transformation scripts. For example, a sofware developer is writing a model
transformation from UML 1.4 Activity Graph into BPEL (UML14toBPEL). As his company
adopts UML 2.0, he does not want to regenerate or rewrite the model transformation specifica-
tions, when it is possible. He wants to allow metamodel evolution without changing the model
transformation.

Example This example uses ontologies for infering axioms that are not aways obvious and
make these axioms assertions on models from Metamodeling Technical Space [Silva Parreiras et al., 2007].

Figure 1 illustrates a simplified example: (Step 0: Model) It depicts two models capturing
bibliographical references. On the left side, the model Ma comprises the class Publication,
which generalizes Article, MScThesis and PhDThesis. On the right side, the model Mb includes
the classes Entry and Thesis. In the middle, there is a mapping model, Mab, with a link
MScThesis2Thesis mapping MScThesis onto Thesis and a link PhDThesis2Thesis mapping
a PhDThesis onto a Thesis.

(Step 1: Forward Transformation) The three models may be transformed into the TRIPLE
language [Silva Parreiras et al., 2007]. The resulting TRIPLE model includes all instances and
classes of Ma and Mb as RDF and furthermore it contains the two logical rules depicted in the
lower part of Fig.1.

(Step 2: Logical Querying) The logical rules allow for querying of Ma instances through the
view of Mb in TRIPLE [Decker et al., 2005]. The corresponding query is defined in TRIPLE by
FORALL X,Y,Z <- X[Y->Z]@Mb(Ma). These retrieved instance triples may be added as triples
to the RDF space of the Mb part of TRIPLE.

(Step 3: Backward Transformation) Eventually, one may transform the latter results from
TRIPLE technical space back to Metamodeling technical space.

While the given example is too simple to be of use in the software engineering process, real
applications may exploit the TRIPLE inferencing and enrichment (i) to translate (database)
objects between PSM/code models at runtime, or (ii) to perform more complex reflections (i.e.
at the model level) that need the help of logic programming, e.g. recursive logical rules such
as exploited in [Oberle et al., 2004].

3.2 Scenario 2: Using ontologies with variability management at run-
time

Companies adopt software product line approach for systems engineering. Feature models are
used for variability management. Since some variants are up to the user, the decision concerning
some variation points is delayed until runtime. Thus the system must be able to validate and

6

// Mapping Mab

FORALL Ma @Mb(Ma) {

// MScThesis2Thesis

FORALL X MScThesis[typeOf->X]@Ma --> Thesis[typeOf->X]

// PhDThesis2Thesis

FORALL X PhDThesis[typeOf->X]@Ma --> Thesis[typeOf->X]

}

Publication

Article

Entry

MScThesis Thesis

PhDThesis

MScThesis2Thesis

PhDThesis2Thesis

Parreiras05 :

ThesisStaab98 :
Thesis

Parreiras05 :
MScThesis

Staab98 :
PhDThesis

M0

M1

Ma Mb

Mab

instanceOf

Figure 1: Mapping between two models Ma and Mb.

handle configurations at runtime. So this scenario covers the use of ontologies to describe
the products and the use of reasoning over the ontologies to specify variability management.
Depending of how complex variants are, OCL and OWL could be used to describe them. In
OWL such a description takes the form of a class and can be easily reused whereas in OCL it
takes the form of invariant stuck on an third class.

Example Today feature models are used to depict variability in software product lines. In
this example, taken from a Comarch scenario, entities of a domain model should be mapped to
features specified in a feature model (cf. figure 2)[com, 2008]. A domain model is used to specify
business entities. These entities are augmented with ontologies, e.g. to state more precisely
particular conditions between them. The feature model describes the product line itself. To
realize the mapping between these models and later to validate the selection of entities with
the feature model an weaving model is used. This weaving model defines the mapping between
features of the feature model and business entities of the domain model. This approach led
to different advantages. For example during design time the selection of features could be
validated. Furthermore accounting for variation points is delayed until runtime.

3.3 Scenario 3: Description of database structures by ontologies

While specifying a part of a domain model, domain experts for example want to define an
association between classes as a combination (e.g. union) of other associations or a class as
a combination of other classes. Due to heavy performance requirements and large amounts of
data that resides already in the database, domain experts are aware that the implementation

7

Figure 2: Mapping between feature model and domain model

must be based on database views. This scenario covers the expression of such combinations on
conceptual level. Ontologies are used to construct such entities and to automatically generate
appropriate database structures from these descriptions. Also ontologies could be helpful to
describe a mapping between these entities and the object model. For detailed information we
refer to deliverable WP5-D1: Defnition of the case study requirements and [com, 2008].

Example Figure 3 depicts a domain model of Comarchs network application OSS. In this
model Edge has two subclasses - SimpleEdge and ComplexEdge. SimpleEdge can be regarded
as point-to-point connection and therefore has two termination points represented in the model
by two associations to Node: MasterStartNode and MasterEndNode. ComplexEdge in turn
may have multiple termination points - each is represented by an EdgeNodeRelation which
associates a single edge (MasterEdge) with a single node (MasterNode).

So seen very abstract, networks consist of nodes and edges. These nodes and edges are
saved in databases on which queries are executed. Before a node in the network can be deleted
the system checks if there are no edges assigned to this node. A query is needed to ask the
database if a node fulfils these conditions. In this case a network operator might ask the system
about all edges assigned to that node. Considering that there are two types of edges that are
assigned to nodes in a different way there must be a way to specify which associations must be
used to compute the list of all associated edges.

CREATE VIEW dbo.v_node_edge (edge_id, node_id, x_create_date, x_modify_date)
AS
SELECT ID, start_node_id, x_create_date, x_modify_date
FROM edge

UNION
SELECT ID, end_node_id, x_create_date, x_modify_date

8

Figure 3: Domain model without usage of OWL

FROM edge
UNION
SELECT edge_id, node_id, x_create_date, x_modify_date
FROM edge_node_rel

For querying a view of an underlying database schema is defined. The role of this view is to
specify a mapping of keys of related objects. The view in this example has following definition:
In this case a mapping between identifiers of nodes and their assigned edges is specified. An
attribute is defined that represents all edges assigned to a node. This attribute can be queried
whenever there is a need of listing all edges assigned to a given node. Therefore in current
approach the logic that contains specification of all assigned Edges relationship is hidden in
PSM - in the specification of a database view.

The goal is that these kinds of logic are specified at the conceptual level for example by on-
tologies. At runtime these specifications are used and the ontology enriched PIM is transformed
into database constructs.

3.4 Scenario 4: Improving design patterns with ontologies

Scenario 4 deals with problems in common design patterns [Gamma et al., 1995] that are used
for different problems in software development. In addition to their advantages, [Gamma et al., 1995]
also characterized consequences including side effects and disadvantages are caused by their use.
For example, solutions based on patterns like Strategy embed the treatment of variants into the
client’s code at various locations, leading to an unnecessary tight coupling of classes. In this
scenario a hybrid approach with ontologies and UML classes come into play to dynamically in-

9

TaskCtlr

so : SalesOrder

getRulesForCountry() : Tax
process()

CanTax USTax

Country

name : String

Tax

taxAmount()

Customer +country

SalesOrder

process(tax : Tax)

+customer

Client
Concept

Context

Variants

context TaskController::getRulesForCountry():Tax
body:
if so.customer.country.name = 'USA' then
USTax.new()

else
if so.customer.country.name = 'Canada' then
GermanTax.new()

endif
endif

Variation

Figure 4: Application of the Strategy Pattern in the problem.

fer class subsumption and object classification. For detailed information we refer to deliverable
WP5-D1: Defnition of the case study requirements.

Example To illustrate an application of such patterns, we take a well-known example of
an order-processing system for an international e-commerce company in the United States
[Shalloway and Trott, 2002]. This system must be able to process sales orders in many different
countries, like the US and Germany, and handle different tax calculations.

We identify the class SalesOrder as context, Tax as concept, and the classes USTax and
GermanTax as variants of tax calculation. Since tax calculation varies according to the coun-
try, the Strategy Pattern allows for encapsulating the tax calculation, and letting them vary
independently of the context. The resulting class diagram is depicted in Fig.4.

In general, the Strategy Pattern solves the problem of dealing with variations. However,
as already documented by [Gamma et al., 1995], the Strategy Pattern has a drawback. The
clients must be aware of variations and of the criteria to select between them at runtime.

When combining the Strategy and the Abstract Factory Pattern, the problem of choosing
among the variants of the AbstractFactory remains almost the same. Indeed, the Abstract
Factory Pattern just groups the families of strategies. Hence, the client must still be aware of

10

Figure 5: Grounding of NetWeaver BPM on ESR

variations.
Thus, a solution that reuses the understanding of the variations without increasing the

complexity is desirable[Silva Parreiras et al., 2008b]. Furthermore, such a solution should allow
to decide on the appropriate variants as late as possible. Separating the base of decision from
the decision itself will provide an evolvable and more modular software design. In section 3.5
we describe how an OWL-based approach can provide such a mechanism.

3.5 Scenario 5: Web service orchestration specification

For specifying and defining web services orchestration scripts are used. Indeed, a programming
language is not applicable since only the business logics are of interest. Thus, this scenario
deals with a language which is able to capture business logics of web service orchestration and
capable to use reasoning capabilities over web service descriptions.

Example SAP uses a tool called NetWeaver BPM to create business process models. From
these models at business layer the grounding of web services are specified (cf. figure 5). The user
should be supported by a language that gives some guidance for example to identify which web
service operations are potentially needed to implement a certain process task (discovery). Also
orchestrating different behavioral requirements of interacting web services should be supported
(orchestration). The identifying and consistently resolving alternative, undesired operation
responses among all participating web services (exception management) should also be a feature
of this language.

3.6 Scenario 6: Ontology based systems

We use our case study in the context of semantic multimedia tool as practical running example
in this paper. The K-Space Annotation Tool (KAT)1 is a framework for semi-automatic and
efficient annotation of multimedia content providing the following features:

• GUI framework;

1http://isweb.uni-koblenz.de/Research/kat

11

http://isweb.uni-koblenz.de/Research/kat

• Plug-in Infrastructure (analysis plug-ins and visual plug-ins);

• Formal model based on the Core Ontology for Multimedia (COMM)[Arndt et al., 2007];

• Support to semantic file system SemFS 2.

Analysis plug-ins provide functionalities to analyze content, e.g., to semi-automatically an-
notate multimedia data like images or videos, or to detect structure within multimedia data.
However, as the number of available plug-ins increases, it becomes confusing for users to choose
appropriate plug-ins to perform over multimedia data.

For example, K-Space EU project partners3 provide Machine Learning based classifying,
e.g., Support Vector Machines (SVM) for pattern recognition. There are different recognizers
(object recognizers, face detectors, speaker identifiers) for different themes (sport, politics, art),
for different types of multimedia data (image, video) and for different formats (JPEG, GIF,
MPEG, etc.). Moreover the list of recognizers is continuously extended and, like the list of
multimedia formats, it is not closed, but by sheer principle it needs to be open. Hence, end-
users may easily misunderstand the suitability of recognizers to multimedia data.

Instead of hard-embedding class descriptions using OCL expressions, a more expressive and
extensible manner of modeling data is more appropriate. Actually, we request flexible ways to
describe classes and, based on such descriptions, we want to infer typing.

Therefore, one requires a logical class definition language that is more expressive than UML2
class-based modeling. Among ontology languages, the Web Ontology Language (OWL)
[McGuinness and van Harmelen, 2004] is the most prominent for Semantic Web applications.

2http://isweb.uni-koblenz.de/Research/SemFS
3http://www.k-space.eu/

12

http://isweb.uni-koblenz.de/Research/SemFS
http://www.k-space.eu/

4 Use Cases

The purpose of this deliverable is the definition of a combined metamodel for UML and OWL.
Since the form and content of this metamodel heavily depends on its purpose, we first assemble
the typical use cases for this metamodel. They are derived from the scenarios presented in
section 3.

The use case diagram depicted in figure 6 gives an overview about all use cases and their
relations. It also gives an overview of both actors and their relation to the use cases. The
architect works all most on the M2-layer and is responsible for extending the metamodel of
some application. The designer who all most works on the M1-layer interacts with designing
new class diagrams, verifying and transforming them.

We separate the use cases by using two different use case packages. Use case package Design
contains all use cases that deal with designing models mostly at the M1-layer. Use case package
Extension contains these use cases that deal with extending the metamodel.

After describing the use cases in the following sections, we map these use cases onto scenarios
in Table 1.

4.1 Use Case Package 1: Design

This section defines all use cases belonging to use case package Design.

4.1.1 Use Case 1.1: Write Model Transformation with Ontology Support

• Actor: Designer

• Use Case Description: This use case covers the support to model transformations,
which are supported by ontologies, between different instances (models) of it.

• Input: A source metamodel, a source model conforming with the source metamodel, a
correspondent reference ontology, a target metamodel.

• Output: Target model generated.

• Normal course of events:

1. The developer writes the transformation script using ontological rules.

• Exceptions: None

4.1.2 Use Case 1.2: Design Hybrid Class Diagram

• Actor: Designer

• Use Case Description: This use case covers the creation and visualization of hybrid
models of different origin, like UML or OWL and with a concrete syntax to depict the
model in one diagram.

• Input: Two or more diagrams, UML profiles for MOST

• Output: One hybrid diagram

• Normal course of events:

13

Write Model

Transformation with

Ontology Support

Designer

Architect

Design Hybrid Class

Diagram

Design new OWL

Ontology

Design new

UML-based Models

Integrate different

Diagrams

Weave existing

Models

Verify Models

Add Extension to

Metamodel

«extend»

«extend»

«extend»

«extend»

Figure 6: Use case model

14

1. The designer models the hybrid class diagram using the proper profile.

• Exceptions: None

4.1.3 Use Case 1.3: Design new OWL ontology

• Actor: Designer

• Use Case Description: This use case covers the design of ontologies. On the one hand
ontologies should be created by any visual editor, on the other hand alternatively by
textual syntaxes (like Manchester OWL Syntax).

• Input: none

• Output: New OWL ontology

• Alternate courses:

1. visual: The designer uses UML profiles to model the OWL ontology.
2. textual: The designer uses Manchester OWL Syntax to model the OWL ontology

• Exceptions: none

4.1.4 Use Case 1.4: Design new UML-based models

• Actor: Designer

• Use Case Description: This use case covers creation of UML-based models by using
UML visual editors.

• Input: none

• Output: New UML-based model

• Normal course of events:

1. The designer draws UML elements.

• Exceptions: none

4.1.5 Use Case 1.5: Verify Hybrid Models

• Actor: Designer

• Use Case Description: This use case covers the verification of models. First constraint
enforcement is claimed, so that model checking on the models can be executed.

• Input: Model enriched by constraints

• Output: Verified model

• Normal course of events:

1. The diagram is parsed into hybrid model
2. The hybrid model is validated against well formed rules

• Exceptions: none

15

4.1.6 Use Case 1.6: Integrate OWL into different Diagrams

• Actor: Designer

• Use Case Description: This use case covers the integration of different diagrams for
which integrated syntaxes are needed.

• Input: Given different diagrams with different syntaxes

• Output: Diagram with OWL support

• Normal course of events:

1. Designer associates OWL classes and restrictions with diagram elements like classes,
activities, constraints, etc.

• Exceptions: none

4.1.7 Use Case 1.7: Weave existing OWL Ontology and UML-based Models

• Actor: Designer

• Use Case Description: This use case covers the integration of models. In a particular
case OWL ontologies and UML-based models should be weaved to one integrated model.

• Input: Given OWL ontology and UML-based models

• Output: Weaving model

• Normal course of events:

1. The Designer links OWL elements and UML elements by means of a weaving model.

• Exceptions: none

4.2 Use Case Package 2: Extension

This section defines all use cases belonging to use case package Extension.

4.2.1 Use Case 2.1: Add Extension to Metamodel

• Actor: Architect

• Use Case Description: This use case covers the extension of metamodels e.g. the
ability to plug additional metamodels in the proposed framework, since the framework is
expected to serve different languages like model transformation languages, process mod-
eling languages, etc.

• Input: Given metamodel

• Output: Extended metamodel

• Normal course of events:

1. The architect adds a new metamodel into the metamodel architecture

• Exceptions: Violation of well formedness rules.

16

Scenarios Sec. 3.1 Sec. 3.2 Sec. 3.3 Sec. 3.4 Sec. 3.5 Sec. 3.6
Use Cases
Sec. 4.1.1 X X X
Sec. 4.1.2 X X X
Sec. 4.1.3 X X X X X X
Sec. 4.1.4 X X X X X
Sec. 4.1.5 X X
Sec. 4.1.6 X X X X X X
Sec. 4.1.7 X X X X X X
Sec. 4.2.1 X X X X X X

Table 1: Traceablity Matrix: Mapping Use Cases to Scenarios

4.3 Mapping Use Cases to Scenarios

After describing the use cases in section 4, we mapped these use cases to scenarios in Table 1.
The table identifies which scenario is instance of a particular use case and gives advice where
a sequence of steps through a use cases could be found.

17

Figure 7: The OWL Class Descriptions Diagram of the OMG OWL Metamodel[OMG, 2007a]

5 OWL Metamodels

The following section presents a short description of the three most prominent OWL metamod-
els, namely the OMG OWL Metamodel [OMG, 2007a], the Neon OWL Metamodel [Brockmans et al., 2004]
and the OWL2 Metamodel [Motik et al., 2008].

Our aim is not to describe all those metamodels. Instead, we concentrate on two central
constructs easily comparable and understandable: classes and properties. Please refer to the
citations for more details.

5.1 State of the Art

5.1.1 OMG OWL Metamodel

The OMG OWL Metamodel is part of the Ontology Definition Metamodel OMG Adopted Spec-
ification. It has a high number of classes, since it imports the OMG RDFS Metamodel. Thus
some relations between classes are described in the RDFS Metamodel and reused in the OWL
Metamodel.

For example, Figure 7 and Figure 8 depict the Class Description Diagram and the Prop-
erties Diagram respectively. The Domain and range of properties are specified in the RDFS
Metamodel, depicted in Fig.9.

18

Figure 8: The OWL Properties Diagram of the OMG OWL Metamodel [OMG, 2007a]

Figure 9: RDFS Package, The Properties Diagram of the OMG OWL Metamodel [OMG, 2007a]

19

Figure 10: The OWL Class Descriptions Diagram of the NEON Metamodel

5.1.2 NEON OWL Metamodel

The Neon Metamodel [Brockmans et al., 2004] is a concise metamodel able to cover the OWL-
DL functional syntax. Figure 10 and Figure 11 depict the OWL class hierarchy and the property
diagram respectively. The relationship between Class and Property is direct, since the Neon
OWL Metamodel does not provide support for RDFS.

5.1.3 OWL2 Metamodel

Improvements on the OWL language led W3C OWL Working Group to publish working drafts
of a new version of OWL: OWL 2 [Motik et al., 2008]. OWL 2 is fully compatible with OWL-DL
and extends the latter with limited complex role inclusion axioms, reflexivity and irreflexivity,
role disjointness and qualified cardinality restrictions. Moreover, OWL 2 uses a new XML
Serialization and provides a set of profiles with different levels of expressiveness.

As one may note, the OWL 2 Metamodel is considerably different from the available meta-
models for OWL. Constructs like Axiom and OWLEntity play central roles and associations
between classes and properties are done by axioms. Figures 12 and 13 exemplify such constructs.

5.2 MOST Reference Layer for OWL

The objective of adopting reference layers is to provide extensibility and compatibility with
existing metamodels. By doing so, we provide the flexility of choosing the metamodel that
best meets partners’ requirements. Moreover, it gives an extension point for introducing new
metamodels without affect existing applications.

We have conducted a qualitative comparison between the three metamodels described above
to select the metamodel with better extensibility and effectiveness quality attributes.

The Neon OWL Metamodel was chosen, because it is the smallest one on number of classes
and the simplest one, since it is not attached to the RDF metamodel, as the OMG metamodel.

20

Figure 11: The OWL Properties Diagram of the NEON Metamodel

The OMG metamodel has different qualities like public acceptance as standard and popular-
ity. Nevertheless, working with the OMG metamodel as reference metamodel would introduce
unnecessarily the complexity of dealing with RDF without any gain. Furthermore, the usage
of the OMG metamodel is enabled as concrete metamodel as explained in Sect. 7.2.2.

OWL 2 is backwards compatible with OWL1 constructs, but, by the time of writing this
document, the OWL2 metamodel was not finished yet although it was stable. Notice that
the Neon metamodel does not cover OWL 2 constructs and, consequently, neither the MOST
reference metamodel for OWL. However it would be possible to extent the reference metamodel
to support OWL 2 if such a need emerges as use case requirement. Such changes will be part
of the foreseen revision of the combined metamodel.

Because of differences between OMG OWL, Neon OWL and OWL 2, we introduce a Ref-
erence Layer that comprises common concepts of OWL that are used by MOST. Based on the
extensibility metrics presented by the Neon OWL metamodel, we have adapted it to be used
as Reference Layer.

5.2.1 Reference Layer

The OWL Reference Layer to be used in MOST is an adaptation of the Neon OWL metamodel.
This Reference Layer works as an interface for MOST to access OWL metamodels. In the
following paragraphs we detail each package.

OWL::OWLBasic. Figure 14 depicts the class diagram of the package OWL::OWLBasic.
Notice that the MOST OWL Reference Layer must be used together with a concrete OWL
metamodel.

21

Figure 12: The OWL Class Descriptions Diagram of the OWL 2 Metamodel

Figure 13: The OWL Properties Diagram of the OWL 2 Metamodel

22

Whereas the OMG OWL, Neon OWL and OWL 2 metamodels comprise similar classes,
associations between classes in these models are specified differently. As well-formedness rules of
the MOST metamodel need to navigate along such associations, the Reference Layer introduces
additional operations that encapsulate internal navigations.

For example, supposing one wants to adopt MOST with the OMG OWL Metamodel as
OWL metamodel, it is required to adapt the classes from the MOST OWL Reference Layer.
Figure 15 depicts the example of the classes Class and Property.

Specializing Abstract Classes. Firstly, classes with very similar semantics are chosen and a
specialization association is drawn from the abstract class in the MOST OWL Reference Layer
to the concrete class.

Implementing Abstract Operations. In the MOST OWL Reference Layer, the class Prop-
erty has the operation getDomain of type collection of Class. According to our example, the
class DatatypeProperty and the class ObjectProperty have the operation getRange with a col-
lection of either Datatype or Class. The class Property inherits from both RDFProperty and
BasicOWL::Property.

The class Property specifies the operation getDomain according to the internal associations
in the OMG OWL metamodel. Thus, the definition of getDomain looks as follows:

1 context Property
de f : getDomain () : Set (BasicOWL : : Class)

s e l f .RDFSDomain .oclAsType(Class)−>asSet ()

The definition of the operation getRange for the DatatypeProperty and the ObjectProperty is
similar:

1 context OWLDatatypeProperty
de f : getRange () : Set (BasicOWL : : Datatype)

s e l f .RDFSDomain .oclAsType(Datatype)−>asSet ()

5 context OWLObjectProperty
de f : getRange () : Set (BasicOWL : : Class)

s e l f .RDFSDomain .oclAsType(Class)−>asSet ()

The same process as described above is then used for extending the remaining classes and
defining their methods.

SWRL Since the SRWL metamodel is compatible with the Neon OWL metamodel, it can
be used together with the MOST OWL Reference Layer to provide support to OWL Rules.
For more details about the SWRL metamodel please see [Brockmans et al., 2006]. Our work
involves only converting associations between classes in operations(Fig. 16).

23

Ontology

+ getOntologyElements() : Set(OntologyElement)

Class

+ getDisjointWith() : Set(Class)

+ getEquivalentClass() : Set(Class)

+ getSubClassOf() : Set(Class)

Individual

+ getDifferentFrom() : Set (Individual)

+ getSameAs() : Set(Individual)

+ getType() : Set(Class)

ObjectProperty

+ getInverseOf() : Set(Property)

+ getRange() : Set(Class)

DatatypeProperty

+ getRange() : Set(Datatype)

Property

+ getDomain() : Set(Class)

+ getEquivalentProperty() : Set(Property)

+ getSubPropertyOf() : Set(Property)

Datatype

EnumeratedClass

+ getOneOf() : Set(Individual)

OntologyElement

AnnotatableElement

OntologyPropertyAnnotationProperty

DataRange

AnnotationPropertyValue

+ getObject() : Annotation

+ getSubject() : AnnotatableElement

+ getType() : AnnotationProperty

Annotation

URI

ClassDescription

BooleanCombination

+ getCombinationOf() : Set(Class)

Restriction

+ getOnProperty() : Property

+ getToClass() : Class

+ getToDatatype() : Datatype

AtomicClass

Complement Intersection Union UniversalRestriction

ExistentialRestriction

HasValue

NumberRestriction

DataValue

+ getType() : Datatype

QualifiedNumberRestriction

PropertyValue

+ getObject() : Annotation

+ getSubject() : Individual

+ getType() : Property

ObjectPropertyValue

+ getObject() : Individual

DatatypePropertyValue

+ getObject() : DataValue

Figure 14: MOST OWL Reference Layer - Package OWL::BasicOWL.

24

Figure 15: Adapting the MOST OWL Reference Layer to OMG OWL metamodel.

Rule

+ getAntecedent() : Antecedent

+ getConsequent() : Consequent

Atom

getHasPredicateSymbol() : PredicateSymbol

Antecedent

getAtoms() : Set(Atom)

Consequent

+ getAtoms() : Set (Atom)

PredicateSymbol

+ getTerms() : Sequence(Term)

DataRange Property BuiltIn

- builtInID: URI

Term

Variable Constant

DataVariable IndividualVariable Individual

AnnotatableElement

BasicOWL::

OntologyElement

+

+

Class

DataValue

Figure 16: SWRL Package.

25

6 UML-Based Common Metamodels

Following the rationale of UML Class modeling, several Metamodels are centered in constructs
like Class, Property and Attribute. Examples of such metamodels are Ecore, MOF, KM3 and
UML class modeling packages. Additionally, metamodels that import or depend on the former
metamodels like QVT, ATL and SysML are also organized around these constructs as well as
Business Process languages like BPEL or BPMN.

Therefore it is feasible to identify common constructs among the above metamodels and
group them forming an reference layer. This section explains such a strategy.

6.1 MOST Reference Layer for UML-based Metamodeling

Following the rationale of MOST OWL Reference Layer, we provide a Reference Layer for
UML-based Metamodeling as depicted in Fig. 17. Under UML-based metamodeling we group
modeling approaches that use constructs as class, property and operation as essential constructs.
The MOST UML-based Metamodeling Reference Layer comprises the Kernel package with
common constructs to UML, MOF and EMOF.

Kernel. The Kernel package comprises common core classes to UML, MOF and Ecore and
necessary classes to possibly support OCL. Common constructs among these UML-based ap-
proaches have been already investigated by [Akehurst and Patrascoiu, 2004], [Loecher and Ocke, 2004],
[Bräuer and Demuth, 2007]. We have adapted the work of Akehurst and Patrascoiu
[Akehurst and Patrascoiu, 2004] to provide the Reference Layer for UML-based Metamodeling.

Akehurst and Patrascoiu [Akehurst and Patrascoiu, 2004] have successfully mapped most
of the classes of the Kernel package to classes from the UML 1.X (which the metamodel is
originally based on), to the metamodel for Java and to the ECore Metamodel. According to
their work, it would not be a problem mapping the classes to the UML 2.0 metamodel or MOF
metamodels. One might think of using UML 2.0 directly, but it would introduce unnecessary
complexity regarding the size and hierarchies.

The class ModelElement allows to tag model elements with names. Namespace is a Mod-
elElement that can own other ModelElements, like Classifiers or Packages. An Operation is a
functioning objects request to effect behavior. An operation is typed by a Classifier and has a
signature describing actual Parameters.

A CallAction is ”an action resulting in an invocation of an operation on an instance” [OMG, 2001].
An action points to the operation that is invoked when the Action is carried out. A Property des-
ignates attributes for containing classifiers. Finally, An InstanceSpecification is a model element
that specifies existence of an instance. It can be classified by Classifiers.

26

Figure 17: MOST Reference Layer for UML-Based Metamodeling.

7 MOST Metamodeling Architecture

In spite of their different purposes, Ontologies and UML-based metamodeling share some similar
constructs. Recent work presents similarities between MOF and RDF [Gašević et al., 2007], be-
tween OWL/RDF and Object-Oriented Languages [Knublauch et al., 2006] and between UML
and OWL [OMG, 2007a] [Falkovych et al., 2003]. We roughly summarize them in Table 2. For
the subtleties, please refer to the cited papers.

Some of these constructs are based on others. For example, subclass, enumeration and
disjointness are based on Classifier; domain and range are based on the relationship between
classifier and property whereas cardinality is based on Property.

Thus, providing a seamless integration of the core constructs is the foundation for an in-
tegrated approach. The next sections present an extensible approach for integrating OWL
ontologies and UML-based metamodeling.

7.1 MOST Conceptual Architecture

With the intention of summarizing and providing a complete view of MOST Conceptual Archi-
tecture, Fig. 18 presents a model-driven view of MOST, using modeling spaces [Djurić et al., 2005a].
Figure 18 shows the Concrete Syntax and Abstract Syntax according to the MOF modeling
space. Two modeling levels according to the OMG’s Four layered metamodel architecture are
shown: the metamodel level (M2) and the model level (M1). The relationships inside each
quadrant show dependency, the ones stereotyped with flow are transformations, the ones that
cross the horizontal borderline denote instantiation.

27

OMG-OWL

+ OWL

+ RDF

Foundation Library

Weaving

+ AMW

+ TU Weaving

Weaving Model

UMM Reference LayerOWL Reference Layer

MOST Reference Layer

TwoUse

TwoUse Model

OWL Model

UML Model

«flow»

«flow»

«flow»

«flow»

Concrete Syntax

Abstract Syntax

HybridDiagram

UML

M2

M1

Figure 18: Layered metamodels and modeling spaces of the TwoUse Approach.

28

OWL UML Class-based Modeling
Ontology Package
Class Class, Classifier
Individual and values Instance and Attribute Values
Object Property, Datatype Property Association, Attribute
Data Types Data Types
Subclass, Subproperty Subclass, Generalization
Enumeration Enumeration
Domain, Range Navigable, Non-Navigable
Disjointness, union Disjointness, cover
Cardinality Multiplicity

Table 2: Comparable Features of OWL and UML Class-based Modeling

A concrete implementation of the MOST Reference Layer is illustrated here by TwoUse
[Silva Parreiras et al.,]. Indeed, TwoUse represents our initial efforts at integrating OWL and
UML. In the context of MOST, TwoUse profits from the MOST Reference Layer.

As Concrete Syntax UML profiles of the HybridDiagram are illustrated: an UML profile
for OWL (Sect. 7.3.1) and another for MOST, which contains only stereotypes for Opaque
expressions and properties (Sect. 7.3.1).

The resulting package from designing a hybrid model using an UML tool are shown at M1.
The hybrid diagram is composed of: pure UML elements with their OCL expressions; elements
stereotyped by the UML profile for OWL; and the opaque expressions stereotyped by the UML
profile for MOST.

The Abstract Syntax presents the organization of the packages in the MOST. It comprises
the MOST OWL Reference Layer (Sect. 5.2), the UML-based metamodeling Reference Layer
(Sect. 6.1), the MOST Reference Layer (Sect.7.2.1), the implementation of the MOST Reference
Layer by integrating of OMG-OWL and UML provided - TwoUse. The TwoUse package imports
the UML and OWL metamodels and specializes elements from both, as shown in Sect. 7.2.2.

The packages of models generated from the hybrid diagram are represented at M1. UML
elements are copied, because they don’t need to be transformed. The package HybridDiagram
serves as basis for two transformations: (1) the generation of the OWL model, instance of OWL
metamodel and (2) the generation of TwoUse classes in the TwoUse package, as explained in
Sect. 7.4.

Additionally, a Weaving model (Sect. 7.5) is provided for composing existing OWL ontolo-
gies and UML-based Models.

7.2 Abstract Syntax

MOST will enable developers to describe M1 classes with UML and OWL in a platform inde-
pendent way. An overview of the packages comprised by the MOST Abstract Syntax is depicted
in Fig. 19.

The Abstract Syntax comprises a set of packages of different types: packages for the Ref-
erence Layer and packages for the implementation. The Reference Layer consists of MOST
OWL Reference Layer, MOST UML-based Metamodeling Reference Layer and MOST Refer-
ence Layer. Concrete implementations of these layers are illustrated by TwoUse, which con-

29

UMM Reference Layer

MOST Reference Layer

OWL Reference Layer

UML OMG-OWL

TwoUse

NeonOWL

MBOTL

ATL

Figure 19: Overview of Packages in the MOST Metamodel.

cretely integrates UML and OMG OWL, and MBOTL [Silva Parreiras et al., 2008a], which is a
language for transforming Ontologies that can profit from the MOST Reference Layer as well.
Notice that the MOST Conceptual Architecture allows for plugging and adapting metamodels
based on any of the three Reference Layers.

7.2.1 MOST Reference Layer

The objective of having a Reference Layer is to be able to implement a language-independent
engine to query OWL ontologies and UML-based models. The MOST Reference Layer comprises
extensions of the Kernel package of the MOST UML-based Metamodeling Reference Layer.

MOSTKernel The MOSTKernel package provide the integration between common constructs
in OWL and UML-based Metamodeling: Package, Class, Property, Instance and Datatype.
Basically, we apply the Adapter Design Pattern [Gamma et al., 1995] to connect classes from
the MOST UML-based Metamodeling Reference Layer to classes from the OWL Reference
Layer.

Following the nomenclature of Gamma et al. [Gamma et al., 1995], Target classes represent
the interfaces from the MOST UML-based Metamodeling Reference Layer (Kernel::Namespace,
Kernel::Classifier, Kernel::Datatype, Kernel::Property and Kernel::InstanceSpecification). Adapter
classes are prefixed with the letter M (MPackage, MClassifier, MDatatype, MProperty and MIn-
dividual). Adaptee classes are classes from the MOST OWL Reference Layer.

In most of the cases, associations between classes are substituted by operations in order
to provide a common interface for different metamodels. This technique enable the concrete
metamodels to keep associations between classes independently from the classes at the reference
metamodel. An exception is the case of the class MPackage, since a connection between the
class MPackage and the class BasicOWL::Ontology in an different way is unlikely.

30

MClassifier

+ getMMClass(String) : Classifier

+ getOwlClass(String) : BasicOCL::Class

MProperty

+ getMMProperty(String) : Property

+ getOWLProperty(String) : BasicOWL::Property

MDatatype

+ mmType() : Datatype

+ owlType() : BasicOWL::Datatype

MPackage

ModelElement

Kernel::Property

+ lookupClassifier(String) : Classifier

OntologyElement

BasicOWL::Class

+ getDisjointWith() : Set(Class)

+ getEquivalentClass() : Set(Class)

+ getSubClassOf() : Set(Class)

OntologyElement

BasicOWL::Property

+ getDomain() : Set(Class)

+ getEquivalentProperty() : Set(Property)

+ getSubPropertyOf() : Set(Property)

AnnotatableElement

BasicOWL::Ontology

+ getOntologyElements() : Set(OntologyElement)

GenericElement

Kernel::Classifier

+ conformsTo(Classifier) : Classifier

+ lookupOperation(Set(Parameter), String) : Operation

+ lookupProperty(String) : Property

+ lookupSignal(String) : Signal

ModelElement

Kernel::

Namespace

Kernel::Datatype

MIndividual

+ mapToMM() : InstanceSpecification

+ mapToOWL() : Individual

ModelElement

Kernel::InstanceSpecification

+ getClassifiers() : Set (Classifier)

OntologyElement

BasicOWL::

Datatype

+nestingNamespace 0..1

+nestedNamespace 0..*

PackageMapping

+owlOntology

+class

0..*

+property

0..*

Figure 20: MOST Reference Layer Package MOSTKernel.

7.2.2 Connecting Metamodels

In order to implement concrete integration between OWL and UML-Based Metamodeling, the
classes provided by the MOST Reference Layer are extended and adapted, according to the
example below.

Marrying UML and OMG-OWL: TwoUse TwoUse is a concrete implementation of
MOST that integrates UML and OWL [Silva Parreiras et al.,]. It imports the OMG OWL
metamodel [OMG, 2007a] and package Core::Basic::Kernel of the UML2 [OMG, 2007b] meta-
model.

TwoUse extends the MOST Reference Layer by adding the class TUClass, which spe-
cializes MOSTReferenceLayer::MOSTKernel::MClassifier and UML2::Core::Basic::Kernel::Classifier
(Fig. 21). The class TUClass has as association ends the UML class and the OWL class.
The associations are used to define the operations inherited from the class MOSTReference-
Layer::MOSTKernel::MClassifier like follows:

1 context TUClass
de f : getMMClass () : (MOSTKernel : : C l a s s i f i e r)

s e l f . umlClass .oclAsType(MOSTKernel : : C l a s s i f i e r)

5 de f : getOWLClass () : (OWL: : Class)
s e l f . owlClass .oclAsType(OWL: : Class)

The steps for extending the classes Datatype, Property and InstanceSpecification are similar.
Figure 22 shows the class TUDatatype extending the class MDatatype.

31

MOSTKernel::MClassifier

+ getMMClass(String) : Classifier

+ getOwlClass(String) : BasicOCL::Class

Kernel::Class

Kernel::Classifier

RDFSClass

OWLBase::OWLClass

+ getDisjointWith() : Set(Class)

+ getEquivalentClass() : Set(Class)

+ getSubClassOf() : Set(Class)

TUClass

+ getMMClass(String) : Classifier

+ getOwlClass(String) : BasicOCL::Class

OntologyElement

BasicOWL::Class

+ getDisjointWith() : Set(Class)

+ getEquivalentClass() : Set(Class)

+ getSubClassOf() : Set(Class)

GenericElement

Namespace

Kernel::Classifier

+ conformsTo(Classifier) : Classifier

+ lookupOperation(Set(Parameter), String) : Operation

+ lookupProperty(String) : Property

+ lookupSignal(String) : Signal

+tuClass

0..*

OWLClassMapping

+owlClass 1

+tuClass

0..*
UMLClassMapping

+umlClass 1

Figure 21: TwoUse Metamodel Extensions.

32

GenericElement

Namespace

Kernel::Classifier

+ conformsTo(Classifier) : Classifier

+ lookupOperation(Set(Parameter), String) : Operation

+ lookupProperty(String) : Property

+ lookupSignal(String) : Signal

Kernel::Datatype

Kernel::Datatype

TUDatatype

+ mmType() : Datatype

+ owlType() : BasicOWL::Datatype

OntologyElement

BasicOWL::

Datatype

RDFSClass

RDFS::

RDFSDatatype

Kernel::MDatatype

+ mmType() : Datatype

+ owlType() : BasicOWL::Datatype

TUPrimitiveType

+ mmType() : Datatype

+ owlType() : BasicOWL::Datatype

Kernel::

PrimitiveType

+umlDatatype

DatatypeMapping

+owlDatatype

Figure 22: TwoUse Metamodel Extensions.

33

Additionally, we illustrate how datatypes can be mapped between the different models. The
following expressions map the datatypes Boolean and String onto UML and OWL datatypes.

1 context TwoUse : : TUPrimitiveType
inv : s e l f .name = ’Boolean’

implies umlDatatype .name = ’Boolean’

and owlDatatype .name = ’boolean’

5 inv : s e l f .name = ’String’

implies umlDatatype .name = ’String’

and owlDatatype .name = ’string’

// . . .

7.3 Concrete Syntax

Notations for modeling OWL ontologies have been developed, resulting in textual notations
[Horridge et al., 2006] [Bechhofer et al., 2003] as well as in using UML as a visual notation
[Brockmans et al., 2004] [Djurić et al., 2005b] [OMG, 2007a].

We cover the usage of UML Profiles as visual concrete syntax as well as the usage of an
weaving approach for integrating existing models.

7.3.1 Visual Concrete Syntax

UML Profiles for OWL Among existing UML profiles for OWL, we use the UML profile
for OWL proposed by OMG[OMG, 2007a]. The choice of such profile is justified by the fact
that it covers all constructs of OWL-DL and does not require extra adornments, which eases
its implementation and adoption. The UML profile for OWL is described in detail in the OMG
ODM specification [OMG, 2007a].

UML Profiles for TwoUse We call the UML class diagram with some of the elements
stereotyped by an UML Profile for OWL a hybrid diagram. The hybrid diagram comprises
three different views, illustrated in Fig. 23: (1) the UML view with its OCL expressions, (2)
the OWL view and its logical class definitions and (3) the TwoUse view, which integrates UML
classes and OWL classes.

Considering the example of Fig. 23, the OWL view consists of nine classes, seven of which are
named classes and two are unnamed classes. The restriction classes are required for reasoning
on the subclasses USSalesOrder and CanSalesOrder. Thus, they only reside in the OWL view.
The UML View comprises the six classes depicted in Fig.23. Applying the rules described in
Sect.7.4, the TwoUse view will contain five classes.

Although we reuse an available UML profile for OWL to map onto TwoUse classes, OWL
classes referred to by operations must be TwoUse classes too. To be compatible with tools
that support UML2 extension mechanisms, the Opaque expressions must be specified with the
stereotype <<DLExpression>>. This stereotype has the property referredOwlClass [*] and
the values are the referred classes. Such reference is needed to match TwoUse classes later when
writing mappings.

So far, these are the extensions to be done to provide mappings onto the TwoUse model.
Those mappings are presented in Sect 7.4

34

«owlClass» Customer

«owlClass»
10..n

+customer+order

10..n

+country

+customer

USCustomer
«owlRestriction»

« »owlValue {hasValue = USA} country:Country

«owlRestriction» {someValuesFrom=USCustomer} customer

«owlValue»

CanadianCustomer
«owlRestriction»

«owlValue» {hasValue = Canada} country:Country«owlRestriction»

{someValuesFrom=CanadianCustomer} customer«owlValue»

CanSalesOrder

«owlClass»

USSalesOrder

«owlClass»

«equivalentClass»

«equivalentClass»

TaskCtrl

salesOrder : SalesOrder
customer : Customer

getSalesOrder()

SalesOrder
« »owlClass

price

total()
taxes()
freight()

Country

«owlClass»
process()

UML

TwoUse

OWL

Figure 23: UML Class Diagram profiled with UML Profile for OWL and TwoUse Profile.

7.4 Mappings from UML Profiles onto TwoUse Models

The elements of the TwoUse view in the hybrid diagram (Fig.23) are mapped onto instances of
two kinds of elements of the TwoUse metamodel: TUClass and TUPackage. The elements of the
OWL view in the hybrid diagram map onto instances of the OWL metamodel. The elements of
the UML view are copied, because they don’t need to be changed, since the TwoUse metamodel
imports the UML one.

The classes in the hybrid diagram to be mapped onto TwoUse classes can be matched as
follows: (1) any class that has the stereotype <<owlClass>> and has any operation or any
UML property declared or (2) any class with stereotype <<owlClass>>, of which the name is a
property value of ReferredOwlClass property of the stereotype <<DLExpression>>.

Any class with the stereotype <<owlClass>> and with only properties stereotyped as <<datatypeProperty>>
or <<objectProperty>> and that are not mapped onto TwoUse classes are mapped onto OWL
classes.

Any class without any of the above-mentioned stereotypes results in a regular UML class.
Properties can be available on OWL and be accessible from the OWL side or can remain only
in UML. Properties to be available on both paradigms (UML and OWL) are stereotyped as
TUProperty. A TwoUse package is any package that has TwoUse classes.

The relationships among elements from the TwoUse view and elements from the other views
are preserved, as the TwoUse metamodel specializes both UML and OWL metamodels. No
direct relationship is allowed between OWL and UML entities without being linked by TwoUse
entities.

35

UML

TaskCtrl
salesOrder : SalesOrder
customer : Customer

process()
getSalesOrder()

CanSalesOrder USSalesOrder

SalesOrder
price

total()
taxes()
freight()

Country

name : String

Customer

10..n

+customer

+order

1

0..n

+country

+customer

Class: CanSalesOrder

EquivalentTo:
SalesOrder
that customer some (Customer
that country has Canada)

SubClassOf:
SalesOrder

Class: Customer

Class: SalesOrder

Class: USASalesOrder

EquivalentTo:
SalesOrder
that customer some (Customer
that country has USA)

SubClassOf:
SalesOrder

Class: Country

OWL
Weaving Model

TUClass
umlClass: Customer
owlClass: Customer

TUClass
umlClass: Country
owlClass: Country

TUClass
umlClass: CanSalesOrder
owlClass:

TUClass
umlClass:
owlClass:

TUClass
umlClass: SalesOrder
owlClass: SalesOrder

CanSalesOrder

USSalesOrder
USSalesOrder

Figure 24: Weaving Model.

7.5 Weaving Model

To integrate existing UML2 models and OWL ontologies, an weaving model described by an
weaving metamodel is used. The weaving model serves as input for the model transformation
into the TwoUse model. For example, Fig. 24 depicts a weaving model linking the the UML
Class SalesOrder and the OWL Class SalesOrder.

To provide a weaving metamodel, we have followed the generic weaving metamodel presented
by Didonet Del Fabro et al. [Fabro et al., 2005]. Figure 25 depicts a preliminary metamodel
for weaving existing OWL ontologies and UML models.

7.6 Foundation Library

The model libraries define a number of datatypes, class identifiers and operations that must
be included in the implementation of MOST metamodel. These constructs are instances of
metaclasses at M2 level. The foundation library exists at the M1 level, whereas the abstract
syntax (metamodel) exists at M2 level. The foundation library is composed of the XML Schema
Datatypes library, the RDF library and the OWL library.

Examples of M1 objects of the XML Schema datatypes library are the datatypes gDay,
gMonth and gYear, having the M2 class RDFS::RDFSDatatype as metaclass. In the RDF li-
brary, for example, the M1 object nil has the M2 class RDFS::RDFList as metaclass. In
the OWL library, interesting M1 objects are Thing and Nothing, both having the M2 class
OWL::OWLClass as metaclass. These three libraries are based on the foundation library for
RDF and OWL described in the ODM specification[OMG, 2007a].

36

WeavingModel
ElementRef

ModelRef

TUClass TUPropertyUMLClass UMLProperty OWLProperty UMLOperation

+ body: String

- post: String [0..*]

+ pre: String [0..*]

WElement

AMW::WModel

WRef

AMW::WModelRef

WRef

AMW::

WElementRef

WElement

AMW::WLink

WElement

AMW::WLinkEnd

OWLClass

+umlModel

+owlModel

+wovenModel

1..*

+parent

+child 0..*
+end

1..*

+link

+element

{subsets element}

+modelRef

+ownedElementRef

0..*

Figure 25: Weaving Metamodel.

The foundation library is not yet implemented is to be developed within the MOST project,
according to future requirements of MOST use cases.

37

8 Validation

In this section we corroborate the metamodeling architecture by pointing where and how the
use cases courses defined in Section4 are addressed in this document. Table 3 lists the use cases
courses according to each use case and describes how the use case can be accomplished by this
deliverable and where to find details in this document.

UC Course How to accomplish Where
4.1.1

1 A Model Transformation Language with support to
ontologies is not defined, but a guideline of how to
extend the Reference Layer including an example is
outlined.

7.2.2

4.1.2
1 An UML Profile is provided as well as a weaving

model.
7.3

4.1.3
4.1.3 UML Profiles for OWL are suggested. 7.3.1

4.1.4
1 MOST provide compatibility with UML model by

the Reference Layer
6.1

4.1.5
1 UML Profiles are defined as CS, transformation rules

from CS to AS and a set of metamodels as AS.
7.3, 7.2, 7.4

2 WFR are defined 7.2
4.1.6

1 The MOST Reference Layer allows for connecting
different elements with the Metaclass MClassifier,
which can be a bridge for integrating UML elements
of different diagrams like artifacts, classes, signals,
etc, since these elements are specializations of Clas-
sifier.

7.2.1

4.1.7
1 A weaving metamodel is outlined to be used with

existing model weaving tools.
7.5

4.2.1
1 A Reference Layer and guidelines to implement the

Reference Layer are provided.
5.2, 6.1,

Table 3: Use Case Validation

38

9 Conclusion

This document describes a combined metamodel for ontologies and metamodeling technologies
based on initial requirements provided by MOST Use Case Partners. We build on top of the
requirements to propose an extensible approach based on design patterns for adaptation and
extension of existing metamodels. The resulting metamodels are analyzed from the perspective
of requirement fulfilment.

Since Working Package 1 does not contribute with a tool and our approach is heavily based
on reuse, minor changes on metamodels are preserved and foreseen during the implementation
phase.

Acknowledgement

Thanks to Profs. Steffen Staab and Jürgen Ebert (UoKL) for their valuable comments.
This research has been co-funded by the European Commission and by the Swiss Federal

Office for Education and Science within the 7th Framework Programme project MOST num-
ber 216691 (cf. http://most-project.eu).

39

http://most-project.eu

List of Figures

1 Mapping between two models Ma and Mb. 7
2 Mapping between feature model and domain model 8
3 Domain model without usage of OWL . 9
4 Application of the Strategy Pattern in the problem. 10
5 Grounding of NetWeaver BPM on ESR . 11
6 Use case model . 14
7 The OWL Class Descriptions Diagram of the OMG OWL Metamodel[OMG, 2007a] 18
8 The OWL Properties Diagram of the OMG OWL Metamodel [OMG, 2007a] . . . 19
9 RDFS Package, The Properties Diagram of the OMG OWL Metamodel [OMG, 2007a] 19
10 The OWL Class Descriptions Diagram of the NEON Metamodel 20
11 The OWL Properties Diagram of the NEON Metamodel 21
12 The OWL Class Descriptions Diagram of the OWL 2 Metamodel 22
13 The OWL Properties Diagram of the OWL 2 Metamodel 22
14 MOST OWL Reference Layer - Package OWL::BasicOWL. 24
15 Adapting the MOST OWL Reference Layer to OMG OWL metamodel. 25
16 SWRL Package. 25
17 MOST Reference Layer for UML-Based Metamodeling. 27
18 Layered metamodels and modeling spaces of the TwoUse Approach. 28
19 Overview of Packages in the MOST Metamodel. 30
20 MOST Reference Layer Package MOSTKernel. 31
21 TwoUse Metamodel Extensions. 32
22 TwoUse Metamodel Extensions. 33
23 UML Class Diagram profiled with UML Profile for OWL and TwoUse Profile. . . 35
24 Weaving Model. 36
25 Weaving Metamodel. 37

40

List of Tables

1 Traceablity Matrix: Mapping Use Cases to Scenarios 17
2 Comparable Features of OWL and UML Class-based Modeling 29
3 Use Case Validation . 38

41

References

[com, 2008] (2008). Comarch oss suite - telecomunications, mobile, telecom network software
homepage. http://oss.comarch.com/.

[Akehurst and Patrascoiu, 2004] Akehurst, D. H. and Patrascoiu, O. (2004). Ocl 2.0 - imple-
menting the standard for multiple metamodels. Electr. Notes Theor. Comput. Sci., 102:21–41.

[Arndt et al., 2007] Arndt, R., Troncy, R., Staab, S., Hardman, L., and Vacura, M. (2007).
Comm: Designing a well-founded multimedia ontology for the web. In Proc. of ISWC 2007
+ ASWC 2007, Busan, Korea, volume 4825 of LNCS, pages 30–43. Springer.

[Bechhofer et al., 2003] Bechhofer, S., Patel-Schneider, P. F., and Turi, D. (2003). OWL Web
Ontology Language concrete abstract syntax. Available at http://owl.man.ac.uk/2003/
concrete/latest/.

[Brockmans et al., 2006] Brockmans, S., Haase, P., Hitzler, P., and Studer, R. (2006). A meta-
model and UML profile for rule-extended OWL DL ontologies. In Proc. of 3rd European
Semantic Web Conference (ESWC), volume 4011 of LNCS, pages 303–316. Springer.

[Brockmans et al., 2004] Brockmans, S., Volz, R., Eberhart, A., and Löffler, P. (2004). Visual
modeling of owl dl ontologies using uml. In et al., S. M., editor, Proceedings of the Third
International Semantic Web Conference, pages 198–213, Hiroshima, Japan. Springer.

[Bräuer and Demuth, 2007] Bräuer, M. and Demuth, B. (2007). Model-level integration of the
ocl standard library using a pivot model with generics support. In Proc. of 7th OCL Workshop
at the UML/MoDELS Conferences, Nashville, USA.

[Decker et al., 2005] Decker, S., Sintek, M., Billig, A., Henze, N., Dolog, P., Nejdl, W., Harth,
A., Leicher, A., Busse, S., Ambite, J. L., Weathers, M., Neumann, G., and Zdun, U. (2005).
TRIPLE - an RDF rule language with context and use cases. In Rule Languages for Inter-
operability.

[Djurić et al., 2005a] Djurić, D., Gašević, D., and Devedžić, V. (2005a). Adventures in modeling
spaces: Close encounters of the semantic web and MDA kinds. In Workshop on Semantic
Web Enabled Software Engineering (SWESE 2005), Galway, Ireland.

[Djurić et al., 2005b] Djurić, D., Gašević, D., Devedžić, V., and Damjanovic, V. (2005b). A
UML profile for OWL ontologies. In MDAFA, volume 3599 of LNCS, pages 204–219. Springer.

[Fabro et al., 2005] Fabro, M. D. D., Bézivin, J., Jouault, F., Breton, E., and Gueltas, G.
(2005). Amw: a generic model weaver. In Journées sur l’Ingénierie Dirigée par les Modeles
(IDM05), pages = 105-114, note = 2-7261-1284-6.

[Falkovych et al., 2003] Falkovych, K., Sabou, M., and Stuckenschmidt, H. (2003). Uml for
the semantic web: Transformation-based approaches. In Knowledge Transformation for the
Semantic Web, pages 92–106.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design
Patterns. Addison-Wesley Longman, Amsterdam.

42

http://oss.comarch.com/
http://owl.man.ac.uk/2003/concrete/latest/
http://owl.man.ac.uk/2003/concrete/latest/

[Gašević et al., 2007] Gašević, D., Djurić, D., and Devedžić, V. (2007). MDA-based automatic
OWL ontology development. Int. J. Softw. Tools Technol. Transf., 9(2):103–117.

[Horridge et al., 2006] Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R.,
and Wang., H. (2006). The Manchester OWL Syntax. In OWL: Experiences and Directions
(OWLED) 2006, Athens, Georgia, USA.

[Knublauch et al., 2006] Knublauch, H., Oberle, D., Tetlow, P., and Wallace, E. (2006). A
semantic web primer for object-oriented software developers. W3c working group note, W3C.

[Loecher and Ocke, 2004] Loecher, S. and Ocke, S. (2004). A metamodel-based ocl-compiler
for uml and mof. Electr. Notes Theor. Comput. Sci., 102:43–61.

[McGuinness and van Harmelen, 2004] McGuinness, D. L. and van Harmelen, F. (2004).
OWL Web Ontology Language overview. Available at http://www.w3.org/TR/2004/
REC-owl-features-20040210/.

[Motik et al., 2008] Motik, B., Patel-Schneider, P. F., and Horrocks, I. (2008). Owl 2 web
ontology language – structural specification and functional-style syntax. Working draft,
W3C.

[Oberle et al., 2004] Oberle, D., Eberhart, A., Staab, S., and Volz, R. (2004). Developing
and managing software components in an ontology-based application server. In Proc. of
Middleware-04, pages 459–477.

[OMG, 2001] OMG (2001). Unified Modeling Language Specification Version 1.4. Object Mod-
eling Group.

[OMG, 2007a] OMG (2007a). Ontology Definition Metamodel. Object Modeling Group.

[OMG, 2007b] OMG (2007b). Unified Modeling Language: Superstructure, version 2.1.1. Ob-
ject Modeling Group.

[Shalloway and Trott, 2002] Shalloway, A. and Trott, J. (2002). Design patterns explained: a
new perspective on object-oriented design. Addison-Wesley, Boston, MA, USA.

[Silva Parreiras et al., 2008a] Silva Parreiras, F., Staab, S., Schenk, S., and Winter, A. (2008a).
Model driven specification of ontology translations. In Lia, Q., Spaccapietra, S., and Yu,
E., editors, Conceptual Modeling - ER 2008, 27th International Conference on Conceptual
Modeling, Barcelona, Spain, October 23-26, 2008, Proceedings, volume 5231 of Lecture Notes
in Computer Science. Springer.

[Silva Parreiras et al.,] Silva Parreiras, F., Staab, S., and Winter, A. TwoUse: Integrating
UML models and OWL ontologies. Technical Report 16/2007, University of Koblenz-Landau.
Available at http://isweb.uni-koblenz.de/Projects/twouse/tr162007.pdf.

[Silva Parreiras et al., 2007] Silva Parreiras, F., Staab, S., and Winter, A. (2007). On marrying
ontological and metamodeling technical spaces. In Proceedings of the 6th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2007, Dubrovnik, Croatia, September 3-7.
ACM Press.

43

http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://isweb.uni-koblenz.de/Projects/twouse/tr162007.pdf

[Silva Parreiras et al., 2008b] Silva Parreiras, F., Staab, S., and Winter, A. (2008b). Improving
design patterns by description logics: A use case with abstract factory and strategy. In
Kühne, T., Reisig, W., and Steimann, F., editors, Modellierung 2008, 12.-14. März 2008,
Berlin, number 127 in LNI. GI.

44

	Introduction
	Problem
	Objectives
	How to Read This Document

	Terms and Definitions
	List of Abbreviations

	Scenarios
	Scenario 1: Supporting Model Transformation with Ontologies
	Scenario 2: Using ontologies with variability management at runtime
	Scenario 3: Description of database structures by ontologies
	Scenario 4: Improving design patterns with ontologies
	Scenario 5: Web service orchestration specification
	Scenario 6: Ontology based systems

	Use Cases
	Use Case Package 1: Design
	Use Case 1.1: Write Model Transformation with Ontology Support
	Use Case 1.2: Design Hybrid Class Diagram
	Use Case 1.3: Design new OWL ontology
	Use Case 1.4: Design new UML-based models
	Use Case 1.5: Verify Hybrid Models
	Use Case 1.6: Integrate OWL into different Diagrams
	Use Case 1.7: Weave existing OWL Ontology and UML-based Models

	Use Case Package 2: Extension
	Use Case 2.1: Add Extension to Metamodel

	Mapping Use Cases to Scenarios

	OWL Metamodels
	State of the Art
	OMG OWL Metamodel
	NEON OWL Metamodel
	OWL2 Metamodel

	MOST Reference Layer for OWL
	Reference Layer

	UML-Based Common Metamodels
	MOST Reference Layer for UML-based Metamodeling

	MOST Metamodeling Architecture
	MOST Conceptual Architecture
	Abstract Syntax
	MOST Reference Layer
	Connecting Metamodels

	Concrete Syntax
	Visual Concrete Syntax

	Mappings from UML Profiles onto TwoUse Models
	Weaving Model
	Foundation Library

	Validation
	Conclusion

