

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

DOI: 10.5121/ijccsa.2016.6502 13

INTRUSION DETECTION AND MARKING

TRANSACTIONS IN A CLOUD OF DATABASES
ENVIRONMENT

Syrine Chatti and Habib Ounelli

Department of Computer Sciences, Faculty of Sciences, El Manar, Tunis

ABSTRACT

The cloud computing is a paradigm for large scale distributed computing that includes several existing

technologies. A database management is a collection of programs that enables you to store, modify and

extract information from a database. Now, the database has moved to cloud computing, but it introduces at

the same time a set of threats that target a cloud of database system. The unification of transaction based

application in these environments present also a set of vulnerabilities and threats that target a cloud of

database environment. In this context, we propose an intrusion detection and marking transactions for a

cloud of database environment.

KEYWORDS

Database system, cloud computing, intrusion detection, marking transaction.

1. INTRODUCTION

The unfolding of a cloud of database system has risen over the world cause of the need of

distributed storage and the great volume of data handled by business applications. The unification

of transaction based application in these environments present a set of threats that can target a

cloud of database environment.

For example, the execution of the malicious sub transactions may be delayed by rendering the

wireless nodes unavailable or a fake commit or rollback may be issued by the intruder when the

system is compromised. As a consequence to these malicious actions critical data may be lost.

Available intrusion detection do not support the particularities of these environments (database,

cloud and transaction systems) in their processing either to detect or mark attacks.

To overcome such shortcomings, we propose an appropriate intrusion detection and marking

transactions in a cloud of database system. This approach includes the definition of the

communication model that is defined in order to ensure the exchange of a set of notification

messages. This scheme is based of marking the details of transactions by maintaining a set of

valuable information regarding the dependency relationship between these transactions and their

security status.

The remaining part of the paper is organized as follow. The section 2, we make a survey of the

existing approaches for intrusion detection of database systems. In the next section, we will give

an overview of the system architecture. In the section 4, the proposed intrusion detection and

marking scheme is proposed. In section 5, a simulation results is proposed in order to depict both

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

14

behavior and efficiency about the suggested scheme following system compromission. Section 6

concludes the paper.

2. RELATED WORK

Several techniques have been proposed to handle different aspects of intrusion detection in a

database environment

In [2], the authors present the misuse detection system that uses auditing in order to have sources

describing typical behaviour of the users using the database system. The drawback of this

approach that is detects only known attacks and is unable to detect new attacks.

In [8], Zhong presents the database intrusion detection based on user query itemsets mining with

item constraints. In this approach the intrusion detection uses a profile of normal user stored in

database that is appropriate to find unknown attack in the database. The main problem in this

approach that the delay of execution is long in addition false negative alarm increased.

In [7], a data mining approach for database intrusion detection is presented. A dependency

relationships between data items is determined. If one item is modified then another item refer

with it is also modified. The authors determine dependency among data items where data

dependency refers to the access correlations among data items. The association rules generate

these data dependency. Therefore, transactions that do not follow any of mined data dependency

rules are marked as malicious one. The problem of this approach that they process all the

attributes at the same significance and equal level which is not always true in real applications.

In database intrusion detection using weighted sequence mining [6], they consider that some

attributes are more sensitive to malicious modifications compared to others. Any transaction that

does not follow these dependency rules are identified as malicious. The most important problem

in this approach is the proper support is identificated and the values are confident.

In intrusion detection of Malicious Activity in RBAC administered databases [1], the authors

have presented a role based approach to detect malicious behaviour in role access control. A

classifier is used in order to build role profiles and detect abnormal behaviour. The classifier

estimates roles for given user than it compares it with the actual role of user. If it’s different an

alarm is triggered. This approach is good for databases which use role based access control. In

addition, it covers insider threat scenario. But, the dependency relationship is not detected in this

approach. So, some attacks in the database is not detected.

3. SECTION OVERVIEW

In this section, we will introduce the architecture of the proposed system that includes the cloud

database controller (CDC), the participant nodes and cloud database storage (CDS) as presented

in Figure 1.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

15

Figure 1 The architecture of a cloud of databases system

 CDC: It’s the main component handling the CDS’s interactions. A common pool is

defined to manage CDSs and CDS blocks are allocated to host system from it. The CDC

manages data handled by CDSs and it manages the transactions running in the system.

The CDC operates a set of structures to serve incoming requests. It serves and presents a

set of structures:

o The first is a mapping table that hold the transactions and its originator as cited in

[3].

o The second is a table that contains for each input the adequate data center.

o For each data center, a structure that provides a mapping table that contain the

participant node and its suitable CDS.

 Participant Node: The participant nodes are designed for transaction services, for data

centers that are located in different geogical locations and corporate data center as well.

This link is required for easy and complete access to the database on cloud services.

 CDS: It produces a detailed report on each step used to access data and allowing you to

implement precisely improved performance.

3.1. System overview

When receiving the transaction from the user, the CDC divides the transaction into sub

transactions, checks its mapping table and then decides which data centers will be the best for

processing of the sub transactions.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

16

After identifying the adequate data centers, the sub transactions will be transferred to that

specified one. When receiving the sub transactions, the participant node processes it and responds

the CDC by issuing a request for a local commit or rollback.

The cloud of database system enables the possibility of storing multiple copies of data at various

physical locations throughout the system. Data replication accross multiple sites is desirable for a

variety of reasons. To provide disaster tolerance, copies of data stored at different physical

location should be available. When a copy becole unvailable because of a default of CDS,

breakdown of the network, the replica located at another site can allow access to data. In such

architecture, the replica provided benefit until failure.

For the processing of data replication, the CDC have a mapping table that holds for each entry the

transaction and its DCS. A strategy of replication is imposed for this purpose, the CDC should

replicate the requested data in the destination. Then, it stores copies in different places. Therefore,

in its mapping table, the CDC has the data transaction, the CDS and location of replicated data.

3.2. The attacks that target components in our environment

In this section, we will present the attacks targetting the components in a cloud of database

system.

1. Against CDC: In order to gain access to the service, a SQL injection attack is realized by

the intruder against the authentication server to gather required information during the

authentication process. When this step is performed, the intruder utilizes these parameters

to subscribes for a session. The CDC authorizes the malicious user to participate in the

session. After performing the SDL injection attack, he tests the case, does a SELECT and

stocks the user name and passwords. This attack allows showing password and identifiers

associated with it. Once a hacker has obtained the password, he modifies an existing SQL

commands to expose hidden data so that it can have an access to secret information. After

gaining access to the CDC as a super user by using access parameters obtained after the

SQL injection attack, the attacker can gain the integrity of files. In fact, when a

transaction is initialized, the attacker will try to change the mapping table of the CDC that

contains for each entry the transaction and its originator, the server and its associated

CDS. In addition to the mapping table, the attacker can change the set of associated

blocks in the defined CDS. Therefore, he can attack the integrity of files and modifies the

association between the file and the appropriate CDS.

2. Against the participant nodes: The participant node that is responsible for the processing

of sub transactions has been compromised because an intruder may define an attack

scenario including a transaction and its sub transactions. The execution of the malicious

sub transactions may be performed by the intruder by rendering the participant nodes

unavailable in order to defeat available intrusion detection systems. For this purpose, an

authentication phase between CDC and the participant nodes should be implemented in

order to solve this problems depicted in Figure 2. In addition, the participant node may

become malicious. In fact, the intruder wil send a malicious file that can have an access

to the machine then set up tools and controls the transactions. Thus, a fake commit or

rollback may be issued by the intruder when the participant node is compromised.

Consequently, critical data may be lost.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

17

Figure 2. Authentication between the CDC and participant node

4. THE MARKING SCHEME FOR TRANSACTION-BASED APPLICATIONS

This section introduces the marking scheme and gives an overview of the semantics and

characteristics of our dependency graph.

4.1The marking scheme for transaction-based applications in WSAN

environment
In order to perform marking intrusion in a transaction based WSAN environment, a set of

information are collected about running transactions and a generation of dependency graph. The

following set of structures and modules, which are depicted in Figure 3 as cited in [3] are

described as follows:

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

18

Figure 3 The proposed system architecture

 Structures: In this part we introduce the structures needed for the proposed marking

scheme .

o Transaction’s status table: Information that keeps for each transaction the

appropriate information about their sub transaction (it’s located at the SVC side).

Each transaction at this table includes these fields: transaction-id, sub

transactionid, processing node-id, decision. The decision field may be legitimate

or malicious and the transaction status indicate if it is committed locally or

globally or rolled back. Moreover, this table includes entries related to a

transaction which its processing has been deleted after a period of time fixed by

the SVC.

o Transaction dependency graph (TDG): The TDG is a directed acyclic graph that

is formed by nodes and links. The nodes in the proposed graph does not only

represent the transaction identifier but also processing nodes and files. This graph

includes in addition to the nodes and transactions two different links: lines

between nodes represent parental relationships and dashed links represent the set

of requested data in addition to other kind of operations that are performed on

them such as read (R) and write (W) operations. Also, we can find the

transactions execution schedule.

 Modules: In this section, we will illustrate the modules needed for our proposed scheme .

o Violation Rules Monitor (VRM): This component is available at both sides: the

SVC and the PNs. It monitors incoming request against available rules . At the

SVC, the VRM checks the incoming requests against the set of rules then adds its

decision in the transaction’s status table. At the processing node, the VRM

checks the incoming sub transaction against a set of rules, inserts in the mark a

set of fields and forwards it to the marker

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

19

o Rule Generator (RG): The rule database contains dynamic and static rules. The

static rules are initially produced in the database. Otherwise, the dynamic rules

are generated after detecting a new malicious activity. During the analysis of the

request, the VRM can detect breaches that are transparent to the SVC and PNs

sides. Thus, new dynamic rules are produced by the RG.

o Request Handler (RH): It’s located at the SVC side, it determines nodes that are

needed to process sub transactions and addresses each sub transaction to the

adequate PNs for processing. In addition, it affects these information to the

transaction’s status table. Marker: This component is available at both sides: the

SVC and the PNs. Its basic function is the generation of the mark. It identifies the

TDG components by collecting the information at the level mark such as the

decision, the identifier of transaction and the PN. After performing the decision,

the marker inserts in the SD mark the TDG in addition to the mark.

o Dependency Checker (DC): It determines the dependency between the set of

running transactions. These dependencies may be an input/output relationships,

shared access to data, or execution of several sub transactions by the same PN.

These dependencies are written in a specific format that includes several fields

such as the identifier of transaction and the type of transaction dependency.

Moreover, it analyses a set of transactions in order to return the order of

execution of transactions in addition to the order of elementary operations in each

transactions.

o The Graph Generator (GG): It generates the TDG by considering the dependency

performed by the DC. An example of a transaction dependency graph is

described by the Figure 4. Figure 4 illustrates an example of a TDG. Indeed, this

graph is composed of 5 nodes. The transaction T1 is the parent of T2 that will be

executed after T1 and before T3 which depends on T2 and will be executed on

the SD3. Another case is presented in this example: T5 depends on T4 that

performs a read execution in SD3 and a write execution in SD2. Therefore, the

label w.8.D3 means that the transaction T5 will be executed after the read of T4

in SD3. According to this graph, several rules are generated. For each rule, all

malicious combinations related to the processed transactions are marked in the

SVC side. According to this format the decision of the SVC is not only limited to

the decision of processing nodes but it take into account the dependency between

sub transactions and the elementary requests between these running sub

transactions. Rules are generated by following a set of steps that starts by

analyzing the processed transaction, three rules are generated. For each rule, all

malicious combinations should be added to the available detection rules.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

20

Figure 4. Transaction dependency graph

4.2. Marking scheme

In this section, we illustrate the intrusion marking in addition to the illustration of the mark.

 The mark structure: In order to mark attacks against a transaction-based applications in

WSAN environment, a decision of marking is made by the SVC and the PNs based on the

content of the transaction dependency graph. In the transaction-based traffic, the marking

strategy will be applied during the processing phase for a transaction. When receiving the

transaction, the SVC divides the transaction into sub transactions. The RH determines nodes

that are needed to process sub transactions and addresses each sub transaction to the adequate

processing nodes for processing. Then, it affects these information to transaction’s status

table by inserting several fields such as: transaction-id, sub transaction-id and the id of

processing nodes. When the processing nodes receive sub transactions, the VRM checks the

incoming sub transactions against a set of rules. After that, the VRM inserts its decision about

the sub transaction and the PN, the id of the sub transaction and the id of the PN in addition to

the timestamp in order to prevent the replay attack. Then, it sends a secured notification to the

SVC informing its decision. In the other hand, the SVC checks the TDG in order to take a

decision about running transactions and updates it. The marker inserts the mark in the SD

mark considering the decision of the VRM and the TDG. After the initiation phase, the SVC

may have a decision about several sub transactions. Therefore, in order to facilitate the task to

the PN, it forwards the decision, the operation and the id of sub transactions that have the

relation with the related sub transaction. So, the mark structure will be in this form:

((decision; operation; id transaction); id transaction). In the other hand, we treat the case of

shared access to data and level of priority. It can be presented when n transactions will access

to the same data with the same or different PNs:

o With the same PN: The SVC sends to the PN {(operation; id transaction; file; *)}. * means

that this chain can be repeated n times and the order of appearance of these chains is the

schedule of the transactions execution.

o With different PNs: The SVC will send {[#]; op; id transaction; file}. # means that the

adequate PN will take the decision about the transaction considering the dependency

relationships and the decision.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

21

4.3.Communication model

We need the communication model in our proposed scheme for the communication between the

SVC and the PNs for sending and receiving notifications. Indeed, when the PN deduces the

nature of sub transaction (malicious/legitimate), it sends a notification to the SVC informing it of

its decision. In the other hand, after performing its decision, the SVC notifies the processing node

about its decision. The notifications sent and received may be attacked by an intruder who can

change the decision or the id of the transactions and the related sub transactions. For that purpose,

a generation and distribution of encryption keys is presented in both ways. In fact, when the SVC

or the PN will send their decision, the SVC or the PN initiates the generation of keys during the

notification phase. Then, the SVC or the PN sends it in an encrypted message using the public

key extracted from the participant node or SVC certificate

4.4. An intrusion detection and marking transactions in a cloud of database

environment

In this section, we will adopt and enhance the idea proposed in the next section in order to detect

intrusion and mark transaction.

At the participant node side: When receiving the sub transaction, the participant node checks it

against three elements: source, size and encoding.

Source: In order to protect the data, the participant node grants access to the database based on

the provenance IP address of each sub transaction. The participant node specify which IP address

ranges are allowed. However, if a client wants to electicly grant access to the database, the

participant node checks the originating IP address of the request against the full set of rules: if the

IP address of the request is within one of the ranges specified in the set of database rules then the

connection is allowed to the database. Else if the IP address is not within one of the ranges

specified in the set of database rules then the participant node rolled back the sub transaction and

notifies the CDC by informing it that the connection is failed as shouwn in Figure 5.

Figure 5. Source identification

Size: When receiving the sub transaction, the participant node may realize that the size of the

request will not be supported by the server. Therefore, the participant node will rollback the sub

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

22

transaction. A memory thresholds must be defined in order to allow for incoming transactions to

manage those that can be described as reliable against these quotas

Encoding: To prevent from the SQL injection, when receiving the sub transaction, the participant

node checks it and when the request is encoded, the participant node notifies the CDC informing

it that the sub transaction is malicious. For consequence, the participant node rolled back the sub

transaction. In the Figure 6, an example of SQL injection attack.

Figure 6. SQL injection attack

At the CDC side: When receiving the transaction, the CDC divises the transaction into sub

transactions. The RH determines the data center needed in order to affect each sub transaction to

the adequate one. Before forwarding the sub transactions to the data centers, the VRM checks it

against a set of rules. After that, the VRM inserts its decision. Two cases are proposed:

o If the sub transaction is malicious then the marker inserts the mark in the SD mark

considering the decision of the VRM.

o If the sub transaction is legitimate:

 In Figure 7, a malicious action in sub transaction t1affects in the decision of the CDC. In fact,

the VRM checks the sub transaction t2against the set of rules and concludes that is legitimate.

Even if its first decision is legitimate, it will be considered as malicious because it depends on

t1, in addition to the elementary request. However if t2depends on t1, t1is malicious and makes

a write operation, and the first decision of the CDC on the sub transaction is legitimate and

the elementary operation is read or write operation then the final decision of the CDC is

malicious.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

23

Figure 7. Write operation for dependent transactions

 In this example , we have two sub transactions t2 and t3. We assume that t3 depends on t2

where t2 is malicious and makes a read operation. The first decision of the CDC about the sub

transaction t3 is legitimate and the elementary operation is read or write. Therefore, the final

decision of the CDC is legitimate because even if t2 is malicious that does not mean that it

affects the CDS as shown in Figure 8.

Figure 8. Read operation for dependent transactions

 According to the TDG, the parental relationships exist. Indeed, in the Figure we have T1is

parent of t2and t3. If T1 is malicious then t2 and t3 are malicious. This relationship is available

for a transaction and their related sub transactions as described in Figure 9.

Figure 9. Parent-Child relationships

o After this first phase, the CDC forwards the legitimate sub transactions to the adequate data

center. The particioant node will check it against three elements: the source, size and

encoding. Then it sends a secured notification to the CDC to inform its decision. We suppose

that the decision of the participant node about the sub transaction is malicious and this

detecting is a new malicious activity. We know also that the rule database contains dynamic

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

24

rules. Then, the RG updates the set of rules by adding these breaches that will be transparent

to the CDC side.

4.5. Case Study

This section illustrates the intrusion detection and marking transaction in a cloud of databases

environment through a case study that describe the architecture of the proposed marking scheme

as shown in Figure 10.

Figure 10. The proposed architecture for CDC and Participant nodes

In order to illustrate the intrusion detection and the marking transaction in a cloud of database

environment, we propose a cloud of databases environment which include a set of components

that provide service for clients. This system consists of two branches of the bank like described in

[4].

A transaction is sent by the CDC to be processed. A client wants to move his account from bank

A to bank B. A transaction T is sent to the CDC. The CDC divises the transaction T into two sub

transactions {t1, t2}. The RH determines the data center needed .Then, it affects these information

to transaction’s status table by inserting several fields such as: transaction-id, sub transaction-id

and the data center needed. The VRM checks the sub transactions t1 and t2 against a set of rules.

The dependency checker determines the dependency between the running sub transactions. In our

example, t2 depends on t1 as shown in Figure 11 because:

t1 = {o1 =  read old accaount, o2 = delete old account}

t2 =  {write o1}

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

25

Figure 11. The dependency relationships in the case study

After that, the dependency checker specifies that’s an input output dependency. Then, the graph

generator generates the TDG by considering the relationships between transactions as presented

in Figure 12.

Figure 12. Transaction dependency graph

If t1 and t2 are legitimate, the CDC sent the two sub transactions consecutively to the participant

node 1 and the participant node 2 in order to check them against the three elements: source, the

size and encoding. Therefore, the participant nodes notify the CDC informing it about the

decision taken. Otherwise, if t1 is malicious and makes a write operation that is delete old account

then t2 will be considered as malicious considering the VRM and the TDG. Finally, the marker

will mark both of the sub transactions as malicious.

5. SIMULATION OF WSAN AND CLOUD OF DATABASES ENVIRONMENTS

This section illustrates the simulation environment and describes the simulation model that will

be evaluated and used to evaluate the efficiency of our marking and intrusion tolerance schemes

in WSAN and cloud of databases environments.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

26

5.1Simulation Model

In WSAN environment: In this section, we describe the scenario used to simulate the

performance of our marking intrusion scheme. We consider a WSAN environment that integrates

an SVC, six PNs and three SDs. When receiving transactions, the SVC divides the transactions

into sub transactions and affects each sub transaction to the adequate PNs for processing.

Problems of coverage or lack of resources can be presented when transactions are in process. In

this case, the SVC initiates a selection phase of new SVC from available nodes. The selection of a

new SVC is based on performance criteria including a free processing unit, free memory and a

high signal level. Finally, the old SVC will inform the rest of the processing nodes about the

assignment of the new SVC.

The SVC must be able to solve these problems in order to ensure and guarantee the processing of

running transactions. The objective of our simulations is to prove the efficiency of our approach

to detect malicious transactions then to mark it. The conditions could be summarized when we

have malicious transactions that affect the whole system without being detected. The simulation

scenario includes the definition of dependency between transactions that will be processed by the

WSAN components. In addition, the communication model between the SVC, PNs and different

distributions needs to be defined in order to illustrate the behavior of the proposed scheme as

mentionned in [3].

In a cloud of databases environment: In this section, we describe the scenario used to simulate

the performance of our marking and intrusion tolerance scheme.

We consider a cloud of databases environment that integrates an CDC and two data centers that

include on their side the participant nodes and the CDCs. The algorithm 1 as given below is used

to generate the files containing in the CDC as cited in [5].

Map<File, mxCell> storageMap = new HashMap<>();{ CloudDatabaseStorage[]

storage = new CloudDatabaseStorage[] { new CloudDatabaseStorage(new File("F1"), new

File("F2")), new CloudDatabaseStorage(new File("F3"), new File("F4"), new File("F5")), new

CloudDatabaseStorage(new File("F6")), new CloudDatabaseStorage(new File("F7"), new

File("F8"), new File("F9")) };for (CloudDatabaseStorage cds : storage)for (File f :

cds.getFiles()) storageMap.put(f,(mxCell)

transactionGraph.insertVertex(transactionGraphParent, f + "", f, 0, 0, 60, 40)); }

Algorithm 1. Generating Files

The TDG generates rules in a way that take into consideration the transaction dependency and the

dependency between subtransactions in addition to relationships between the parent and child

transactions and relationships between different transactions. In the algorithm 2, the dependency

and the parental relationships are described as follow.

Map<SubTransaction, mxCell> transactionMap = new LinkedHashMap<>();

Set<SubTransaction> transactionKeys = transactionMap.keySet();{ Document transactionDoc =

DocumentBuilderFactory.newInstance().newDocumentBuilder() .parse(new File(args[0]));

transactionDoc.getDocumentElement().normalize();NodeList transactionFlow =

transactionDoc.getElementsByTagName("SubTransaction");for (int i = 0; i <

transactionFlow.getLength(); i++) {Element subTransactionTag = (Element)

transactionFlow.item(i);String id = subTransactionTag.getAttribute("id");SubTransaction

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

27

subTransaction = SubTransaction.findSubTransactionById(transactionKeys, id);if

(subTransaction == null) subTransaction = new SubTransaction(id);int j = 0;for (NodeList

operationsFlow = ((Element)

subTransactionTag.getElementsByTagName("Operations").item(0))

.getElementsByTagName("Operation"); j < operationsFlow.getLength(); j++) {Element

operationTag = (Element) operationsFlow.item(j);new Operation(subTransaction,

operationTag.getAttribute("id"),Operation.Action.valueOf(operationTag.getElementsByTagName

("Action").item(0).getTextContent()),CloudDatabaseStorage.findFileByName(storageMap.keySet

(), operationTag.getElementsByTagName("File").item(0).getTextContent())); }Element

childrenTag = (Element) subTransactionTag.getElementsByTagName("Children").item(0);if

(childrenTag != null) {NodeList children =

childrenTag.getElementsByTagName("ChildTransaction");for (j = 0; j < children.getLength();

j++) {id = ((Element) children.item(j)).getAttribute("id");SubTransaction child =

SubTransaction.findSubTransactionById(transactionKeys, id);if (child == null) { child = new

SubTransaction(id); transactionMap.put(child, null); }subTransaction.addChild(child); } }if

(transactionMap.containsKey(subTransaction))

transactionMap.remove(subTransaction);transactionMap.put(subTransaction, (mxCell)

transactionGraph.insertVertex(transactionGraphParent, subTransaction + "", subTransaction, 0,

0, 60, 40, "shape=ellipse;perimeter=ellipsePerimeter")); } }

Algorithm 2. The dependency and the parental relationships

The objective of our simulation is to prove the efficiency of our approach to ensure the

serialization of running transactions.

5.2. Simulation Results

In this section, we aim to evaluate the efficiency of the proposed marking scheme in addition to

the intrusion detection capabilities based on the generated marks.

In WSAN environment

In this section, we present our approach to perform the simulation work and obtain the

experimental results. We aim to evaluate the efficiency of the proposed marking scheme in

addition to the intrusion detection capabilities as described in [3].

The intrusion detection capabilities for the proposed scheme: The detected malicious

transactions depend on the available detection rules, the complexity of the dependency scheme

between sub transactions in addition to the number of transactions to be processed by the WSAN

components. Indeed, the available detection rules may increase with the dependency relationship

of sub transactions and as a result, the number of detected malicious transaction increases. In this

simulation, we have considered two types of detection rules: static and dynamic. Indeed, in the

static mode, the available detection rules are a set of rules that specify a set of malicious actions

on the defined resources during the simulation. Otherwise, the dynamic available rules may be

attached to new added resources or related to actions on dependent transactions. Therefore,

dynamic rules are generated during the simulation by the increase of the number of transactions

in addition to the dependency between sub transactions. Figure 13 illustrates the variation of the

number of malicious transactions detected in function of the total number of the malicious

transactions that are operated in the system, including the legitimate transactions and the

malicious ones in addition to the dependency relationships between them. Moreover, Figure 13

shows the comparison between the number of detected malicious transactions when using

dynamic available rules and the number of the detected malicious transactions with static

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

28

available rules. Indeed, the first curve represents the number of malicious transactions among all

the transactions that are operated in the system. In the other hand, the second curve and the third

curve represent the number of the detected malicious transactions compared to the total number

of malicious ones. Moreover, the number of the detected malicious transactions depends on the

type of available rules, which is either dynamic or static. As depicted in Figure 13, 30 malicious

transactions are detected using available dynamic rules while the number of malicious

transactions detected with static rules are 24. Also, when we have 10 transactions, we can detect

just 2 malicious transactions with static rules. Otherwise, 4 malicious transactions with dynamic

rules. Therefore, this observation illustrates the effectiveness of the dynamic rules regarding the

detection of malicious transactions since the number of the detected malicious transactions is

more important than the one obtained with static rules.

Figure 13. Malicious transactions detected compared to the total of malicious transactions

Evaluation of the intrusion detection capabilities based on the marking scheme: In this

simulation, we study the malicious transactions detected with marking support compared to the

malicious transactions detected without marking. When receiving the transaction, the SVC checks

it against a set of rules. After that, it verifies the dependency between the transactions in order to

take a decision about running transactions. Then, the SVC inserts its decision and forwards each

sub transaction to the adequate PNs. When the PNs receive sub transactions, they check them

against a set of rules. Upon the verification, the PNs insert their decision about the verified sub

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

29

transactions as well as both ids of the considered sub transaction and PN. Then, a notification is

sent to the SVC informing the PN’s decision. In this simulation, we can remark that the use of

marking scheme can increase the number of detected intrusions. The number of malicious

transactions detected with marking support are greater than the number of malicious transactions

detected without marking support when using the dynamic detection rules. Therefore, we can

conclude that the marking support enhances the detection capabilities of the proposed scheme. In

our simulation, for 36 malicious transactions, we have detected 32 malicious transactions with

marking support and 30 without marking. Figure 14 illustrates the efficiency of our proposed

marking concept in detecting malicious transactions. Indeed, Figure 14 presents three curves:

Firstly, the grey curve shows the total number of malicious transactions. Secondly, the orange

curve presents the number of malicious transactions detected without marking support. Therefore,

comparing with the first curve, we can notice that the ratio between the total number of malicious

transactions and the detected malicious transaction is important. Finally, the blue curve presents

the malicious transactions detected with marking support. In fact, the blue curve approaches to

the orange one and consequently, we can approve the efficiency of the marking approach.

Figure 14. Detection capabilities with/ without marking

In a cloud of databases environment:

The transaction dependency graph: In this simulation we have presented a transaction

dependency graph in Figure 15.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

30

Figure 15. Transaction dependency graph

T7 will do a read on a file 2 after the write of the subtransaction T6 on file 2. The TDG generates

rules in a The Figure 15 illustrates the simulation result of the TDG. Indeed, this graph is

composed of seven nodes that describe the subtransactions. The subtransactionT1 is the parent T2

that will be executed after T1 and before T3 which depends on T2 and will be executed on file 6.

Another case can be presented is T7 depends on T6 has a write execution in file 2 and a read

execution in file 7. Therefore the label R,12 means that the subtransaction way that take into

consideration the transaction dependency and the dependency between subtransactions in addition

to relationships between the parent and child transactions and relationships between different

transactions [5].

Marking intrusion: A simulation result is depicted in Figure 16. In Figure 16, the

subtransactions T3 to T7 are colored in red. In fact, the subtransactions T3 and T7 are the first

malicious subtransactions according to the set of rules. Then, with the help of the TDG the other

subtransactions became also malicious as depicted in Figure 16 and described in the Algrorithm

3. In the Figure 16, T3 is the parent of T4 and T6, T3 is malicious then T4 and T6 will become

malicious. T5 will read the file 8 updated by T4. Therefore, the subtransaction T5 will become

malicious.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

31

Figure 16. Marking intrusion

public void markAsMalicious(SubTransaction[] subTransactions) {malicious = true;for

(SubTransaction child : children) child.malicious = true;int i = 0; while (i <

subTransactions.length && subTransactions[i++] != this) ;for (int j = i + 1; j <

subTransactions.length; j++) for (Operation nextOp : subTransactions[j].operations)for

(Operation op : operations)if (nextOp.getTarget() == op.getTarget())

subTransactions[j].markAsMalicious(subTransactions); }public boolean

searchMaliciousDependency(SubTransaction[] subTransactions) {for (int i = 0; i <

subTransactions.length && subTransactions[i] != this; i++)if (subTransactions[i].malicious)

for (Operation prevOp : subTransactions[i].operations)for (Operation op : operations)if

(prevOp.getTarget() == op.getTarget()) return true;return false; }

Algorithm 3. Intrusion detection and marking transactions

6. CONCLUSION

We have proposed a marking scheme of Transaction-based Applications in Wireless Storage Area

Networks that is mainly based on a transaction dependency graph. We have adopted and

enhanced this scheme in order to detect intrusion and mark transactions in a cloud of databases

environment. The proposed scheme introduces the intrusion detection and marking transactions

by using at first the rules set and the TDG. Secondly, the use of the elements at the side of the

participant nodes. The enhancement was by including additional elements related to the

processing environment in the cloud of databases. For future research, we project to find the

identity of the user. Moreover, we enhance the protection of the mark. Another perspective to this

work consists in studying the intrusion tolerance with marking support for interconnected

databases.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 5, October 2016

32

REFERENCES

[1] Kamra A Terzi E Bertino E, Vakali A. Intrusion Detection in RBAC-Administered Database. In

Proceeding of the 21st annual computer security application conference (ACSAC), pages 170-182,

2005.

[2] M. Gertz C. Y. Chung, K. Levitt. DEMIDS: A Misuse Detection System for Database Systems. In

Proceedings of the Integrity and Internal Control in Information System, Pages 159-178, 1999.

[3] S.Chatti, H.ounelli. Marking Itrusion of transaction-based applications in WSAN . Network-Based

Information Systems (NBiS), 16th International Conference on, 2013.

[4] S.Chatti, H.Ounelli. Transaction Management in WSAN Cloud Environment. 17th International

Conference on Network Based Information Systems (NBiS), Pages 525-530, 2014.

[5] S.Chatti, H.ounelli. An Intrusion Tolerance Scheme for a Cloud of Dtatabases environment. 19th

International Conference on Network-Based Information Systems (NBiS), 2016.

[6] Sural S Srivastava A, Majumdar AK. Database Intrusion Detection Using Weighted Sequence

Mining. Journal of Computers, vol. 1, no. 4, 2006.

[7] B. Panda Y. Hu. A data mining approach for database intrusion detection. In Proceedings of the ACM

Symposium on applied computing, pages 711-716, 2004.

[8] Qin X Zhong Y. Database intrusion detection based on user query frequent item sets mining with

constraints. In Proceeding of the third international conference on information security, pages224-

225, 2004.

Authors

Syrine Chatti : PH.D student in Faculty of Sciences of Tunis

Habib Ounelli: Professor in Faculty of Sciences of Tunis

