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Abstract 

 
In statistical estimation procedure prior information regarding the unknown value of parameter is utilizing 

and it may result in a decrease of sampling variability of the estimator or it may save sample size which is 

desirable in many estimation procedures. The commonly used approaches in statistical inference which 

utilize prior information are Bayesian approach, preliminary test procedure and shrinkage estimation. The 

paper proposes preliminary test estimator and shrinkage preliminary test estimator for the variance in 

normal distribution and studies its property under Linex loss function. The paper also proposes and 

suggests shrinkage preliminary test estimator for the variance in negative exponential distribution and 

studies its property under Linex loss function.  
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1. INTRODUCTION 
 
Thompson (1968) introduces the idea of shrinkage estimation and found that the shrinkage 

estimator perform better if the guess value is in the vicinity of true value and when sample size is 

small. In many practical problems it may not be known whether a prior value )( 0 is close to the 

true value of the parameter [3]. It 00       :  H  is accepted, thenthe shrinkage estimator otherwise 

the usual estimator can be used.[2],[4-8], [10-11], [13], [15-21], [24], [26-28] and [31] have used 

preliminary test estimator and shrinkage estimator in different distributions. [25] showed that the 

non-optimality of preliminary test estimator for mean in normal, binomial and Poisson 

distribution.[14] proposed shrinkageestimator  for the mean in an exponential distribution under 

type II censoring data. [2] extended the above estimator tomean ()in an exponential distribution 

by acceptance region of uniformly most powerful test with a level of significance (for testing the 

hypothesis
.
 [12] used a different weight R which is more conservative than the above in the sense 

that test statistics is near to the boundary of the critical region if k = 1. This suggests that the use 

of the test statistic for preliminary test estimator in the construction of weight function k is more 
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reasonable than fixed or pre-determined value of k. [9]proposed modified double stage shrinkage 

estimator.  

 

In the context of real estate assessment, [29] proposed an asymmetric loss function called Linex 

loss function (linear-exponential) as  

 

  ,-    1),( ceaL a                                                                                                (1.1)  

 

Where a, c>0.  

 

The Linex loss function is employed in the analysis of several central statistical estimation and 

prediction problems. The Linex loss function which rises exponentially on one side of zero and 

almost linearly on the other side of zero. This loss function behaves linearly for large under-

estimation errors (∆<0), in which case the exponential term vanishes and exponentially for large 

over-estimation errors (∆>0), in which case the exponential term dominates and vanishes when 

there is no estimation (∆=0). 

 

[31] points out that if c=a then equation (1.1) is minimized at ∆=0.With this restriction equation 

(1.1) reduces to  

 

  ,-    1 ),( aeaL a                                                                                             (1.2) 

 

[31] points out that for negative values of a Linex loss retains its linear-exponential character, 

though for opposite estimation error, and that for small values of a  Linex loss is nearly 

symmetric and approximately proportional to squared error loss. But for larger value of a it is 

quite asymmetric. 

 

 
 

Linex loss function 
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An example is given in the field of hydrology with the estimation of peak water level in the 

construction of the dam. In that case, overestimation represents a conservative error which 

increases construction costs, while underestimation corresponds to the much more serious error in 

which overflows might lead to huge damage in the adjacent area. 

 

The Linex loss function (another form) is 

 

  .0,1),1(, 



 acebaL a




                                                           (1.3)  

 

Where a  and b are shaped and scale parameter. If
,
Linex loss reduced to square error.  

 

In section 2, proposed preliminary test estimator for variance in normal distribution as  
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Andstudies its  properties under Linex loss function.  

 

Here 21

2

 )e  (1 
2

1
s

a

n n

a







 is the improve estimator in the class of estimatorY = cs
2
 under the Linex 

loss function [23]. 

 

In section 3, proposed shrinkagepreliminary test estimator for 2  in normal distribution and 

studied its property under Linex loss function and also suggests another shrinkage preliminary 

test estimator for 2  in normal distribution. 

 

The proposed shrinkage preliminary test estimator for 2  in normal distribution as 
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The other proposesshrinkage preliminary test estimatorby taking 1
2 kk   may be defined as  
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In section 4, proposedshrinkage preliminary test estimatorofvariance ( 2 ) in negative exponential 

distribution and studied its property under Linex loss function and also suggest another shrinkage 

preliminary test estimator for the variance( 2 ) in negative exponential distribution.  
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The other proposes shrinkage preliminary test estimator by taking 1
2 kk  may be defined as  
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   (1.8) 

 

The value of c <and, since the magnitude of the shrinkage factor under Linex loss is smaller than 

the mean square criterion. 

 

2. PRELIMINARY TEST ESTIMATOR FOR VARIANCE IN 

NORMAL DISTRIBUTION UNDER LINEX LOSS FUNCTION  
 

Let us consider a normal distribution with  and also let 2
0

  is the prior value of 2 , 

thepreliminary test estimator is 

 

2ˆ
PT




































otherwise, )se  (1 
2

1

  
)1(n

 if  

      

21

2

22
0

2

1
2
0

P
a

n

s

n

a






                                                                          (2.1) 

 



International Journal of Soft Computing, Mathematics and Control (IJSCMC), Vol.4, No. 1,February 2015 

53 
 

Here, /2      ]  [       ]  [ 2
2

11
2

1
 


 nn PP .  

 

The improve estimator of 2  under the Linex loss function is  
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2ˆ
PT  under mean square error was considered previously. The risk under an invariant form 

ofLinex  lossfunction is defined as  
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The relative efficiency of estimator 2ˆ
PT  with respect to Pis calculated for (σ0

2
/σ

2
) =  =0. 6 (. 2) 

(1.2), α=5%, a=. 2 (. 2)1.0 and n =5 (5)15 in table from 2.1 to 2.4. The tables show that the 

preliminary test estimator 2ˆ
PT performs better if, 12.0  a and n is less than 20.The maximum 

result is at the point .1  
 

3.SHRINKAGEPRELIMINARY TEST ESTIMATOR 

FORVARIATION IN A NORMAL DISTRIBUTION UNDER LINEX 

LOSS FUNCTION 
 
[27] and[28] introduced shrunken estimator in life testing distribution. [21] introduced 

preliminary test estimator for the variance in normal distribution as  
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[12] suggested that the value of k may be taken as the function of test statistics.  
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Thus the proposed shrunken preliminary test estimators are 
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Similarthe expressions for the shrinkage preliminary test estimator 2
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 can be obtained in the 

future. 
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 performs better if 2.16.0   ,α=5%  and for smaller values of n. The maximum result is at 

the point .1 The AIC information suggest that α should be 16%. The results of 16% can be 

calculated, but the above recommendation will give useful results.  
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4. SHRINKAGEPRELIMINARY TEST ESTIMATOR FOR 

VARIANCE IN NEGATIVE EXPONENTIAL DISTRIBUTION 
 
[22] were considered shrinkage estimator for the variance in negative exponential distribution as  
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The relative efficiency of estimator 2

1
ˆ
SPT

  with respect to Y is calculated for z =0.6(.2) (1.2), 

α=5%, a=.2,.4,.6,1, n =3, 5,7 and c=1, 2 in the table from4.1 to 4.8. The table shows that the 
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estimator 2

1

ˆ
SPT

 performs better if 2.16.0  z , for smaller values of a and n under Linex loss 

function. The maximum result is at the point .1z  
 

The relative efficiency of estimator 2

1
ˆ
SPT

  with respect to Y may also calculate for z =0.6 (.2) 

(1.2), α=5%, a=.2,.4,.6,1, n =3, 5,7 and c=1, 2. 

 

5. SCOPE FOR FURTHER RESEARCH 
 
In this paper author has proposed two estimators for further study. Here author proposed 

shrinkage preliminary test estimator for the variance in normal distribution and shrinkage 

preliminary test estimators for the variance ( 2 ) in negative exponential distribution. 
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7. APPENDICES 
  

Table- 2.1: Relative Efficiency of estimator 
2ˆ
PT w.r.to P when 6.0 and 5 %  

 

a 

n 

.2 .4 .6 .8 1.00 

5 1.448 1.457 1.468 1.478 1.489 

10 .932 .943 .954 .966 .977 

15 .689 .700 .711 .732 .732 
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Table- 2.2: Relative Efficiency of estimator 
2ˆ
PT w.r.to P when 8.0 and 5 % 

 

a 

n 

.2 .4 .6 .8 1.00 

5 2.765 2.779 2.794 2.810 2.829 

10 2.150 2.158 2.166 2.174 2.182 

15 1.771     1.779 1.786 1.794 1.801 

 

Table-2.3: Relative Efficiency of estimator 
2ˆ
PT w.r.to P when 0.1 and 5 %  

 

a 

n 

.2 .4 .6 .8 1.00 

5 3.559 4.044 4.092 4.144 4.203 

10 3.964 3.885 3.907 3.929 3.953 

15 3.785 3.299 3.811 3.824 3.837 

 

Table-2.4: Relative Efficiency of estimator 
2ˆ
PT w.r.to P when 2.1 and 5 %  

 

a 

n 

.2 .4 .6 .8 1.00 

5 2.742 2.732 2.722 2.712 2.704 

10 2.125 2.106 2.088 2.069 2.051 

15 1.746 1.729 1.711 1.693 1.675 

 

Table-3.1: Relative Efficiency of estimator 
2

1
ˆ
SPT

 w.r.to P  when 6.0 & 5 % 

 

a 

n 

.2 .4 .6 1.0 

5 1.691 1.694 1.697 1.701 

10 1.393 1.396 1.398 1.399 

15 1.244 1.245 1.244 1.241 
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Table-3.2: Relative Efficiency of estimator 
2

1
ˆ
SPT

 w.r.to P when 8.0 & 5 %  

 

a 

n 

.2 .4 .6 1.0 

5 2.434 2.438 2.443 2.456 

10 2.046 2.051 2.055 2.065 

15 1.848 1.854 1.854 1.869 

 

Table-3.3: Relative Efficiency of estimator 
2

1
ˆ
SPT

 w.r.to P  when 0.1 & 5 %  

 

a 

n 

.2 .4 .6 1.0 

5 3.132 3.135 3.139 3.150 

10 2.866 2.864 2.861 2.855 

15 2.743 2.741 2.737 2.729 

 

Table-3.4: Relative Efficiency of estimator 
2

1
ˆ
SPT

 w.r.to P when 2.1 & 5 %  

 

a 

n 

.2 .4 .6 1.0 

5 2.682 2.663 2.643 2.601 

10 2.289 2.169 2.248 2.204 

15 2.023 2.004 1.985 1.946 
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Table 4.1: Relative Efficiency of Estimator 

2

1

ˆ
SPT


w.r.to Y  when 1 , 2.0  ca & 5 % 

 

 

z 

n 

.6       .8 1.0 1.2 

3 1.564 3.068 6.037 3.148 

5 1.322 2.371 5.171 3.418 

7 1.194 1.965 4.353 3.489 

Table-4.2: Relative Efficiency of estimator 

2

1
ˆ
SPT


w.r.to Y when 1 , 4.0  ca & 5 % 

 

z 

n 

.6       .8 1.0 1.2 

3 1.542 2.971 5.631 2.813 

5 1.306 2.289 4.788 3.105 

7 1.184 1.906 4.042 3.197 

Table-4.3: Relative Efficiency of estimator 

2

1

ˆ
SPT


w.r.to Y when 1 , 6.0  ca & 5 % 

 

z 

n 

.6       .8 1.0 1.2 

3 1.521 2.877 5.247 2.519 

5 1.291 2.310 4.426 2.825 

7 1.174 1.845 3.749 2.934 
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Table-4.4: Relative Efficiency of estimator 

2

1

ˆ
SPT


w.r.to Y when 1 , 0.1  ca & 5 % 

 

z 

n 

.6       .8 1.0 1.2 

3 1.484 2.704 4.563 2.043 

5 1.264 2.062 3.783 2.364 

7 1.157 1.742 3.233 2.494 

 

Table-4.5: Relative Efficiency of estimator 

2

1

ˆ
SPT


w.r.to Y when 2 , 2.0  ca & 5 % 

 

z 

n 

.6       .8 1.0 1.2 

3 1.534 2.905 5.973 3.792 

5 1.331 2.461 6.377 4.602 

7 1.203 2.052 5.462 4.839 

Table-4.6: Relative Efficiency of estimator 

2

1

ˆ
SPT


w.r.to Y when 2 , 4.0  ca & 5 % 

 

z 

n 

.6       .8 1.0 1.2 

3 1.519 2.859 5.757 3.413 

5  1.320 2.401 6.115 4.208 

7 1.196 2.009 5.201 4.459 
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Table-4.7: Relative Efficiency of estimator 

2

1

ˆ
SPT


w.r.to Y when 2 , 6.0  ca & 5 % 

 

z 

n 

.6       .8 1.0 1.2 

3 1.506 2.809 5.553 3.755 

5 1.310 2.361 5.867 3.854 

7 1.188 1.968 4.951 4.114 

 

Table-4.8: Relative Efficiency of estimator 

2

1

ˆ
SPT


w.r.to Y when 2 , 0.1  ca & 5 % 

 

z 

n 

.6       .8 1.0 1.2 

3 1.487 2.741 5.205 2.517 

5 1.294 2.279 5.418 3.258 

7 1.176 1.895 4.488 3.528 

 


