

Physical processes at the Sun's surface

SAMI K. SOLANKI

MAX PLANCK INSTITUTE FOR SOLAR SYSTEM RESEARCH

Main processes at the solar surface

- Main physical processes acting (or visible) at the Sun's surface:
 - Convection at different scales
 - Magnetoconvection: Interaction of magnetic foe;d with convection
 - Rotation and differential rotation
 - Large scale flows, such as meridional circulation
 - Oscillations and waves
 - Radiative transfer of energy
- These processes must act also on other stars with outer convection zones, although properties will differ
- Main processes causing structuring: magnetic field and convection

Convection

- Overturning convection is the main source of energy transfer just below solar surface
- In solar photosphere we observe overshooting convection (i.e. gas is convectively stable)
- Main scale of convection visible at surface is granulation
- Also clearly present is supergranulation
- Still larger scales are seen in simulations below the surface and have been claimed to be observed

Surface manifestation of convection: Granulation

- Typical size: 1–2 Mm
- Lifetime: 5–8 min
- Velocities: 1–2 km/s (but peak velocities > 10 km/s, i.e. supersonic)
- Brightness contrast: ~15% RMS in visible (green) continuum
- All quantities show a continuous distribution of values
- At any one time 10⁶ granules on Sun

HD simulation by Vögler et al.

LOS Velocity

Surface manifestation of convection: Supergranulation

- 1 h average of Dopplergrams (averages out oscillations)
- Dark-bright: flows towards/away from observer
- No supergranules visible at disk centre
 velocity is mainly horizontal
- Size: 15-30 Mm Lifetime: days Horiz. speed: 400 m/s No contrast in visible

Surface manifestation of convection: Supergranulation

Lyα

- 1 h average of Dopplergrams (averages out oscillations)
- Dark-bright: flows towards/away from observer
- No supergranules visible at disk centre
 velocity is mainly horizontal
- Size: 15-30 Mm Lifetime: days Horiz. speed: 400 m/s No contrast in visible

Magnetic fields

Polar fields

 $2 \dots 4 \cdot 10^{26} Mx/yr$ Quiet network

Active region 10²³ ... 10²⁴ Mx/yr

Unipolar network

SDO/HMI

Internetwork fields 10²⁸ Mx/yr

Sunrise / IMaX

What are active regions composed of?

Magnetic structure of active regions is determined by

- sunspots
- pores
- plage or facular magnetic elements
- Flux per feature:
 - Spot: $\Phi = 10^{20} 10^{22} Mx$
 - Pore: $\Phi = 3 \cdot 10^{18} 3 \cdot 10^{20} \text{ Mx}$
 - ME: $\Phi = 10^{17} 3 \cdot 10^{18} \text{ Mx}$

How much magnetic flux in different types of features?

 Parnell+ 2009: single power law with exponent -1.85 covers frequency of features with fluxes 10¹⁷ – 10²² Mx

Single power law
Do all magnetic features have same source?

- On a star we typically only resolve the largest features
 Power law: There are many
 - more that we cannot resolve
 - Many seemingly large features may be clusters of smaller ones

Magnetic flux per feature

Umbra

Penumbra Granules + lanes

 $T_{\rm eff} \approx 5800 \ {\rm K}$

 $T_{\rm eff} \approx 5500 \, {\rm K}$ $I_{\rm pen} = 0.75 I_{\odot}$

 $T_{\rm eff} \approx 4500 \ {\rm K}$ $I_{\rm umb} = 0.20 I_{\odot}$

- Field: $B_{max} = 2500-4500$ G; vertical in umbra, nearly horizontal at outer edge
- Brightness: umbra: 20% of quiet Sun, penumbra: 75%
- Evershed flow: horizontal, radially outwards directed flow. Averaged speeds: 1–2 km/s, locally 10km/s
- Sizes: Log-normally distributed (= Gaussian on a logarithmic scale)
- Lifetimes: hours-months: Gnevyshev-Waldmeier rule: Liftetime ~ max spot area

- Field: $B_{\text{max}} = 2500-4500$ G; vertical in umbra, nearly horizontal at outer edge
- Brightness: umbra: 20% of quiet Sun, penumbra: 75%
- Evershed flow: horizontal, radially outwards directed flow. Averaged speeds: 1–2 km/s, locally 10km/s
- Sizes: Log-normally distributed (= Gaussian on a logarithmic scale)
- Lifetimes: hours-months: Gnevyshev-Waldmeier rule: Liftetime ~ max spot area

- Field: $B_{max} = 2500-4500$ G; vertical in umbra, nearly horizontal at outer edge
- Brightness: umbra: 20% of quiet Sun, penumbra: 75%
- Evershed flow: horizontal, radially outwards directed flow. Averaged speeds: 1–2 km/s, locally 10km/s
- Sizes: Log-normally distributed (= Gaussian on a logarithmic scale)
- Lifetimes: hours-months: Gnevyshev-Waldmeier rule: Liftetime ~ max spot area

- Field: $B_{max} = 2500-4500$ G; vertical in umbra, nearly horizontal at outer edge
- Brightness: umbra: 20% of quiet Sun, penumbra: 75%
- Evershed flow: horizontal, radially outwards directed flow. Averaged speeds: 1–2 km/s, locally 10km/s
- Sizes: Log-normally distributed (= Gaussian on a logarithmic scale)
- Lifetimes: hours-months: Gnevyshev-Waldmeier rule: Liftetime ~ max spot area

Active region plage

- Plage is composed of magnetic elements: 100-500 km wide; 1500 G field strength near solar surface
- Field strength drops with height and the field expands
- Located in the downflowing lanes surrounding granules
- Each element constantly interacting with convection and with other magnetic features

Bühler et al. 2015

Field strength

Active region plage

- Plage is composed of magnetic elements: 100-500 km wide; 1500 G field strength near solar surface
- Field strength drops with height and the field expands
- Located in the downflowing lanes surrounding granules
- Each element constantly interacting with convection and with other magnetic features

Bühler et al. 2015

Active region plage

- Plage is composed of magnetic elements: 100-500 km wide; 1500 G field strength near solar surface
- Field strength drops with height and the field expands
- Located in the downflowing lanes surrounding granules
- Each element constantly interacting with convection and with other magnetic features

M. Schüssler, R. Cameron

Intensity

Radiation MHD simulation

Spectra

Sun: UV dominated by facular brightening

IR dominated by spot darkening

Visible: mixture of both (depends on timescale

Other stars: Depends on spectral type and activity level Low activity G+K stars behave qualitatively like the Sun Highly active stars tend to be spot dominated in the visible

Solar brightness, sunspots and faculae

Starspots → darkening of
their host stars (amount
depends on spectral type)
Effect of faculae (even the
sign) depends on spectral
type (Beeck+ 2015)

Sunspots produce a global darkening of the Sun, while faculae lead to a brightening (Fligge et al. 2000; Krivova et al. 2003)

Magnetic flux cancellation

- Opposite magnetic polarities cancel when they come together
- Ohmic dissipation at current sheets leads to a destruction of magnetic flux
- If left to itself, the magnetic flux on the Sun would soon dissipate
- →There must be constant replenishment by new magnetic flux

Positive magn. polarity Negative magn. polarity

Line of sight magnetic field

Radiation MHD simulation

Cameron et al. 2008

Magnetic flux emergence

 Magnetic flux, built up in the solar interior by a dynamo process, constantly emerges at the solar surface

2001-Jul-2

- It replenishes the flux lost by cancellation
- Most of the new flux appears in the form of small bipolar features (power law distribution of magnetic flux per bipole)

Differential rotation & meridional circulation Cutaways through Sun. North pole at top

- Solar equator rotates in roughly 25 days (sidereal), poles in 30+ days
- There is a slow (10-20 m/s) flow from equator to poles at solar surface
- Properties at poles are very uncertain
- Both produced by interaction between convection & rotation

Differential rotation Schou et al. 1998

Meridional circulation Hathaway 2012, Gizon et al. 2017

Effect of surface velocity fields

Surface flux transport model with solar-like cyclic eruption of bipolar magnetic regions

Includes main processes: differential rotation, meridional circulation & diffusion

Thank you for your attention